1/*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include <inttypes.h>
24#include "avcodec.h"
25#include "acelp_vectors.h"
26#include "celp_math.h"
27
28const uint8_t ff_fc_2pulses_9bits_track1[16] =
29{
30    1,  3,
31    6,  8,
32    11, 13,
33    16, 18,
34    21, 23,
35    26, 28,
36    31, 33,
37    36, 38
38};
39const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
40{
41  1,  3,
42  8,  6,
43  18, 16,
44  11, 13,
45  38, 36,
46  31, 33,
47  21, 23,
48  28, 26,
49};
50
51const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
52{
53  0,  2,
54  5,  4,
55  12, 10,
56  7,  9,
57  25, 24,
58  20, 22,
59  14, 15,
60  19, 17,
61  36, 31,
62  21, 26,
63  1,  6,
64  16, 11,
65  27, 29,
66  32, 30,
67  39, 37,
68  34, 35,
69};
70
71const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
72{
73  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
74};
75
76const uint8_t ff_fc_4pulses_8bits_track_4[32] =
77{
78    3,  4,
79    8,  9,
80    13, 14,
81    18, 19,
82    23, 24,
83    28, 29,
84    33, 34,
85    38, 39,
86    43, 44,
87    48, 49,
88    53, 54,
89    58, 59,
90    63, 64,
91    68, 69,
92    73, 74,
93    78, 79,
94};
95
96#if 0
97static uint8_t gray_decode[32] =
98{
99    0,  1,  3,  2,  7,  6,  4,  5,
100   15, 14, 12, 13,  8,  9, 11, 10,
101   31, 30, 28, 29, 24, 25, 27, 26,
102   16, 17, 19, 18, 23, 22, 20, 21
103};
104#endif
105
106const float ff_pow_0_7[10] = {
107    0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
108    0.117649, 0.082354, 0.057648, 0.040354, 0.028248
109};
110
111const float ff_pow_0_75[10] = {
112    0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
113    0.177979, 0.133484, 0.100113, 0.075085, 0.056314
114};
115
116const float ff_pow_0_55[10] = {
117    0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
118    0.027681, 0.015224, 0.008373, 0.004605, 0.002533
119};
120
121const float ff_b60_sinc[61] = {
122 0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
123 0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
124-0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
125 0.0689392 ,  0.0357056 ,  0.        , -0.0305481 , -0.0504150 , -0.0570068  ,
126-0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
127 0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
128-0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.        ,  0.00582886 ,
129 0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
130-0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
131 0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
132 0.
133};
134
135void ff_acelp_fc_pulse_per_track(
136        int16_t* fc_v,
137        const uint8_t *tab1,
138        const uint8_t *tab2,
139        int pulse_indexes,
140        int pulse_signs,
141        int pulse_count,
142        int bits)
143{
144    int mask = (1 << bits) - 1;
145    int i;
146
147    for(i=0; i<pulse_count; i++)
148    {
149        fc_v[i + tab1[pulse_indexes & mask]] +=
150                (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
151
152        pulse_indexes >>= bits;
153        pulse_signs >>= 1;
154    }
155
156    fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
157}
158
159void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
160                                AMRFixed *fixed_sparse,
161                                const uint8_t *gray_decode,
162                                int half_pulse_count, int bits)
163{
164    int i;
165    int mask = (1 << bits) - 1;
166
167    fixed_sparse->no_repeat_mask = 0;
168    fixed_sparse->n = 2 * half_pulse_count;
169    for (i = 0; i < half_pulse_count; i++) {
170        const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
171        const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
172        const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
173        fixed_sparse->x[2*i+1] = pos1;
174        fixed_sparse->x[2*i  ] = pos2;
175        fixed_sparse->y[2*i+1] = sign;
176        fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
177    }
178}
179
180void ff_acelp_weighted_vector_sum(
181        int16_t* out,
182        const int16_t *in_a,
183        const int16_t *in_b,
184        int16_t weight_coeff_a,
185        int16_t weight_coeff_b,
186        int16_t rounder,
187        int shift,
188        int length)
189{
190    int i;
191
192    // Clipping required here; breaks OVERFLOW test.
193    for(i=0; i<length; i++)
194        out[i] = av_clip_int16((
195                 in_a[i] * weight_coeff_a +
196                 in_b[i] * weight_coeff_b +
197                 rounder) >> shift);
198}
199
200void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
201                             float weight_coeff_a, float weight_coeff_b, int length)
202{
203    int i;
204
205    for(i=0; i<length; i++)
206        out[i] = weight_coeff_a * in_a[i]
207               + weight_coeff_b * in_b[i];
208}
209
210void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
211                              int size, float alpha, float *gain_mem)
212{
213    int i;
214    float postfilter_energ = ff_dot_productf(in, in, size);
215    float gain_scale_factor = 1.0;
216    float mem = *gain_mem;
217
218    if (postfilter_energ)
219        gain_scale_factor = sqrt(speech_energ / postfilter_energ);
220
221    gain_scale_factor *= 1.0 - alpha;
222
223    for (i = 0; i < size; i++) {
224        mem = alpha * mem + gain_scale_factor;
225        out[i] = in[i] * mem;
226    }
227
228    *gain_mem = mem;
229}
230
231void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
232                                             float sum_of_squares, const int n)
233{
234    int i;
235    float scalefactor = ff_dot_productf(in, in, n);
236    if (scalefactor)
237        scalefactor = sqrt(sum_of_squares / scalefactor);
238    for (i = 0; i < n; i++)
239        out[i] = in[i] * scalefactor;
240}
241
242void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
243{
244    int i;
245
246    for (i=0; i < in->n; i++) {
247        int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
248        float y = in->y[i] * scale;
249
250        do {
251            out[x] += y;
252            y *= in->pitch_fac;
253            x += in->pitch_lag;
254        } while (x < size && repeats);
255    }
256}
257
258void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
259{
260    int i;
261
262    for (i=0; i < in->n; i++) {
263        int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
264
265        do {
266            out[x] = 0.0;
267            x += in->pitch_lag;
268        } while (x < size && repeats);
269    }
270}
271