1/*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * AAC decoder
26 * @author Oded Shimon  ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
28 */
29
30/*
31 * supported tools
32 *
33 * Support?             Name
34 * N (code in SoC repo) gain control
35 * Y                    block switching
36 * Y                    window shapes - standard
37 * N                    window shapes - Low Delay
38 * Y                    filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y                    Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y                    intensity stereo
43 * Y                    channel coupling
44 * Y                    frequency domain prediction
45 * Y                    Perceptual Noise Substitution
46 * Y                    Mid/Side stereo
47 * N                    Scalable Inverse AAC Quantization
48 * N                    Frequency Selective Switch
49 * N                    upsampling filter
50 * Y                    quantization & coding - AAC
51 * N                    quantization & coding - TwinVQ
52 * N                    quantization & coding - BSAC
53 * N                    AAC Error Resilience tools
54 * N                    Error Resilience payload syntax
55 * N                    Error Protection tool
56 * N                    CELP
57 * N                    Silence Compression
58 * N                    HVXC
59 * N                    HVXC 4kbits/s VR
60 * N                    Structured Audio tools
61 * N                    Structured Audio Sample Bank Format
62 * N                    MIDI
63 * N                    Harmonic and Individual Lines plus Noise
64 * N                    Text-To-Speech Interface
65 * Y                    Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned)          Parametric Stereo
71 * N                    Direct Stream Transfer
72 *
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75           Parametric Stereo.
76 */
77
78
79#include "avcodec.h"
80#include "internal.h"
81#include "get_bits.h"
82#include "dsputil.h"
83#include "fft.h"
84#include "lpc.h"
85
86#include "aac.h"
87#include "aactab.h"
88#include "aacdectab.h"
89#include "cbrt_tablegen.h"
90#include "sbr.h"
91#include "aacsbr.h"
92#include "mpeg4audio.h"
93#include "aac_parser.h"
94
95#include <assert.h>
96#include <errno.h>
97#include <math.h>
98#include <string.h>
99
100#if ARCH_ARM
101#   include "arm/aac.h"
102#endif
103
104union float754 {
105    float f;
106    uint32_t i;
107};
108
109static VLC vlc_scalefactors;
110static VLC vlc_spectral[11];
111
112static const char overread_err[] = "Input buffer exhausted before END element found\n";
113
114static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
115{
116    if (ac->tag_che_map[type][elem_id]) {
117        return ac->tag_che_map[type][elem_id];
118    }
119    if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
120        return NULL;
121    }
122    switch (ac->m4ac.chan_config) {
123    case 7:
124        if (ac->tags_mapped == 3 && type == TYPE_CPE) {
125            ac->tags_mapped++;
126            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
127        }
128    case 6:
129        /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
130           instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
131           encountered such a stream, transfer the LFE[0] element to SCE[1] */
132        if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
133            ac->tags_mapped++;
134            return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
135        }
136    case 5:
137        if (ac->tags_mapped == 2 && type == TYPE_CPE) {
138            ac->tags_mapped++;
139            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
140        }
141    case 4:
142        if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
143            ac->tags_mapped++;
144            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
145        }
146    case 3:
147    case 2:
148        if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
149            ac->tags_mapped++;
150            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
151        } else if (ac->m4ac.chan_config == 2) {
152            return NULL;
153        }
154    case 1:
155        if (!ac->tags_mapped && type == TYPE_SCE) {
156            ac->tags_mapped++;
157            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
158        }
159    default:
160        return NULL;
161    }
162}
163
164/**
165 * Check for the channel element in the current channel position configuration.
166 * If it exists, make sure the appropriate element is allocated and map the
167 * channel order to match the internal FFmpeg channel layout.
168 *
169 * @param   che_pos current channel position configuration
170 * @param   type channel element type
171 * @param   id channel element id
172 * @param   channels count of the number of channels in the configuration
173 *
174 * @return  Returns error status. 0 - OK, !0 - error
175 */
176static av_cold int che_configure(AACContext *ac,
177                         enum ChannelPosition che_pos[4][MAX_ELEM_ID],
178                         int type, int id,
179                         int *channels)
180{
181    if (che_pos[type][id]) {
182        if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
183            return AVERROR(ENOMEM);
184        ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
185        if (type != TYPE_CCE) {
186            ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
187            if (type == TYPE_CPE) {
188                ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
189            }
190        }
191    } else {
192        if (ac->che[type][id])
193            ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
194        av_freep(&ac->che[type][id]);
195    }
196    return 0;
197}
198
199/**
200 * Configure output channel order based on the current program configuration element.
