1/*
2 * MPEG-4 ALS decoder
3 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * MPEG-4 ALS decoder
25 * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
26 */
27
28
29//#define DEBUG
30
31
32#include "avcodec.h"
33#include "get_bits.h"
34#include "unary.h"
35#include "mpeg4audio.h"
36#include "bytestream.h"
37#include "bgmc.h"
38
39#include <stdint.h>
40
41/** Rice parameters and corresponding index offsets for decoding the
42 *  indices of scaled PARCOR values. The table choosen is set globally
43 *  by the encoder and stored in ALSSpecificConfig.
44 */
45static const int8_t parcor_rice_table[3][20][2] = {
46    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
47      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
48      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
49      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
50    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
51      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
52      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
53      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
54    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
55      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
56      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
57      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
58};
59
60
61/** Scaled PARCOR values used for the first two PARCOR coefficients.
62 *  To be indexed by the Rice coded indices.
63 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
64 *  Actual values are divided by 32 in order to be stored in 16 bits.
65 */
66static const int16_t parcor_scaled_values[] = {
67    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
68    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
69    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
70    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
71    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
72     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
73     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
74     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
75     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
76     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
77     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
78     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
79     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
80     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
81     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
82     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
83     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
84     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
85     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
86     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
87     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
88     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
89      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
90       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
91      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
92      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
93      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
94      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
95      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
96      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
97      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
98      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
99};
100
101
102/** Gain values of p(0) for long-term prediction.
103 *  To be indexed by the Rice coded indices.
104 */
105static const uint8_t ltp_gain_values [4][4] = {
106    { 0,  8, 16,  24},
107    {32, 40, 48,  56},
108    {64, 70, 76,  82},
109    {88, 92, 96, 100}
110};
111
112
113/** Inter-channel weighting factors for multi-channel correlation.
114 *  To be indexed by the Rice coded indices.
115 */
116static const int16_t mcc_weightings[] = {
117    204,  192,  179,  166,  153,  140,  128,  115,
118    102,   89,   76,   64,   51,   38,   25,   12,
119      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
120   -102, -115, -128, -140, -153, -166, -179, -192
121};
122
123
124/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
125 */
126static const uint8_t tail_code[16][6] = {
127    { 74, 44, 25, 13,  7, 3},
128    { 68, 42, 24, 13,  7, 3},
129    { 58, 39, 23, 13,  7, 3},
130    {126, 70, 37, 19, 10, 5},
131    {132, 70, 37, 20, 10, 5},
132    {124, 70, 38, 20, 10, 5},
133    {120, 69, 37, 20, 11, 5},
134    {116, 67, 37, 20, 11, 5},
135    {108, 66, 36, 20, 10, 5},
136    {102, 62, 36, 20, 10, 5},
137    { 88, 58, 34, 19, 10, 5},
138    {162, 89, 49, 25, 13, 7},
139    {156, 87, 49, 26, 14, 7},
140    {150, 86, 47, 26, 14, 7},
141    {142, 84, 47, 26, 14, 7},
142    {131, 79, 46, 26, 14, 7}
143};
144
145
146enum RA_Flag {
147    RA_FLAG_NONE,
148    RA_FLAG_FRAMES,
149    RA_FLAG_HEADER
150};
151
152
153typedef struct {
154    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
155    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
156    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
157    int frame_length;         ///< frame length for each frame (last frame may differ)
158    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
159    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
160    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
161    int coef_table;           ///< table index of Rice code parameters
162    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
163    int max_order;            ///< maximum prediction order (0..1023)
164    int block_switching;      ///< number of block switching levels
165    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
166    int sb_part;              ///< sub-block partition
167    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
168    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
169    int chan_config;          ///< indicates that a chan_config_info field is present
170    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
171    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
172    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
173    int *chan_pos;            ///< original channel positions
174} ALSSpecificConfig;
175
176
177typedef struct {
178    int stop_flag;
179    int master_channel;
180    int time_diff_flag;
181    int time_diff_sign;
182    int time_diff_index;
183    int weighting[6];
184} ALSChannelData;
185
186
187typedef struct {
188    AVCodecContext *avctx;
189    ALSSpecificConfig sconf;
190    GetBitContext gb;
191    unsigned int cur_frame_length;  ///< length of the current frame to decode
192    unsigned int frame_id;          ///< the frame ID / number of the current frame
193    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
194    unsigned int num_blocks;        ///< number of blocks used in the current frame
195    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
196    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
197    unsigned int *bgmc_lut_status;  ///< pointer at lookup table status flags used for BGMC
198    int ltp_lag_length;             ///< number of bits used for ltp lag value
199    int *use_ltp;                   ///< contains use_ltp flags for all channels
200    int *ltp_lag;                   ///< contains ltp lag values for all channels
201    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
202    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
203    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
204    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
205    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
206    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
207    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
208    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
209    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
210    int *reverted_channels;         ///< stores a flag for each reverted channel
211    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
212    int32_t **raw_samples;          ///< decoded raw samples for each channel
213    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
214} ALSDecContext;
215
216
217typedef struct {
218    unsigned int block_length;      ///< number of samples within the block
219    unsigned int ra_block;          ///< if true, this is a random access block
220    int          const_block;       ///< if true, this is a constant value block
221    int32_t      const_val;         ///< the sample value of a constant block
222    int          js_blocks;         ///< true if this block contains a difference signal
223    unsigned int shift_lsbs;        ///< shift of values for this block
224    unsigned int opt_order;         ///< prediction order of this block
225    int          store_prev_samples;///< if true, carryover samples have to be stored
226    int          *use_ltp;          ///< if true, long-term prediction is used
227    int          *ltp_lag;          ///< lag value for long-term prediction
228    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
229    int32_t      *quant_cof;        ///< quantized parcor coefficients
230    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
231    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
232    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
233    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
234} ALSBlockData;
235
236
237static av_cold void dprint_specific_config(ALSDecContext *ctx)
238{
239#ifdef DEBUG
240    AVCodecContext *avctx    = ctx->avctx;
241    ALSSpecificConfig *sconf = &ctx->sconf;
242
243    dprintf(avctx, "resolution = %i\n",           sconf->resolution);
244    dprintf(avctx, "floating = %i\n",             sconf->floating);
245    dprintf(avctx, "frame_length = %i\n",         sconf->frame_length);
246    dprintf(avctx, "ra_distance = %i\n",          sconf->ra_distance);
247    dprintf(avctx, "ra_flag = %i\n",              sconf->ra_flag);
248    dprintf(avctx, "adapt_order = %i\n",          sconf->adapt_order);
249    dprintf(avctx, "coef_table = %i\n",           sconf->coef_table);
250    dprintf(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
251    dprintf(avctx, "max_order = %i\n",            sconf->max_order);
252    dprintf(avctx, "block_switching = %i\n",      sconf->block_switching);
253    dprintf(avctx, "bgmc = %i\n",                 sconf->bgmc);
254    dprintf(avctx, "sb_part = %i\n",              sconf->sb_part);
255    dprintf(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
256    dprintf(avctx, "mc_coding = %i\n",            sconf->mc_coding);
257    dprintf(avctx, "chan_config = %i\n",          sconf->chan_config);
258    dprintf(avctx, "chan_sort = %i\n",            sconf->chan_sort);
259    dprintf(avctx, "RLSLMS = %i\n",               sconf->rlslms);
260    dprintf(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
261#endif
262}
263
264
265/** Reads an ALSSpecificConfig from a buffer into the output struct.
