1/*
2 * Monkey's Audio lossless audio decoder
3 * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4 *  based upon libdemac from Dave Chapman.
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#define ALT_BITSTREAM_READER_LE
24#include "avcodec.h"
25#include "dsputil.h"
26#include "get_bits.h"
27#include "bytestream.h"
28
29/**
30 * @file
31 * Monkey's Audio lossless audio decoder
32 */
33
34#define BLOCKS_PER_LOOP     4608
35#define MAX_CHANNELS        2
36#define MAX_BYTESPERSAMPLE  3
37
38#define APE_FRAMECODE_MONO_SILENCE    1
39#define APE_FRAMECODE_STEREO_SILENCE  3
40#define APE_FRAMECODE_PSEUDO_STEREO   4
41
42#define HISTORY_SIZE 512
43#define PREDICTOR_ORDER 8
44/** Total size of all predictor histories */
45#define PREDICTOR_SIZE 50
46
47#define YDELAYA (18 + PREDICTOR_ORDER*4)
48#define YDELAYB (18 + PREDICTOR_ORDER*3)
49#define XDELAYA (18 + PREDICTOR_ORDER*2)
50#define XDELAYB (18 + PREDICTOR_ORDER)
51
52#define YADAPTCOEFFSA 18
53#define XADAPTCOEFFSA 14
54#define YADAPTCOEFFSB 10
55#define XADAPTCOEFFSB 5
56
57/**
58 * Possible compression levels
59 * @{
60 */
61enum APECompressionLevel {
62    COMPRESSION_LEVEL_FAST       = 1000,
63    COMPRESSION_LEVEL_NORMAL     = 2000,
64    COMPRESSION_LEVEL_HIGH       = 3000,
65    COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
66    COMPRESSION_LEVEL_INSANE     = 5000
67};
68/** @} */
69
70#define APE_FILTER_LEVELS 3
71
72/** Filter orders depending on compression level */
73static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
74    {  0,   0,    0 },
75    { 16,   0,    0 },
76    { 64,   0,    0 },
77    { 32, 256,    0 },
78    { 16, 256, 1280 }
79};
80
81/** Filter fraction bits depending on compression level */
82static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
83    {  0,  0,  0 },
84    { 11,  0,  0 },
85    { 11,  0,  0 },
86    { 10, 13,  0 },
87    { 11, 13, 15 }
88};
89
90
91/** Filters applied to the decoded data */
92typedef struct APEFilter {
93    int16_t *coeffs;        ///< actual coefficients used in filtering
94    int16_t *adaptcoeffs;   ///< adaptive filter coefficients used for correcting of actual filter coefficients
95    int16_t *historybuffer; ///< filter memory
96    int16_t *delay;         ///< filtered values
97
98    int avg;
99} APEFilter;
100
101typedef struct APERice {
102    uint32_t k;
103    uint32_t ksum;
104} APERice;
105
106typedef struct APERangecoder {
107    uint32_t low;           ///< low end of interval
108    uint32_t range;         ///< length of interval
109    uint32_t help;          ///< bytes_to_follow resp. intermediate value
110    unsigned int buffer;    ///< buffer for input/output
111} APERangecoder;
112
113/** Filter histories */
114typedef struct APEPredictor {
115    int32_t *buf;
116
117    int32_t lastA[2];
118
119    int32_t filterA[2];
120    int32_t filterB[2];
121
122    int32_t coeffsA[2][4];  ///< adaption coefficients
123    int32_t coeffsB[2][5];  ///< adaption coefficients
124    int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
125} APEPredictor;
126
127/** Decoder context */
128typedef struct APEContext {
129    AVCodecContext *avctx;
130    DSPContext dsp;
131    int channels;
132    int samples;                             ///< samples left to decode in current frame
133
134    int fileversion;                         ///< codec version, very important in decoding process
135    int compression_level;                   ///< compression levels
136    int fset;                                ///< which filter set to use (calculated from compression level)
137    int flags;                               ///< global decoder flags
138
139    uint32_t CRC;                            ///< frame CRC
140    int frameflags;                          ///< frame flags
141    int currentframeblocks;                  ///< samples (per channel) in current frame
142    int blocksdecoded;                       ///< count of decoded samples in current frame