201 *
202 * @param   che_pos current channel position configuration
203 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
204 *
205 * @return  Returns error status. 0 - OK, !0 - error
206 */
207static av_cold int output_configure(AACContext *ac,
208                            enum ChannelPosition che_pos[4][MAX_ELEM_ID],
209                            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
210                            int channel_config, enum OCStatus oc_type)
211{
212    AVCodecContext *avctx = ac->avccontext;
213    int i, type, channels = 0, ret;
214
215    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
216
217    if (channel_config) {
218        for (i = 0; i < tags_per_config[channel_config]; i++) {
219            if ((ret = che_configure(ac, che_pos,
220                                     aac_channel_layout_map[channel_config - 1][i][0],
221                                     aac_channel_layout_map[channel_config - 1][i][1],
222                                     &channels)))
223                return ret;
224        }
225
226        memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
227        ac->tags_mapped = 0;
228
229        avctx->channel_layout = aac_channel_layout[channel_config - 1];
230    } else {
231        /* Allocate or free elements depending on if they are in the
232         * current program configuration.
233         *
234         * Set up default 1:1 output mapping.
235         *
236         * For a 5.1 stream the output order will be:
237         *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
238         */
239
240        for (i = 0; i < MAX_ELEM_ID; i++) {
241            for (type = 0; type < 4; type++) {
242                if ((ret = che_configure(ac, che_pos, type, i, &channels)))
243                    return ret;
244            }
245        }
246
247        memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
248        ac->tags_mapped = 4 * MAX_ELEM_ID;
249
250        avctx->channel_layout = 0;
251    }
252
253    avctx->channels = channels;
254
255    ac->output_configured = oc_type;
256
257    return 0;
258}
259
260/**
261 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
262 *
263 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
264 * @param sce_map mono (Single Channel Element) map
265 * @param type speaker type/position for these channels
266 */
267static void decode_channel_map(enum ChannelPosition *cpe_map,
268                               enum ChannelPosition *sce_map,
269                               enum ChannelPosition type,
270                               GetBitContext *gb, int n)
271{
272    while (n--) {
273        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
274        map[get_bits(gb, 4)] = type;
275    }
276}
277
278/**
279 * Decode program configuration element; reference: table 4.2.
280 *
281 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
282 *
283 * @return  Returns error status. 0 - OK, !0 - error
284 */
285static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
286                      GetBitContext *gb)
287{
288    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
289    int comment_len;
290
291    skip_bits(gb, 2);  // object_type
292
293    sampling_index = get_bits(gb, 4);
294    if (ac->m4ac.sampling_index != sampling_index)
295        av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
296
297    num_front       = get_bits(gb, 4);
298    num_side        = get_bits(gb, 4);
299    num_back        = get_bits(gb, 4);
300    num_lfe         = get_bits(gb, 2);
301    num_assoc_data  = get_bits(gb, 3);
302    num_cc          = get_bits(gb, 4);
303
304    if (get_bits1(gb))
305        skip_bits(gb, 4); // mono_mixdown_tag
306    if (get_bits1(gb))
307        skip_bits(gb, 4); // stereo_mixdown_tag
308
309    if (get_bits1(gb))
310        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
311
312    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
313    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
314    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
315    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
316
317    skip_bits_long(gb, 4 * num_assoc_data);
318
319    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
320
321    align_get_bits(gb);
322
323    /* comment field, first byte is length */
324    comment_len = get_bits(gb, 8) * 8;
325    if (get_bits_left(gb) < comment_len) {
326        av_log(ac->avccontext, AV_LOG_ERROR, overread_err);
327        return -1;
328    }
329    skip_bits_long(gb, comment_len);
330    return 0;
331}
332
333/**
334 * Set up channel positions based on a default channel configuration
335 * as specified in table 1.17.