266 */
267static av_cold int read_specific_config(ALSDecContext *ctx)
268{
269    GetBitContext gb;
270    uint64_t ht_size;
271    int i, config_offset, crc_enabled;
272    MPEG4AudioConfig m4ac;
273    ALSSpecificConfig *sconf = &ctx->sconf;
274    AVCodecContext *avctx    = ctx->avctx;
275    uint32_t als_id, header_size, trailer_size;
276
277    init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
278
279    config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
280                                             avctx->extradata_size);
281
282    if (config_offset < 0)
283        return -1;
284
285    skip_bits_long(&gb, config_offset);
286
287    if (get_bits_left(&gb) < (30 << 3))
288        return -1;
289
290    // read the fixed items
291    als_id                      = get_bits_long(&gb, 32);
292    avctx->sample_rate          = m4ac.sample_rate;
293    skip_bits_long(&gb, 32); // sample rate already known
294    sconf->samples              = get_bits_long(&gb, 32);
295    avctx->channels             = m4ac.channels;
296    skip_bits(&gb, 16);      // number of channels already knwon
297    skip_bits(&gb, 3);       // skip file_type
298    sconf->resolution           = get_bits(&gb, 3);
299    sconf->floating             = get_bits1(&gb);
300    skip_bits1(&gb);         // skip msb_first
301    sconf->frame_length         = get_bits(&gb, 16) + 1;
302    sconf->ra_distance          = get_bits(&gb, 8);
303    sconf->ra_flag              = get_bits(&gb, 2);
304    sconf->adapt_order          = get_bits1(&gb);
305    sconf->coef_table           = get_bits(&gb, 2);
306    sconf->long_term_prediction = get_bits1(&gb);
307    sconf->max_order            = get_bits(&gb, 10);
308    sconf->block_switching      = get_bits(&gb, 2);
309    sconf->bgmc                 = get_bits1(&gb);
310    sconf->sb_part              = get_bits1(&gb);
311    sconf->joint_stereo         = get_bits1(&gb);
312    sconf->mc_coding            = get_bits1(&gb);
313    sconf->chan_config          = get_bits1(&gb);
314    sconf->chan_sort            = get_bits1(&gb);
315    crc_enabled                 = get_bits1(&gb);
316    sconf->rlslms               = get_bits1(&gb);
317    skip_bits(&gb, 5);       // skip 5 reserved bits
318    skip_bits1(&gb);         // skip aux_data_enabled
319
320
321    // check for ALSSpecificConfig struct
322    if (als_id != MKBETAG('A','L','S','\0'))
323        return -1;
324
325    ctx->cur_frame_length = sconf->frame_length;
326
327    // read channel config
328    if (sconf->chan_config)
329        sconf->chan_config_info = get_bits(&gb, 16);
330    // TODO: use this to set avctx->channel_layout
331
332
333    // read channel sorting
334    if (sconf->chan_sort && avctx->channels > 1) {
335        int chan_pos_bits = av_ceil_log2(avctx->channels);
336        int bits_needed  = avctx->channels * chan_pos_bits + 7;
337        if (get_bits_left(&gb) < bits_needed)
338            return -1;
339
340        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
341            return AVERROR(ENOMEM);
342
343        for (i = 0; i < avctx->channels; i++)
344            sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
345
346        align_get_bits(&gb);
347        // TODO: use this to actually do channel sorting
348    } else {
349        sconf->chan_sort = 0;
350    }
351
352
353    // read fixed header and trailer sizes,
354    // if size = 0xFFFFFFFF then there is no data field!
355    if (get_bits_left(&gb) < 64)
356        return -1;
357
358    header_size  = get_bits_long(&gb, 32);
359    trailer_size = get_bits_long(&gb, 32);
360    if (header_size  == 0xFFFFFFFF)
361        header_size  = 0;
362    if (trailer_size == 0xFFFFFFFF)
363        trailer_size = 0;
364
365    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
366
367
368    // skip the header and trailer data
369    if (get_bits_left(&gb) < ht_size)
370        return -1;
371
372    if (ht_size > INT32_MAX)
373        return -1;
374
375    skip_bits_long(&gb, ht_size);
376
377
378    // skip the crc data
379    if (crc_enabled) {
380        if (get_bits_left(&gb) < 32)
381            return -1;
382
383        skip_bits_long(&gb, 32);
384    }
385
386
387    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
388
389    dprint_specific_config(ctx);
390
391    return 0;
392}
393
394
395/** Checks the ALSSpecificConfig for unsupported features.