143    APEPredictor predictor;                  ///< predictor used for final reconstruction
144
145    int32_t decoded0[BLOCKS_PER_LOOP];       ///< decoded data for the first channel
146    int32_t decoded1[BLOCKS_PER_LOOP];       ///< decoded data for the second channel
147
148    int16_t* filterbuf[APE_FILTER_LEVELS];   ///< filter memory
149
150    APERangecoder rc;                        ///< rangecoder used to decode actual values
151    APERice riceX;                           ///< rice code parameters for the second channel
152    APERice riceY;                           ///< rice code parameters for the first channel
153    APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
154
155    uint8_t *data;                           ///< current frame data
156    uint8_t *data_end;                       ///< frame data end
157    const uint8_t *ptr;                      ///< current position in frame data
158    const uint8_t *last_ptr;                 ///< position where last 4608-sample block ended
159
160    int error;
161} APEContext;
162
163// TODO: dsputilize
164
165static av_cold int ape_decode_init(AVCodecContext * avctx)
166{
167    APEContext *s = avctx->priv_data;
168    int i;
169
170    if (avctx->extradata_size != 6) {
171        av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
172        return -1;
173    }
174    if (avctx->bits_per_coded_sample != 16) {
175        av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
176        return -1;
177    }
178    if (avctx->channels > 2) {
179        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
180        return -1;
181    }
182    s->avctx             = avctx;
183    s->channels          = avctx->channels;
184    s->fileversion       = AV_RL16(avctx->extradata);
185    s->compression_level = AV_RL16(avctx->extradata + 2);
186    s->flags             = AV_RL16(avctx->extradata + 4);
187
188    av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
189    if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
190        av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
191        return -1;
192    }
193    s->fset = s->compression_level / 1000 - 1;
194    for (i = 0; i < APE_FILTER_LEVELS; i++) {
195        if (!ape_filter_orders[s->fset][i])
196            break;
197        s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4);
198    }
199
200    dsputil_init(&s->dsp, avctx);
201    avctx->sample_fmt = SAMPLE_FMT_S16;
202    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
203    return 0;
204}
205
206static av_cold int ape_decode_close(AVCodecContext * avctx)
207{
208    APEContext *s = avctx->priv_data;
209    int i;
210
211    for (i = 0; i < APE_FILTER_LEVELS; i++)
212        av_freep(&s->filterbuf[i]);
213
214    av_freep(&s->data);
215    return 0;
216}
217
218/**
219 * @defgroup rangecoder APE range decoder
220 * @{
221 */
222
223#define CODE_BITS    32
224#define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1))
225#define SHIFT_BITS   (CODE_BITS - 9)
226#define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1)
227#define BOTTOM_VALUE (TOP_VALUE >> 8)
228
229/** Start the decoder */
230static inline void range_start_decoding(APEContext * ctx)
231{
232    ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
233    ctx->rc.low    = ctx->rc.buffer >> (8 - EXTRA_BITS);
234    ctx->rc.range  = (uint32_t) 1 << EXTRA_BITS;
235}
236
237/** Perform normalization */
238static inline void range_dec_normalize(APEContext * ctx)
239{
240    while (ctx->rc.range <= BOTTOM_VALUE) {
241        ctx->rc.buffer <<= 8;
242        if(ctx->ptr < ctx->data_end)
243            ctx->rc.buffer += *ctx->ptr;
244        ctx->ptr++;
245        ctx->rc.low    = (ctx->rc.low << 8)    | ((ctx->rc.buffer >> 1) & 0xFF);
246        ctx->rc.range  <<= 8;
247    }
248}
249
250/**
251 * Calculate culmulative frequency for next symbol. Does NO update!