336 *
337 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
338 *
339 * @return  Returns error status. 0 - OK, !0 - error
340 */
341static av_cold int set_default_channel_config(AACContext *ac,
342                                      enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
343                                      int channel_config)
344{
345    if (channel_config < 1 || channel_config > 7) {
346        av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
347               channel_config);
348        return -1;
349    }
350
351    /* default channel configurations:
352     *
353     * 1ch : front center (mono)
354     * 2ch : L + R (stereo)
355     * 3ch : front center + L + R
356     * 4ch : front center + L + R + back center
357     * 5ch : front center + L + R + back stereo
358     * 6ch : front center + L + R + back stereo + LFE
359     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
360     */
361
362    if (channel_config != 2)
363        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
364    if (channel_config > 1)
365        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
366    if (channel_config == 4)
367        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
368    if (channel_config > 4)
369        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
370        = AAC_CHANNEL_BACK;  // back stereo
371    if (channel_config > 5)
372        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
373    if (channel_config == 7)
374        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
375
376    return 0;
377}
378
379/**
380 * Decode GA "General Audio" specific configuration; reference: table 4.1.
381 *
382 * @return  Returns error status. 0 - OK, !0 - error
383 */
384static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
385                                     int channel_config)
386{
387    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
388    int extension_flag, ret;
389
390    if (get_bits1(gb)) { // frameLengthFlag
391        av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
392        return -1;
393    }
394
395    if (get_bits1(gb))       // dependsOnCoreCoder
396        skip_bits(gb, 14);   // coreCoderDelay
397    extension_flag = get_bits1(gb);
398
399    if (ac->m4ac.object_type == AOT_AAC_SCALABLE ||
400        ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
401        skip_bits(gb, 3);     // layerNr
402
403    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
404    if (channel_config == 0) {
405        skip_bits(gb, 4);  // element_instance_tag
406        if ((ret = decode_pce(ac, new_che_pos, gb)))
407            return ret;
408    } else {
409        if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
410            return ret;
411    }
412    if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
413        return ret;
414
415    if (extension_flag) {
416        switch (ac->m4ac.object_type) {
417        case AOT_ER_BSAC:
418            skip_bits(gb, 5);    // numOfSubFrame
419            skip_bits(gb, 11);   // layer_length
420            break;
421        case AOT_ER_AAC_LC:
422        case AOT_ER_AAC_LTP:
423        case AOT_ER_AAC_SCALABLE:
424        case AOT_ER_AAC_LD:
425            skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
426                                    * aacScalefactorDataResilienceFlag
427                                    * aacSpectralDataResilienceFlag
428                                    */
429            break;
430        }
431        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
432    }
433    return 0;
434}
435
436/**
437 * Decode audio specific configuration; reference: table 1.13.
438 *
439 * @param   data        pointer to AVCodecContext extradata
440 * @param   data_size   size of AVCCodecContext extradata
441 *
442 * @return  Returns error status. 0 - OK, !0 - error
443 */
444static int decode_audio_specific_config(AACContext *ac, void *data,
445                                        int data_size)
446{
447    GetBitContext gb;
448    int i;
449
450    init_get_bits(&gb, data, data_size * 8);
451
452    if ((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
453        return -1;
454    if (ac->m4ac.sampling_index > 12) {
455        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
456        return -1;
457    }
458
459    skip_bits_long(&gb, i);
460
461    switch (ac->m4ac.object_type) {
462    case AOT_AAC_MAIN:
463    case AOT_AAC_LC:
464        if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
465            return -1;
466        break;
467    default:
468        av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
469               ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
470        return -1;
471    }
472    return 0;
473}
474
475/**
476 * linear congruential pseudorandom number generator
477 *
478 * @param   previous_val    pointer to the current state of the generator
479 *
480 * @return  Returns a 32-bit pseudorandom integer
481 */
482static av_always_inline int lcg_random(int previous_val)
483{
484    return previous_val * 1664525 + 1013904223;
485}
486
487static av_always_inline void reset_predict_state(PredictorState *ps)
488{
489    ps->r0   = 0.0f;
490    ps->r1   = 0.0f;
491    ps->cor0 = 0.0f;
492    ps->cor1 = 0.0f;
493    ps->var0 = 1.0f;
494    ps->var1 = 1.0f;
495}
496
497static void reset_all_predictors(PredictorState *ps)
498{
499    int i;
500    for (i = 0; i < MAX_PREDICTORS; i++)
501        reset_predict_state(&ps[i]);
502}
503
504static void reset_predictor_group(PredictorState *ps, int group_num)
505{
506    int i;
507    for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
508        reset_predict_state(&ps[i]);
509}
510
511static av_cold int aac_decode_init(AVCodecContext *avccontext)
512{
513    AACContext *ac = avccontext->priv_data;
514    int i;
515
516    ac->avccontext = avccontext;
517    ac->m4ac.sample_rate = avccontext->sample_rate;
518
519    if (avccontext->extradata_size > 0) {
520        if (decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
521            return -1;
522    }
523
524    avccontext->sample_fmt = SAMPLE_FMT_S16;
525
526    AAC_INIT_VLC_STATIC( 0, 304);
527    AAC_INIT_VLC_STATIC( 1, 270);
528    AAC_INIT_VLC_STATIC( 2, 550);
529    AAC_INIT_VLC_STATIC( 3, 300);
530    AAC_INIT_VLC_STATIC( 4, 328);
531    AAC_INIT_VLC_STATIC( 5, 294);
532    AAC_INIT_VLC_STATIC( 6, 306);
533    AAC_INIT_VLC_STATIC( 7, 268);
534    AAC_INIT_VLC_STATIC( 8, 510);
535    AAC_INIT_VLC_STATIC( 9, 366);
536    AAC_INIT_VLC_STATIC(10, 462);
537
538    ff_aac_sbr_init();
539
540    dsputil_init(&ac->dsp, avccontext);
541
542    ac->random_state = 0x1f2e3d4c;
543
544    // -1024 - Compensate wrong IMDCT method.