396 */
397static int check_specific_config(ALSDecContext *ctx)
398{
399    ALSSpecificConfig *sconf = &ctx->sconf;
400    int error = 0;
401
402    // report unsupported feature and set error value
403    #define MISSING_ERR(cond, str, errval)              \
404    {                                                   \
405        if (cond) {                                     \
406            av_log_missing_feature(ctx->avctx, str, 0); \
407            error = errval;                             \
408        }                                               \
409    }
410
411    MISSING_ERR(sconf->floating,             "Floating point decoding",     -1);
412    MISSING_ERR(sconf->rlslms,               "Adaptive RLS-LMS prediction", -1);
413    MISSING_ERR(sconf->chan_sort,            "Channel sorting",              0);
414
415    return error;
416}
417
418
419/** Parses the bs_info field to extract the block partitioning used in
420 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
421 */
422static void parse_bs_info(const uint32_t bs_info, unsigned int n,
423                          unsigned int div, unsigned int **div_blocks,
424                          unsigned int *num_blocks)
425{
426    if (n < 31 && ((bs_info << n) & 0x40000000)) {
427        // if the level is valid and the investigated bit n is set
428        // then recursively check both children at bits (2n+1) and (2n+2)
429        n   *= 2;
430        div += 1;
431        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
432        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
433    } else {
434        // else the bit is not set or the last level has been reached
435        // (bit implicitly not set)
436        **div_blocks = div;
437        (*div_blocks)++;
438        (*num_blocks)++;
439    }
440}
441
442
443/** Reads and decodes a Rice codeword.
444 */
445static int32_t decode_rice(GetBitContext *gb, unsigned int k)
446{
447    int max = get_bits_left(gb) - k;
448    int q   = get_unary(gb, 0, max);
449    int r   = k ? get_bits1(gb) : !(q & 1);
450
451    if (k > 1) {
452        q <<= (k - 1);
453        q  += get_bits_long(gb, k - 1);
454    } else if (!k) {
455        q >>= 1;
456    }
457    return r ? q : ~q;
458}
459
460
461/** Converts PARCOR coefficient k to direct filter coefficient.
462 */
463static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
464{
465    int i, j;
466
467    for (i = 0, j = k - 1; i < j; i++, j--) {
468        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
469        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
470        cof[i]  += tmp1;
471    }
472    if (i == j)
473        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
474
475    cof[k] = par[k];
476}
477
478
479/** Reads block switching field if necessary and sets actual block sizes.
480 *  Also assures that the block sizes of the last frame correspond to the
481 *  actual number of samples.
482 */
483static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
484                            uint32_t *bs_info)
485{
486    ALSSpecificConfig *sconf     = &ctx->sconf;
487    GetBitContext *gb            = &ctx->gb;
488    unsigned int *ptr_div_blocks = div_blocks;
489    unsigned int b;
490
491    if (sconf->block_switching) {
492        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
493        *bs_info = get_bits_long(gb, bs_info_len);
494        *bs_info <<= (32 - bs_info_len);
495    }
496
497    ctx->num_blocks = 0;
498    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
499
500    // The last frame may have an overdetermined block structure given in
501    // the bitstream. In that case the defined block structure would need
502    // more samples than available to be consistent.
503    // The block structure is actually used but the block sizes are adapted
504    // to fit the actual number of available samples.
505    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
506    // This results in the actual block sizes:    2 2 1 0.
507    // This is not specified in 14496-3 but actually done by the reference
508    // codec RM22 revision 2.
509    // This appears to happen in case of an odd number of samples in the last
510    // frame which is actually not allowed by the block length switching part
511    // of 14496-3.
512    // The ALS conformance files feature an odd number of samples in the last
513    // frame.
514
515    for (b = 0; b < ctx->num_blocks; b++)
516        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
517
518    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
519        unsigned int remaining = ctx->cur_frame_length;
520
521        for (b = 0; b < ctx->num_blocks; b++) {
522            if (remaining <= div_blocks[b]) {
523                div_blocks[b] = remaining;
524                ctx->num_blocks = b + 1;
525                break;
526            }
527
528            remaining -= div_blocks[b];
529        }
530    }
531}
532
533
534/** Reads the block data for a constant block
535 */
536static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
537{
538    ALSSpecificConfig *sconf = &ctx->sconf;
539    AVCodecContext *avctx    = ctx->avctx;
540    GetBitContext *gb        = &ctx->gb;
541
542    bd->const_val    = 0;
543    bd->const_block  = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
544    bd->js_blocks    = get_bits1(gb);
545
546    // skip 5 reserved bits
547    skip_bits(gb, 5);
548
549    if (bd->const_block) {
550        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
551        bd->const_val = get_sbits_long(gb, const_val_bits);
552    }
553
554    // ensure constant block decoding by reusing this field
555    bd->const_block = 1;
556}
557
558
559/** Decodes the block data for a constant block
560 */
561static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
562{
563    int      smp = bd->block_length;
564    int32_t  val = bd->const_val;
565    int32_t *dst = bd->raw_samples;
566
567    // write raw samples into buffer
568    for (; smp; smp--)
569        *dst++ = val;
570}
571
572
573/** Reads the block data for a non-constant block
574 */
575static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
576{
577    ALSSpecificConfig *sconf = &ctx->sconf;
578    AVCodecContext *avctx    = ctx->avctx;
579    GetBitContext *gb        = &ctx->gb;
580    unsigned int k;
581    unsigned int s[8];
582    unsigned int sx[8];
583    unsigned int sub_blocks, log2_sub_blocks, sb_length;
584    unsigned int start      = 0;
585    unsigned int opt_order;
586    int          sb;
587    int32_t      *quant_cof = bd->quant_cof;
588    int32_t      *current_res;
589
590
591    // ensure variable block decoding by reusing this field
592    bd->const_block = 0;
593
594    bd->opt_order   = 1;
595    bd->js_blocks   = get_bits1(gb);
596
597    opt_order       = bd->opt_order;
598
599    // determine the number of subblocks for entropy decoding
600    if (!sconf->bgmc && !sconf->sb_part) {
601        log2_sub_blocks = 0;
602    } else {
603        if (sconf->bgmc && sconf->sb_part)