252 * @param ctx decoder context
253 * @param tot_f is the total frequency or (code_value)1<<shift
254 * @return the culmulative frequency
255 */
256static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
257{
258    range_dec_normalize(ctx);
259    ctx->rc.help = ctx->rc.range / tot_f;
260    return ctx->rc.low / ctx->rc.help;
261}
262
263/**
264 * Decode value with given size in bits
265 * @param ctx decoder context
266 * @param shift number of bits to decode
267 */
268static inline int range_decode_culshift(APEContext * ctx, int shift)
269{
270    range_dec_normalize(ctx);
271    ctx->rc.help = ctx->rc.range >> shift;
272    return ctx->rc.low / ctx->rc.help;
273}
274
275
276/**
277 * Update decoding state
278 * @param ctx decoder context
279 * @param sy_f the interval length (frequency of the symbol)
280 * @param lt_f the lower end (frequency sum of < symbols)
281 */
282static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
283{
284    ctx->rc.low  -= ctx->rc.help * lt_f;
285    ctx->rc.range = ctx->rc.help * sy_f;
286}
287
288/** Decode n bits (n <= 16) without modelling */
289static inline int range_decode_bits(APEContext * ctx, int n)
290{
291    int sym = range_decode_culshift(ctx, n);
292    range_decode_update(ctx, 1, sym);
293    return sym;
294}
295
296
297#define MODEL_ELEMENTS 64
298
299/**
300 * Fixed probabilities for symbols in Monkey Audio version 3.97
301 */
302static const uint16_t counts_3970[22] = {
303        0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
304    62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
305    65450, 65469, 65480, 65487, 65491, 65493,
306};
307
308/**
309 * Probability ranges for symbols in Monkey Audio version 3.97
310 */
311static const uint16_t counts_diff_3970[21] = {
312    14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
313    1104, 677, 415, 248, 150, 89, 54, 31,
314    19, 11, 7, 4, 2,
315};
316
317/**
318 * Fixed probabilities for symbols in Monkey Audio version 3.98
319 */
320static const uint16_t counts_3980[22] = {
321        0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
322    64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
323    65485, 65488, 65490, 65491, 65492, 65493,
324};
325
326/**
327 * Probability ranges for symbols in Monkey Audio version 3.98
328 */
329static const uint16_t counts_diff_3980[21] = {
330    19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
331    261, 119, 65, 31, 19, 10, 6, 3,
332    3, 2, 1, 1, 1,
333};
334
335/**
336 * Decode symbol
337 * @param ctx decoder context
338 * @param counts probability range start position
339 * @param counts_diff probability range widths
340 */
341static inline int range_get_symbol(APEContext * ctx,
342                                   const uint16_t counts[],
343                                   const uint16_t counts_diff[])
344{
345    int symbol, cf;
346
347    cf = range_decode_culshift(ctx, 16);
348
349    if(cf > 65492){
350        symbol= cf - 65535 + 63;
351        range_decode_update(ctx, 1, cf);
352        if(cf > 65535)
353            ctx->error=1;
354        return symbol;
355    }
356    /* figure out the symbol inefficiently; a binary search would be much better */
357    for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
358
359    range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
360
361    return symbol;
362}
363/** @} */ // group rangecoder
364
365static inline void update_rice(APERice *rice, int x)
366{
367    int lim = rice->k ? (1 << (rice->k + 4)) : 0;
368    rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
369
370    if (rice->ksum < lim)
371        rice->k--;
372    else if (rice->ksum >= (1 << (rice->k + 5)))
373        rice->k++;
374}
375
376static inline int ape_decode_value(APEContext * ctx, APERice *rice)
377{
378    int x, overflow;
379
380    if (ctx->fileversion < 3990) {
381        int tmpk;
382
383        overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
384
385        if (overflow == (MODEL_ELEMENTS - 1)) {
386            tmpk = range_decode_bits(ctx, 5);
387            overflow = 0;
388        } else
389            tmpk = (rice->k < 1) ? 0 : rice->k - 1;
390
391        if (tmpk <= 16)
392            x = range_decode_bits(ctx, tmpk);
393        else {
394            x = range_decode_bits(ctx, 16);
395            x |= (range_decode_bits(ctx, tmpk - 16) << 16);
396        }
397        x += overflow << tmpk;
398    } else {
399        int base, pivot;
400
401        pivot = rice->ksum >> 5;
402        if (pivot == 0)
403            pivot = 1;
404
405        overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
406
407        if (overflow == (MODEL_ELEMENTS - 1)) {
408            overflow  = range_decode_bits(ctx, 16) << 16;
409            overflow |= range_decode_bits(ctx, 16);
410        }
411
412        if (pivot < 0x10000) {
413            base = range_decode_culfreq(ctx, pivot);
414            range_decode_update(ctx, 1, base);
415        } else {
416            int base_hi = pivot, base_lo;
417            int bbits = 0;
418
419            while (base_hi & ~0xFFFF) {
420                base_hi >>= 1;
421                bbits++;
422            }