545    // 32768 - Required to scale values to the correct range for the bias method
546    //         for float to int16 conversion.
547
548    if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
549        ac->add_bias  = 385.0f;
550        ac->sf_scale  = 1. / (-1024. * 32768.);
551        ac->sf_offset = 0;
552    } else {
553        ac->add_bias  = 0.0f;
554        ac->sf_scale  = 1. / -1024.;
555        ac->sf_offset = 60;
556    }
557
558#if !CONFIG_HARDCODED_TABLES
559    for (i = 0; i < 428; i++)
560        ff_aac_pow2sf_tab[i] = pow(2, (i - 200) / 4.);
561#endif /* CONFIG_HARDCODED_TABLES */
562
563    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
564                    ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
565                    ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
566                    352);
567
568    ff_mdct_init(&ac->mdct, 11, 1, 1.0);
569    ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
570    // window initialization
571    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
572    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
573    ff_init_ff_sine_windows(10);
574    ff_init_ff_sine_windows( 7);
575
576    cbrt_tableinit();
577
578    return 0;
579}
580
581/**
582 * Skip data_stream_element; reference: table 4.10.
583 */
584static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
585{
586    int byte_align = get_bits1(gb);
587    int count = get_bits(gb, 8);
588    if (count == 255)
589        count += get_bits(gb, 8);
590    if (byte_align)
591        align_get_bits(gb);
592
593    if (get_bits_left(gb) < 8 * count) {
594        av_log(ac->avccontext, AV_LOG_ERROR, overread_err);
595        return -1;
596    }
597    skip_bits_long(gb, 8 * count);
598    return 0;
599}
600
601static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
602                             GetBitContext *gb)
603{
604    int sfb;
605    if (get_bits1(gb)) {
606        ics->predictor_reset_group = get_bits(gb, 5);
607        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
608            av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
609            return -1;
610        }
611    }
612    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
613        ics->prediction_used[sfb] = get_bits1(gb);
614    }
615    return 0;
616}
617
618/**
619 * Decode Individual Channel Stream info; reference: table 4.6.