604            log2_sub_blocks = get_bits(gb, 2);
605        else
606            log2_sub_blocks = 2 * get_bits1(gb);
607    }
608
609    sub_blocks = 1 << log2_sub_blocks;
610
611    // do not continue in case of a damaged stream since
612    // block_length must be evenly divisible by sub_blocks
613    if (bd->block_length & (sub_blocks - 1)) {
614        av_log(avctx, AV_LOG_WARNING,
615               "Block length is not evenly divisible by the number of subblocks.\n");
616        return -1;
617    }
618
619    sb_length = bd->block_length >> log2_sub_blocks;
620
621    if (sconf->bgmc) {
622        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
623        for (k = 1; k < sub_blocks; k++)
624            s[k] = s[k - 1] + decode_rice(gb, 2);
625
626        for (k = 0; k < sub_blocks; k++) {
627            sx[k]   = s[k] & 0x0F;
628            s [k] >>= 4;
629        }
630    } else {
631        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
632        for (k = 1; k < sub_blocks; k++)
633            s[k] = s[k - 1] + decode_rice(gb, 0);
634    }
635
636    if (get_bits1(gb))
637        bd->shift_lsbs = get_bits(gb, 4) + 1;
638
639    bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || bd->shift_lsbs;
640
641
642    if (!sconf->rlslms) {
643        if (sconf->adapt_order) {
644            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
645                                                2, sconf->max_order + 1));
646            bd->opt_order        = get_bits(gb, opt_order_length);
647        } else {
648            bd->opt_order = sconf->max_order;
649        }
650
651        opt_order = bd->opt_order;
652
653        if (opt_order) {
654            int add_base;
655
656            if (sconf->coef_table == 3) {
657                add_base = 0x7F;
658
659                // read coefficient 0
660                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
661
662                // read coefficient 1
663                if (opt_order > 1)
664                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
665
666                // read coefficients 2 to opt_order
667                for (k = 2; k < opt_order; k++)
668                    quant_cof[k] = get_bits(gb, 7);
669            } else {
670                int k_max;
671                add_base = 1;
672
673                // read coefficient 0 to 19
674                k_max = FFMIN(opt_order, 20);
675                for (k = 0; k < k_max; k++) {
676                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
677                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
678                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
679                }
680
681                // read coefficients 20 to 126
682                k_max = FFMIN(opt_order, 127);
683                for (; k < k_max; k++)
684                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);
685
686                // read coefficients 127 to opt_order
687                for (; k < opt_order; k++)
688                    quant_cof[k] = decode_rice(gb, 1);
689
690                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
691
692                if (opt_order > 1)
693                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
694            }
695
696            for (k = 2; k < opt_order; k++)
697                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
698        }
699    }
700
701    // read LTP gain and lag values
702    if (sconf->long_term_prediction) {
703        *bd->use_ltp = get_bits1(gb);
704
705        if (*bd->use_ltp) {
706            int r, c;
707
708            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
709            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
710
711            r                 = get_unary(gb, 0, 4);
712            c                 = get_bits(gb, 2);
713            bd->ltp_gain[2]   = ltp_gain_values[r][c];
714
715            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
716            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
717
718            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
719            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
720        }
721    }
722
723    // read first value and residuals in case of a random access block
724    if (bd->ra_block) {
725        if (opt_order)
726            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
727        if (opt_order > 1)
728            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
729        if (opt_order > 2)
730            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
731
732        start = FFMIN(opt_order, 3);
733    }
734
735    // read all residuals
736    if (sconf->bgmc) {
737        unsigned int delta[sub_blocks];
738        unsigned int k    [sub_blocks];
739        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
740        unsigned int i = start;
741
742        // read most significant bits
743        unsigned int high;
744        unsigned int low;
745        unsigned int value;
746
747        ff_bgmc_decode_init(gb, &high, &low, &value);
748
749        current_res = bd->raw_samples + start;
750
751        for (sb = 0; sb < sub_blocks; sb++, i = 0) {
752            k    [sb] = s[sb] > b ? s[sb] - b : 0;
753            delta[sb] = 5 - s[sb] + k[sb];
754
755            ff_bgmc_decode(gb, sb_length, current_res,
756                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
757
758            current_res += sb_length;
759        }
760
761        ff_bgmc_decode_end(gb);
762
763
764        // read least significant bits and tails
765        i = start;
766        current_res = bd->raw_samples + start;
767
768        for (sb = 0; sb < sub_blocks; sb++, i = 0) {
769            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
770            unsigned int cur_k         = k[sb];
771            unsigned int cur_s         = s[sb];
772
773            for (; i < sb_length; i++) {
774                int32_t res = *current_res;
775
776                if (res == cur_tail_code) {
777                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
778                                          << (5 - delta[sb]);
779
780                    res = decode_rice(gb, cur_s);
781
782                    if (res >= 0) {
783                        res += (max_msb    ) << cur_k;
784                    } else {
785                        res -= (max_msb - 1) << cur_k;
786                    }
787                } else {
788                    if (res > cur_tail_code)
789                        res--;
790
791                    if (res & 1)
792                        res = -res;
793
794                    res >>= 1;
795
796                    if (cur_k) {
797                        res <<= cur_k;
798                        res  |= get_bits_long(gb, cur_k);
799                    }
800                }
801
802                *current_res++ = res;
803            }
804        }
805    } else {
806        current_res = bd->raw_samples + start;