423            base_hi = range_decode_culfreq(ctx, base_hi + 1);
424            range_decode_update(ctx, 1, base_hi);
425            base_lo = range_decode_culfreq(ctx, 1 << bbits);
426            range_decode_update(ctx, 1, base_lo);
427
428            base = (base_hi << bbits) + base_lo;
429        }
430
431        x = base + overflow * pivot;
432    }
433
434    update_rice(rice, x);
435
436    /* Convert to signed */
437    if (x & 1)
438        return (x >> 1) + 1;
439    else
440        return -(x >> 1);
441}
442
443static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
444{
445    int32_t *decoded0 = ctx->decoded0;
446    int32_t *decoded1 = ctx->decoded1;
447
448    ctx->blocksdecoded = blockstodecode;
449
450    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
451        /* We are pure silence, just memset the output buffer. */
452        memset(decoded0, 0, blockstodecode * sizeof(int32_t));
453        memset(decoded1, 0, blockstodecode * sizeof(int32_t));
454    } else {
455        while (blockstodecode--) {
456            *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
457            if (stereo)
458                *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
459        }
460    }
461
462    if (ctx->blocksdecoded == ctx->currentframeblocks)
463        range_dec_normalize(ctx);   /* normalize to use up all bytes */
464}
465
466static void init_entropy_decoder(APEContext * ctx)
467{
468    /* Read the CRC */
469    ctx->CRC = bytestream_get_be32(&ctx->ptr);
470
471    /* Read the frame flags if they exist */
472    ctx->frameflags = 0;
473    if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
474        ctx->CRC &= ~0x80000000;
475
476        ctx->frameflags = bytestream_get_be32(&ctx->ptr);
477    }
478
479    /* Keep a count of the blocks decoded in this frame */
480    ctx->blocksdecoded = 0;
481
482    /* Initialize the rice structs */
483    ctx->riceX.k = 10;
484    ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
485    ctx->riceY.k = 10;
486    ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
487
488    /* The first 8 bits of input are ignored. */
489    ctx->ptr++;
490
491    range_start_decoding(ctx);
492}
493
494static const int32_t initial_coeffs[4] = {
495    360, 317, -109, 98
496};
497
498static void init_predictor_decoder(APEContext * ctx)
499{
500    APEPredictor *p = &ctx->predictor;
501
502    /* Zero the history buffers */
503    memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
504    p->buf = p->historybuffer;
505
506    /* Initialize and zero the coefficients */
507    memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
508    memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
509    memset(p->coeffsB, 0, sizeof(p->coeffsB));
510
511    p->filterA[0] = p->filterA[1] = 0;
512    p->filterB[0] = p->filterB[1] = 0;
513    p->lastA[0]   = p->lastA[1]   = 0;
514}
515
516/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
517static inline int APESIGN(int32_t x) {
518    return (x < 0) - (x > 0);
519}
520
521static av_always_inline int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
522{
523    int32_t predictionA, predictionB, sign;
524
525    p->buf[delayA]     = p->lastA[filter];
526    p->buf[adaptA]     = APESIGN(p->buf[delayA]);
527    p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
528    p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
529
530    predictionA = p->buf[delayA    ] * p->coeffsA[filter][0] +
531                  p->buf[delayA - 1] * p->coeffsA[filter][1] +
532                  p->buf[delayA - 2] * p->coeffsA[filter][2] +
533                  p->buf[delayA - 3] * p->coeffsA[filter][3];
534
535    /*  Apply a scaled first-order filter compression */
536    p->buf[delayB]     = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
537    p->buf[adaptB]     = APESIGN(p->buf[delayB]);
538    p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
539    p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
540    p->filterB[filter] = p->filterA[filter ^ 1];
541
542    predictionB = p->buf[delayB    ] * p->coeffsB[filter][0] +
543                  p->buf[delayB - 1] * p->coeffsB[filter][1] +
544                  p->buf[delayB - 2] * p->coeffsB[filter][2] +
545                  p->buf[delayB - 3] * p->coeffsB[filter][3] +
546                  p->buf[delayB - 4] * p->coeffsB[filter][4];
547
548    p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
549    p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
550
551    sign = APESIGN(decoded);
552    p->coeffsA[filter][0] += p->buf[adaptA    ] * sign;
553    p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
554    p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
555    p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
556    p->coeffsB[filter][0] += p->buf[adaptB    ] * sign;
557    p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
558    p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
559    p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
560    p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
561
562    return p->filterA[filter];
563}
564
565static void predictor_decode_stereo(APEContext * ctx, int count)