807
808        for (sb = 0; sb < sub_blocks; sb++, start = 0)
809            for (; start < sb_length; start++)
810                *current_res++ = decode_rice(gb, s[sb]);
811     }
812
813    if (!sconf->mc_coding || ctx->js_switch)
814        align_get_bits(gb);
815
816    return 0;
817}
818
819
820/** Decodes the block data for a non-constant block
821 */
822static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
823{
824    ALSSpecificConfig *sconf = &ctx->sconf;
825    unsigned int block_length = bd->block_length;
826    unsigned int smp = 0;
827    unsigned int k;
828    int opt_order             = bd->opt_order;
829    int sb;
830    int64_t y;
831    int32_t *quant_cof        = bd->quant_cof;
832    int32_t *lpc_cof          = bd->lpc_cof;
833    int32_t *raw_samples      = bd->raw_samples;
834    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
835    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
836
837    // reverse long-term prediction
838    if (*bd->use_ltp) {
839        int ltp_smp;
840
841        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
842            int center = ltp_smp - *bd->ltp_lag;
843            int begin  = FFMAX(0, center - 2);
844            int end    = center + 3;
845            int tab    = 5 - (end - begin);
846            int base;
847
848            y = 1 << 6;
849
850            for (base = begin; base < end; base++, tab++)
851                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
852
853            raw_samples[ltp_smp] += y >> 7;
854        }
855    }
856
857    // reconstruct all samples from residuals
858    if (bd->ra_block) {
859        for (smp = 0; smp < opt_order; smp++) {
860            y = 1 << 19;
861
862            for (sb = 0; sb < smp; sb++)
863                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
864
865            *raw_samples++ -= y >> 20;
866            parcor_to_lpc(smp, quant_cof, lpc_cof);
867        }
868    } else {
869        for (k = 0; k < opt_order; k++)
870            parcor_to_lpc(k, quant_cof, lpc_cof);
871
872        // store previous samples in case that they have to be altered
873        if (bd->store_prev_samples)
874            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
875                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
876
877        // reconstruct difference signal for prediction (joint-stereo)
878        if (bd->js_blocks && bd->raw_other) {
879            int32_t *left, *right;
880
881            if (bd->raw_other > raw_samples) {  // D = R - L
882                left  = raw_samples;
883                right = bd->raw_other;
884            } else {                                // D = R - L
885                left  = bd->raw_other;
886                right = raw_samples;
887            }
888
889            for (sb = -1; sb >= -sconf->max_order; sb--)
890                raw_samples[sb] = right[sb] - left[sb];
891        }
892
893        // reconstruct shifted signal
894        if (bd->shift_lsbs)
895            for (sb = -1; sb >= -sconf->max_order; sb--)
896                raw_samples[sb] >>= bd->shift_lsbs;
897    }
898
899    // reverse linear prediction coefficients for efficiency
900    lpc_cof = lpc_cof + opt_order;
901
902    for (sb = 0; sb < opt_order; sb++)
903        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
904
905    // reconstruct raw samples
906    raw_samples = bd->raw_samples + smp;
907    lpc_cof     = lpc_cof_reversed + opt_order;
908
909    for (; raw_samples < raw_samples_end; raw_samples++) {
910        y = 1 << 19;
911
912        for (sb = -opt_order; sb < 0; sb++)
913            y += MUL64(lpc_cof[sb], raw_samples[sb]);
914
915        *raw_samples -= y >> 20;
916    }
917
918    raw_samples = bd->raw_samples;
919
920    // restore previous samples in case that they have been altered
921    if (bd->store_prev_samples)
922        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
923               sizeof(*raw_samples) * sconf->max_order);
924
925    return 0;
926}
927
928
929/** Reads the block data.
930 */
931static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
932{
933    GetBitContext *gb        = &ctx->gb;
934
935    // read block type flag and read the samples accordingly
936    if (get_bits1(gb)) {
937        if (read_var_block_data(ctx, bd))
938            return -1;
939    } else {
940        read_const_block_data(ctx, bd);
941    }
942
943    return 0;
944}
945
946
947/** Decodes the block data.
948 */
949static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
950{
951    unsigned int smp;
952
953    // read block type flag and read the samples accordingly
954    if (bd->const_block)
955        decode_const_block_data(ctx, bd);
956    else if (decode_var_block_data(ctx, bd))
957        return -1;
958
959    // TODO: read RLSLMS extension data
960
961    if (bd->shift_lsbs)
962        for (smp = 0; smp < bd->block_length; smp++)
963            bd->raw_samples[smp] <<= bd->shift_lsbs;
964
965    return 0;
966}
967
968
969/** Reads and decodes block data successively.
970 */
971static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
972{
973    int ret;
974
975    ret = read_block(ctx, bd);
976
977    if (ret)
978        return ret;
979
980    ret = decode_block(ctx, bd);
981
982    return ret;
983}
984
985
986/** Computes the number of samples left to decode for the current frame and
987 *  sets these samples to zero.
988 */
989static void zero_remaining(unsigned int b, unsigned int b_max,
990                           const unsigned int *div_blocks, int32_t *buf)
991{
992    unsigned int count = 0;
993
994    while (b < b_max)
995        count += div_blocks[b];
996
997    if (count)
998        memset(buf, 0, sizeof(*buf) * count);
999}
1000
1001
1002/** Decodes blocks independently.
1003 */
1004static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1005                             unsigned int c, const unsigned int *div_blocks,
1006                             unsigned int *js_blocks)
1007{
1008    unsigned int b;
1009    ALSBlockData bd;
1010
1011    memset(&bd, 0, sizeof(ALSBlockData));
1012
1013    bd.ra_block         = ra_frame;
1014    bd.use_ltp          = ctx->use_ltp;
1015    bd.ltp_lag          = ctx->ltp_lag;
1016    bd.ltp_gain         = ctx->ltp_gain[0];
1017    bd.quant_cof        = ctx->quant_cof[0];
1018    bd.lpc_cof          = ctx->lpc_cof[0];
1019    bd.prev_raw_samples = ctx->prev_raw_samples;
1020    bd.raw_samples      = ctx->raw_samples[c];
1021
1022
1023    for (b = 0; b < ctx->num_blocks; b++) {
1024        bd.shift_lsbs       = 0;
1025        bd.block_length     = div_blocks[b];
1026
1027        if (read_decode_block(ctx, &bd)) {
1028            // damaged block, write zero for the rest of the frame
1029            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1030            return -1;
1031        }
1032        bd.raw_samples += div_blocks[b];
1033        bd.ra_block     = 0;
1034    }
1035
1036    return 0;
1037}
1038
1039
1040/** Decodes blocks dependently.