566{
567    APEPredictor *p = &ctx->predictor;
568    int32_t *decoded0 = ctx->decoded0;
569    int32_t *decoded1 = ctx->decoded1;
570
571    while (count--) {
572        /* Predictor Y */
573        *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
574        decoded0++;
575        *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
576        decoded1++;
577
578        /* Combined */
579        p->buf++;
580
581        /* Have we filled the history buffer? */
582        if (p->buf == p->historybuffer + HISTORY_SIZE) {
583            memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
584            p->buf = p->historybuffer;
585        }
586    }
587}
588
589static void predictor_decode_mono(APEContext * ctx, int count)
590{
591    APEPredictor *p = &ctx->predictor;
592    int32_t *decoded0 = ctx->decoded0;
593    int32_t predictionA, currentA, A, sign;
594
595    currentA = p->lastA[0];
596
597    while (count--) {
598        A = *decoded0;
599
600        p->buf[YDELAYA] = currentA;
601        p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
602
603        predictionA = p->buf[YDELAYA    ] * p->coeffsA[0][0] +
604                      p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
605                      p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
606                      p->buf[YDELAYA - 3] * p->coeffsA[0][3];
607
608        currentA = A + (predictionA >> 10);
609
610        p->buf[YADAPTCOEFFSA]     = APESIGN(p->buf[YDELAYA    ]);
611        p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
612
613        sign = APESIGN(A);
614        p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA    ] * sign;
615        p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
616        p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
617        p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
618
619        p->buf++;
620
621        /* Have we filled the history buffer? */
622        if (p->buf == p->historybuffer + HISTORY_SIZE) {
623            memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
624            p->buf = p->historybuffer;
625        }
626
627        p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
628        *(decoded0++) = p->filterA[0];
629    }
630
631    p->lastA[0] = currentA;
632}
633
634static void do_init_filter(APEFilter *f, int16_t * buf, int order)
635{
636    f->coeffs = buf;
637    f->historybuffer = buf + order;
638    f->delay       = f->historybuffer + order * 2;
639    f->adaptcoeffs = f->historybuffer + order;
640
641    memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
642    memset(f->coeffs, 0, order * sizeof(int16_t));
643    f->avg = 0;
644}
645
646static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
647{
648    do_init_filter(&f[0], buf, order);
649    do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
650}
651
652static void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
653{
654    int res;
655    int absres;
656
657    while (count--) {
658        /* round fixedpoint scalar product */
659        res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order, f->adaptcoeffs - order, order, APESIGN(*data));
660        res = (res + (1 << (fracbits - 1))) >> fracbits;
661        res += *data;
662        *data++ = res;
663
664        /* Update the output history */
665        *f->delay++ = av_clip_int16(res);
666
667        if (version < 3980) {
668            /* Version ??? to < 3.98 files (untested) */
669            f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
670            f->adaptcoeffs[-4] >>= 1;
671            f->adaptcoeffs[-8] >>= 1;
672        } else {
673            /* Version 3.98 and later files */
674
675            /* Update the adaption coefficients */
676            absres = FFABS(res);
677            if (absres)
678                *f->adaptcoeffs = ((res & (1<<31)) - (1<<30)) >> (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
679            else
680                *f->adaptcoeffs = 0;
681
682            f->avg += (absres - f->avg) / 16;
683
684            f->adaptcoeffs[-1] >>= 1;
685            f->adaptcoeffs[-2] >>= 1;
686            f->adaptcoeffs[-8] >>= 1;
687        }
688
689        f->adaptcoeffs++;
690
691        /* Have we filled the history buffer? */
692        if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
693            memmove(f->historybuffer, f->delay - (order * 2),
694                    (order * 2) * sizeof(int16_t));
695            f->delay = f->historybuffer + order * 2;
696            f->adaptcoeffs = f->historybuffer + order;
697        }
698    }
699}
700
701static void apply_filter(APEContext * ctx, APEFilter *f,
702                         int32_t * data0, int32_t * data1,
703                         int count, int order, int fracbits)
704{
705    do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
706    if (data1)
707        do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
708}
709
710static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
711                              int32_t * decoded1, int count)
712{
713    int i;
714
715    for (i = 0; i < APE_FILTER_LEVELS; i++) {