1041 */
1042static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1043                         unsigned int c, const unsigned int *div_blocks,
1044                         unsigned int *js_blocks)
1045{
1046    ALSSpecificConfig *sconf = &ctx->sconf;
1047    unsigned int offset = 0;
1048    unsigned int b;
1049    ALSBlockData bd[2];
1050
1051    memset(bd, 0, 2 * sizeof(ALSBlockData));
1052
1053    bd[0].ra_block         = ra_frame;
1054    bd[0].use_ltp          = ctx->use_ltp;
1055    bd[0].ltp_lag          = ctx->ltp_lag;
1056    bd[0].ltp_gain         = ctx->ltp_gain[0];
1057    bd[0].quant_cof        = ctx->quant_cof[0];
1058    bd[0].lpc_cof          = ctx->lpc_cof[0];
1059    bd[0].prev_raw_samples = ctx->prev_raw_samples;
1060    bd[0].js_blocks        = *js_blocks;
1061
1062    bd[1].ra_block         = ra_frame;
1063    bd[1].use_ltp          = ctx->use_ltp;
1064    bd[1].ltp_lag          = ctx->ltp_lag;
1065    bd[1].ltp_gain         = ctx->ltp_gain[0];
1066    bd[1].quant_cof        = ctx->quant_cof[0];
1067    bd[1].lpc_cof          = ctx->lpc_cof[0];
1068    bd[1].prev_raw_samples = ctx->prev_raw_samples;
1069    bd[1].js_blocks        = *(js_blocks + 1);
1070
1071    // decode all blocks
1072    for (b = 0; b < ctx->num_blocks; b++) {
1073        unsigned int s;
1074
1075        bd[0].shift_lsbs   = 0;
1076        bd[1].shift_lsbs   = 0;
1077
1078        bd[0].block_length = div_blocks[b];
1079        bd[1].block_length = div_blocks[b];
1080
1081        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1082        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1083
1084        bd[0].raw_other    = bd[1].raw_samples;
1085        bd[1].raw_other    = bd[0].raw_samples;
1086
1087        if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
1088            // damaged block, write zero for the rest of the frame
1089            zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1090            zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1091            return -1;
1092        }
1093
1094        // reconstruct joint-stereo blocks
1095        if (bd[0].js_blocks) {
1096            if (bd[1].js_blocks)
1097                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
1098
1099            for (s = 0; s < div_blocks[b]; s++)
1100                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1101        } else if (bd[1].js_blocks) {
1102            for (s = 0; s < div_blocks[b]; s++)
1103                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1104        }
1105
1106        offset  += div_blocks[b];
1107        bd[0].ra_block = 0;
1108        bd[1].ra_block = 0;
1109    }
1110
1111    // store carryover raw samples,
1112    // the others channel raw samples are stored by the calling function.
1113    memmove(ctx->raw_samples[c] - sconf->max_order,
1114            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1115            sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1116
1117    return 0;
1118}
1119
1120
1121/** Reads the channel data.
1122  */
1123static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1124{
1125    GetBitContext *gb       = &ctx->gb;
1126    ALSChannelData *current = cd;
1127    unsigned int channels   = ctx->avctx->channels;
1128    int entries             = 0;
1129
1130    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1131        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1132
1133        if (current->master_channel >= channels) {
1134            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
1135            return -1;
1136        }
1137
1138        if (current->master_channel != c) {
1139            current->time_diff_flag = get_bits1(gb);
1140            current->weighting[0]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1141            current->weighting[1]   = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
1142            current->weighting[2]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1143
1144            if (current->time_diff_flag) {
1145                current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1146                current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1147                current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1148
1149                current->time_diff_sign  = get_bits1(gb);
1150                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1151            }
1152        }
1153
1154        current++;
1155        entries++;
1156    }
1157
1158    if (entries == channels) {
1159        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
1160        return -1;
1161    }
1162
1163    align_get_bits(gb);
1164    return 0;
1165}
1166
1167
1168/** Recursively reverts the inter-channel correlation for a block.
1169 */
1170static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1171                                       ALSChannelData **cd, int *reverted,
1172                                       unsigned int offset, int c)
1173{
1174    ALSChannelData *ch = cd[c];
1175    unsigned int   dep = 0;
1176    unsigned int channels = ctx->avctx->channels;
1177
1178    if (reverted[c])
1179        return 0;
1180
1181    reverted[c] = 1;
1182
1183    while (dep < channels && !ch[dep].stop_flag) {
1184        revert_channel_correlation(ctx, bd, cd, reverted, offset,
1185                                   ch[dep].master_channel);
1186
1187        dep++;
1188    }
1189
1190    if (dep == channels) {
1191        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
1192        return -1;
1193    }
1194
1195    bd->use_ltp     = ctx->use_ltp + c;
1196    bd->ltp_lag     = ctx->ltp_lag + c;
1197    bd->ltp_gain    = ctx->ltp_gain[c];
1198    bd->lpc_cof     = ctx->lpc_cof[c];
1199    bd->quant_cof   = ctx->quant_cof[c];
1200    bd->raw_samples = ctx->raw_samples[c] + offset;
1201
1202    dep = 0;
1203    while (!ch[dep].stop_flag) {
1204        unsigned int smp;
1205        unsigned int begin = 1;
1206        unsigned int end   = bd->block_length - 1;
1207        int64_t y;
1208        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1209
1210        if (ch[dep].time_diff_flag) {
1211            int t = ch[dep].time_diff_index;
1212
1213            if (ch[dep].time_diff_sign) {
1214                t      = -t;
1215                begin -= t;
1216            } else {
1217                end   -= t;
1218            }
1219
1220            for (smp = begin; smp < end; smp++) {
1221                y  = (1 << 6) +
1222                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1223                     MUL64(ch[dep].weighting[1], master[smp        ]) +
1224                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1225                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1226                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
1227                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1228
1229                bd->raw_samples[smp] += y >> 7;
1230            }
1231        } else {
1232            for (smp = begin; smp < end; smp++) {
1233                y  = (1 << 6) +
1234                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
1235                     MUL64(ch[dep].weighting[1], master[smp    ]) +
1236                     MUL64(ch[dep].weighting[2], master[smp + 1]);
1237
1238                bd->raw_samples[smp] += y >> 7;
1239            }
1240        }
1241
1242        dep++;
1243    }
1244
1245    return 0;
1246}
1247
1248
1249/** Reads the frame data.
1250 */
1251static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1252{
1253    ALSSpecificConfig *sconf = &ctx->sconf;
1254    AVCodecContext *avctx    = ctx->avctx;
1255    GetBitContext *gb = &ctx->gb;
1256    unsigned int div_blocks[32];                ///< block sizes.