716        if (!ape_filter_orders[ctx->fset][i])
717            break;
718        apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
719    }
720}
721
722static void init_frame_decoder(APEContext * ctx)
723{
724    int i;
725    init_entropy_decoder(ctx);
726    init_predictor_decoder(ctx);
727
728    for (i = 0; i < APE_FILTER_LEVELS; i++) {
729        if (!ape_filter_orders[ctx->fset][i])
730            break;
731        init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
732    }
733}
734
735static void ape_unpack_mono(APEContext * ctx, int count)
736{
737    int32_t left;
738    int32_t *decoded0 = ctx->decoded0;
739    int32_t *decoded1 = ctx->decoded1;
740
741    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
742        entropy_decode(ctx, count, 0);
743        /* We are pure silence, so we're done. */
744        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
745        return;
746    }
747
748    entropy_decode(ctx, count, 0);
749    ape_apply_filters(ctx, decoded0, NULL, count);
750
751    /* Now apply the predictor decoding */
752    predictor_decode_mono(ctx, count);
753
754    /* Pseudo-stereo - just copy left channel to right channel */
755    if (ctx->channels == 2) {
756        while (count--) {
757            left = *decoded0;
758            *(decoded1++) = *(decoded0++) = left;
759        }
760    }
761}
762
763static void ape_unpack_stereo(APEContext * ctx, int count)
764{
765    int32_t left, right;
766    int32_t *decoded0 = ctx->decoded0;
767    int32_t *decoded1 = ctx->decoded1;
768
769    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
770        /* We are pure silence, so we're done. */
771        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
772        return;
773    }
774
775    entropy_decode(ctx, count, 1);
776    ape_apply_filters(ctx, decoded0, decoded1, count);
777
778    /* Now apply the predictor decoding */
779    predictor_decode_stereo(ctx, count);
780
781    /* Decorrelate and scale to output depth */
782    while (count--) {
783        left = *decoded1 - (*decoded0 / 2);
784        right = left + *decoded0;
785
786        *(decoded0++) = left;
787        *(decoded1++) = right;
788    }
789}
790
791static int ape_decode_frame(AVCodecContext * avctx,
792                            void *data, int *data_size,
793                            AVPacket *avpkt)
794{
795    const uint8_t *buf = avpkt->data;
796    int buf_size = avpkt->size;
797    APEContext *s = avctx->priv_data;
798    int16_t *samples = data;
799    int nblocks;
800    int i, n;
801    int blockstodecode;
802    int bytes_used;
803
804    if (buf_size == 0 && !s->samples) {
805        *data_size = 0;
806        return 0;
807    }
808
809    /* should not happen but who knows */
810    if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) {
811        av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels);
812        return -1;
813    }
814
815    if(!s->samples){
816        s->data = av_realloc(s->data, (buf_size + 3) & ~3);
817        s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
818        s->ptr = s->last_ptr = s->data;
819        s->data_end = s->data + buf_size;
820
821        nblocks = s->samples = bytestream_get_be32(&s->ptr);
822        n =  bytestream_get_be32(&s->ptr);
823        if(n < 0 || n > 3){
824            av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
825            s->data = NULL;
826            return -1;
827        }
828        s->ptr += n;
829
830        s->currentframeblocks = nblocks;
831        buf += 4;
832        if (s->samples <= 0) {
833            *data_size = 0;
834            return buf_size;
835        }
836
837        memset(s->decoded0,  0, sizeof(s->decoded0));
838        memset(s->decoded1,  0, sizeof(s->decoded1));
839
840        /* Initialize the frame decoder */
841        init_frame_decoder(s);
842    }
843
844    if (!s->data) {
845        *data_size = 0;
846        return buf_size;
847    }
848
849    nblocks = s->samples;
850    blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks);
851
852    s->error=0;
853
854    if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
855        ape_unpack_mono(s, blockstodecode);
856    else
857        ape_unpack_stereo(s, blockstodecode);
858    emms_c();
859
860    if(s->error || s->ptr > s->data_end){
861        s->samples=0;
862        av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
863        return -1;
864    }
865
866    for (i = 0; i < blockstodecode; i++) {
867        *samples++ = s->decoded0[i];
868        if(s->channels == 2)
869            *samples++ = s->decoded1[i];
870    }
871
872    s->samples -= blockstodecode;
873
874    *data_size = blockstodecode * 2 * s->channels;
875    bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
876    s->last_ptr = s->ptr;
877    return bytes_used;
878}
879
880AVCodec ape_decoder = {
881    "ape",
882    AVMEDIA_TYPE_AUDIO,
883    CODEC_ID_APE,
884    sizeof(APEContext),
885    ape_decode_init,
886    NULL,
887    ape_decode_close,
888    ape_decode_frame,
889    .capabilities = CODEC_CAP_SUBFRAMES,
890    .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
891};
892