1257    unsigned int c;
1258    unsigned int js_blocks[2];
1259
1260    uint32_t bs_info = 0;
1261
1262    // skip the size of the ra unit if present in the frame
1263    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1264        skip_bits_long(gb, 32);
1265
1266    if (sconf->mc_coding && sconf->joint_stereo) {
1267        ctx->js_switch = get_bits1(gb);
1268        align_get_bits(gb);
1269    }
1270
1271    if (!sconf->mc_coding || ctx->js_switch) {
1272        int independent_bs = !sconf->joint_stereo;
1273
1274        for (c = 0; c < avctx->channels; c++) {
1275            js_blocks[0] = 0;
1276            js_blocks[1] = 0;
1277
1278            get_block_sizes(ctx, div_blocks, &bs_info);
1279
1280            // if joint_stereo and block_switching is set, independent decoding
1281            // is signaled via the first bit of bs_info
1282            if (sconf->joint_stereo && sconf->block_switching)
1283                if (bs_info >> 31)
1284                    independent_bs = 2;
1285
1286            // if this is the last channel, it has to be decoded independently
1287            if (c == avctx->channels - 1)
1288                independent_bs = 1;
1289
1290            if (independent_bs) {
1291                if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
1292                    return -1;
1293
1294                independent_bs--;
1295            } else {
1296                if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
1297                    return -1;
1298
1299                c++;
1300            }
1301
1302            // store carryover raw samples
1303            memmove(ctx->raw_samples[c] - sconf->max_order,
1304                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1305                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1306        }
1307    } else { // multi-channel coding
1308        ALSBlockData   bd;
1309        int            b;
1310        int            *reverted_channels = ctx->reverted_channels;
1311        unsigned int   offset             = 0;
1312
1313        for (c = 0; c < avctx->channels; c++)
1314            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1315                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
1316                return -1;
1317            }
1318
1319        memset(&bd,               0, sizeof(ALSBlockData));
1320        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1321
1322        bd.ra_block         = ra_frame;
1323        bd.prev_raw_samples = ctx->prev_raw_samples;
1324
1325        get_block_sizes(ctx, div_blocks, &bs_info);
1326
1327        for (b = 0; b < ctx->num_blocks; b++) {
1328            bd.shift_lsbs   = 0;
1329            bd.block_length = div_blocks[b];
1330
1331            for (c = 0; c < avctx->channels; c++) {
1332                bd.use_ltp     = ctx->use_ltp + c;
1333                bd.ltp_lag     = ctx->ltp_lag + c;
1334                bd.ltp_gain    = ctx->ltp_gain[c];
1335                bd.lpc_cof     = ctx->lpc_cof[c];
1336                bd.quant_cof   = ctx->quant_cof[c];
1337                bd.raw_samples = ctx->raw_samples[c] + offset;
1338                bd.raw_other   = NULL;
1339
1340                read_block(ctx, &bd);
1341                if (read_channel_data(ctx, ctx->chan_data[c], c))
1342                    return -1;
1343            }
1344
1345            for (c = 0; c < avctx->channels; c++)
1346                if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
1347                                               reverted_channels, offset, c))
1348                    return -1;
1349
1350            for (c = 0; c < avctx->channels; c++) {
1351                bd.use_ltp     = ctx->use_ltp + c;
1352                bd.ltp_lag     = ctx->ltp_lag + c;
1353                bd.ltp_gain    = ctx->ltp_gain[c];
1354                bd.lpc_cof     = ctx->lpc_cof[c];
1355                bd.quant_cof   = ctx->quant_cof[c];
1356                bd.raw_samples = ctx->raw_samples[c] + offset;
1357                decode_block(ctx, &bd);
1358            }
1359
1360            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1361            offset      += div_blocks[b];
1362            bd.ra_block  = 0;
1363        }
1364
1365        // store carryover raw samples
1366        for (c = 0; c < avctx->channels; c++)
1367            memmove(ctx->raw_samples[c] - sconf->max_order,
1368                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1369                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1370    }
1371
1372    // TODO: read_diff_float_data
1373
1374    return 0;
1375}
1376
1377
1378/** Decodes an ALS frame.
1379 */
1380static int decode_frame(AVCodecContext *avctx,
1381                        void *data, int *data_size,
1382                        AVPacket *avpkt)
1383{
1384    ALSDecContext *ctx       = avctx->priv_data;
1385    ALSSpecificConfig *sconf = &ctx->sconf;
1386    const uint8_t *buffer    = avpkt->data;
1387    int buffer_size          = avpkt->size;
1388    int invalid_frame, size;
1389    unsigned int c, sample, ra_frame, bytes_read, shift;
1390
1391    init_get_bits(&ctx->gb, buffer, buffer_size * 8);
1392
1393    // In the case that the distance between random access frames is set to zero
1394    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1395    // For the first frame, if prediction is used, all samples used from the
1396    // previous frame are assumed to be zero.
1397    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1398
1399    // the last frame to decode might have a different length
1400    if (sconf->samples != 0xFFFFFFFF)
1401        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1402                                      sconf->frame_length);
1403    else
1404        ctx->cur_frame_length = sconf->frame_length;
1405
1406    // decode the frame data
1407    if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
1408        av_log(ctx->avctx, AV_LOG_WARNING,
1409               "Reading frame data failed. Skipping RA unit.\n");
1410
1411    ctx->frame_id++;
1412
1413    // check for size of decoded data
1414    size = ctx->cur_frame_length * avctx->channels *
1415           (av_get_bits_per_sample_format(avctx->sample_fmt) >> 3);
1416
1417    if (size > *data_size) {
1418        av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
1419        return -1;
1420    }
1421
1422    *data_size = size;
1423
1424    // transform decoded frame into output format
1425    #define INTERLEAVE_OUTPUT(bps)                                 \
1426    {                                                              \
1427        int##bps##_t *dest = (int##bps##_t*) data;                 \
1428        shift = bps - ctx->avctx->bits_per_raw_sample;             \
1429        for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1430            for (c = 0; c < avctx->channels; c++)                  \
1431                *dest++ = ctx->raw_samples[c][sample] << shift;    \
1432    }
1433
1434    if (ctx->avctx->bits_per_raw_sample <= 16) {
1435        INTERLEAVE_OUTPUT(16)
1436    } else {
1437        INTERLEAVE_OUTPUT(32)
1438    }
1439
1440    bytes_read = invalid_frame ? buffer_size :
1441                                 (get_bits_count(&ctx->gb) + 7) >> 3;
1442
1443    return bytes_read;
1444}
1445
1446
1447/** Uninitializes the ALS decoder.
1448 */
1449static av_cold int decode_end(AVCodecContext *avctx)
1450{
1451    ALSDecContext *ctx = avctx->priv_data;
1452
1453    av_freep(&ctx->sconf.chan_pos);
1454
1455    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1456
1457    av_freep(&ctx->use_ltp);
1458    av_freep(&ctx->ltp_lag);
1459    av_freep(&ctx->ltp_gain);
1460    av_freep(&ctx->ltp_gain_buffer);
1461    av_freep(&ctx->quant_cof);
1462    av_freep(&ctx->lpc_cof);
1463    av_freep(&ctx->quant_cof_buffer);
1464    av_freep(&ctx->lpc_cof_buffer);
1465    av_freep(&ctx->lpc_cof_reversed_buffer);
1466    av_freep(&ctx->prev_raw_samples);
1467    av_freep(&ctx->raw_samples);
1468    av_freep(&ctx->raw_buffer);
1469    av_freep(&ctx->chan_data);
1470    av_freep(&ctx->chan_data_buffer);
1471    av_freep(&ctx->reverted_channels);
1472
1473    return 0;
1474}
1475
1476
1477/** Initializes the ALS decoder.
1478 */
1479static av_cold int decode_init(AVCodecContext *avctx)
1480{
1481    unsigned int c;
1482    unsigned int channel_size;
1483    int num_buffers;
1484    ALSDecContext *ctx = avctx->priv_data;
1485    ALSSpecificConfig *sconf = &ctx->sconf;
1486    ctx->avctx = avctx;
1487
1488    if (!avctx->extradata) {
1489        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1490        return -1;
1491    }
1492
1493    if (read_specific_config(ctx)) {
1494        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1495        decode_end(avctx);
1496        return -1;
1497    }
1498
1499    if (check_specific_config(ctx)) {
1500        decode_end(avctx);
1501        return -1;
1502    }
1503
1504    if (sconf->bgmc)
1505        ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1506
1507    if (sconf->floating) {
1508        avctx->sample_fmt          = SAMPLE_FMT_FLT;
1509        avctx->bits_per_raw_sample = 32;
1510    } else {
1511        avctx->sample_fmt          = sconf->resolution > 1
1512                                     ? SAMPLE_FMT_S32 : SAMPLE_FMT_S16;
1513        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1514    }
1515
1516    // set maximum Rice parameter for progressive decoding based on resolution
1517    // This is not specified in 14496-3 but actually done by the reference
1518    // codec RM22 revision 2.
1519    ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1520
1521    // set lag value for long-term prediction
1522    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
1523                              (avctx->sample_rate >= 192000);
1524
1525    // allocate quantized parcor coefficient buffer
1526    num_buffers = sconf->mc_coding ? avctx->channels : 1;
1527
1528    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
1529    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
1530    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
1531                                      num_buffers * sconf->max_order);
1532    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1533                                      num_buffers * sconf->max_order);
1534    ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1535                                             sconf->max_order);
1536
1537    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
1538        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
1539        !ctx->lpc_cof_reversed_buffer) {
1540        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1541        return AVERROR(ENOMEM);
1542    }
1543
1544    // assign quantized parcor coefficient buffers
1545    for (c = 0; c < num_buffers; c++) {
1546        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1547        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
1548    }
1549
1550    // allocate and assign lag and gain data buffer for ltp mode
1551    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
1552    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
1553    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
1554    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
1555                                      num_buffers * 5);
1556
1557    if (!ctx->use_ltp  || !ctx->ltp_lag ||
1558        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1559        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1560        decode_end(avctx);
1561        return AVERROR(ENOMEM);
1562    }
1563
1564    for (c = 0; c < num_buffers; c++)
1565        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1566
1567    // allocate and assign channel data buffer for mcc mode
1568    if (sconf->mc_coding) {
1569        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
1570                                           num_buffers * num_buffers);
1571        ctx->chan_data         = av_malloc(sizeof(*ctx->chan_data) *
1572                                           num_buffers);
1573        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
1574                                           num_buffers);
1575
1576        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1577            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1578            decode_end(avctx);
1579            return AVERROR(ENOMEM);
1580        }
1581
1582        for (c = 0; c < num_buffers; c++)
1583            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1584    } else {
1585        ctx->chan_data         = NULL;
1586        ctx->chan_data_buffer  = NULL;
1587        ctx->reverted_channels = NULL;
1588    }
1589
1590    avctx->frame_size = sconf->frame_length;
1591    channel_size      = sconf->frame_length + sconf->max_order;
1592
1593    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
1594    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
1595    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);
1596
1597    // allocate previous raw sample buffer
1598    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1599        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1600        decode_end(avctx);
1601        return AVERROR(ENOMEM);
1602    }
1603
1604    // assign raw samples buffers
1605    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1606    for (c = 1; c < avctx->channels; c++)
1607        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1608
1609    return 0;
1610}
1611
1612
1613/** Flushes (resets) the frame ID after seeking.
1614 */
1615static av_cold void flush(AVCodecContext *avctx)
1616{
1617    ALSDecContext *ctx = avctx->priv_data;
1618
1619    ctx->frame_id = 0;
1620}
1621
1622
1623AVCodec als_decoder = {
1624    "als",
1625    AVMEDIA_TYPE_AUDIO,
1626    CODEC_ID_MP4ALS,
1627    sizeof(ALSDecContext),
1628    decode_init,
1629    NULL,
1630    decode_end,
1631    decode_frame,
1632    .flush = flush,
1633    .capabilities = CODEC_CAP_SUBFRAMES,
1634    .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1635};
1636
1637