620 *
621 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
622 */
623static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
624                           GetBitContext *gb, int common_window)
625{
626    if (get_bits1(gb)) {
627        av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
628        memset(ics, 0, sizeof(IndividualChannelStream));
629        return -1;
630    }
631    ics->window_sequence[1] = ics->window_sequence[0];
632    ics->window_sequence[0] = get_bits(gb, 2);
633    ics->use_kb_window[1]   = ics->use_kb_window[0];
634    ics->use_kb_window[0]   = get_bits1(gb);
635    ics->num_window_groups  = 1;
636    ics->group_len[0]       = 1;
637    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
638        int i;
639        ics->max_sfb = get_bits(gb, 4);
640        for (i = 0; i < 7; i++) {
641            if (get_bits1(gb)) {
642                ics->group_len[ics->num_window_groups - 1]++;
643            } else {
644                ics->num_window_groups++;
645                ics->group_len[ics->num_window_groups - 1] = 1;
646            }
647        }
648        ics->num_windows       = 8;
649        ics->swb_offset        =    ff_swb_offset_128[ac->m4ac.sampling_index];
650        ics->num_swb           =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
651        ics->tns_max_bands     = ff_tns_max_bands_128[ac->m4ac.sampling_index];
652        ics->predictor_present = 0;
653    } else {
654        ics->max_sfb               = get_bits(gb, 6);
655        ics->num_windows           = 1;
656        ics->swb_offset            =    ff_swb_offset_1024[ac->m4ac.sampling_index];
657        ics->num_swb               =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
658        ics->tns_max_bands         = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
659        ics->predictor_present     = get_bits1(gb);
660        ics->predictor_reset_group = 0;
661        if (ics->predictor_present) {
662            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
663                if (decode_prediction(ac, ics, gb)) {
664                    memset(ics, 0, sizeof(IndividualChannelStream));
665                    return -1;
666                }
667            } else if (ac->m4ac.object_type == AOT_AAC_LC) {
668                av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
669                memset(ics, 0, sizeof(IndividualChannelStream));
670                return -1;
671            } else {
672                av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
673                memset(ics, 0, sizeof(IndividualChannelStream));
674                return -1;
675            }
676        }
677    }
678
679    if (ics->max_sfb > ics->num_swb) {
680        av_log(ac->avccontext, AV_LOG_ERROR,
681               "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
682               ics->max_sfb, ics->num_swb);
683        memset(ics, 0, sizeof(IndividualChannelStream));
684        return -1;
685    }
686
687    return 0;
688}
689
690/**
691 * Decode band types (section_data payload); reference: table 4.46.
692 *
693 * @param   band_type           array of the used band type
694 * @param   band_type_run_end   array of the last scalefactor band of a band type run
695 *
696 * @return  Returns error status. 0 - OK, !0 - error
697 */
698static int decode_band_types(AACContext *ac, enum BandType band_type[120],
699                             int band_type_run_end[120], GetBitContext *gb,
700                             IndividualChannelStream *ics)
701{
702    int g, idx = 0;
703    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
704    for (g = 0; g < ics->num_window_groups; g++) {
705        int k = 0;
706        while (k < ics->max_sfb) {
707            uint8_t sect_end = k;
708            int sect_len_incr;
709            int sect_band_type = get_bits(gb, 4);
710            if (sect_band_type == 12) {
711                av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
712                return -1;
713            }
714            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
715                sect_end += sect_len_incr;
716            sect_end += sect_len_incr;
717            if (get_bits_left(gb) < 0) {
718                av_log(ac->avccontext, AV_LOG_ERROR, overread_err);
719                return -1;
720            }
721            if (sect_end > ics->max_sfb) {
722                av_log(ac->avccontext, AV_LOG_ERROR,
723                       "Number of bands (%d) exceeds limit (%d).\n",
724                       sect_end, ics->max_sfb);
725                return -1;
726            }
727            for (; k < sect_end; k++) {
728                band_type        [idx]   = sect_band_type;
729                band_type_run_end[idx++] = sect_end;
730            }
731        }
732    }
733    return 0;
734}
735
736/**
737 * Decode scalefactors; reference: table 4.47.
738 *
739 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
740 * @param   band_type           array of the used band type
741 * @param   band_type_run_end   array of the last scalefactor band of a band type run
742 * @param   sf                  array of scalefactors or intensity stereo positions
743 *
744 * @return  Returns error status. 0 - OK, !0 - error
745 */
746static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
747                               unsigned int global_gain,
748                               IndividualChannelStream *ics,
749                               enum BandType band_type[120],
750                               int band_type_run_end[120])
751{
752    const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
753    int g, i, idx = 0;
754    int offset[3] = { global_gain, global_gain - 90, 100 };
755    int noise_flag = 1;
756    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
757    for (g = 0; g < ics->num_window_groups; g++) {
758        for (i = 0; i < ics->max_sfb;) {
759            int run_end = band_type_run_end[idx];
760            if (band_type[idx] == ZERO_BT) {
761                for (; i < run_end; i++, idx++)
762                    sf[idx] = 0.;
763            } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
764                for (; i < run_end; i++, idx++) {
765                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
766                    if (offset[2] > 255U) {
767                        av_log(ac->avccontext, AV_LOG_ERROR,
768                               "%s (%d) out of range.\n", sf_str[2], offset[2]);
769                        return -1;
770                    }
771                    sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
772                }
773            } else if (band_type[idx] == NOISE_BT) {
774                for (; i < run_end; i++, idx++) {
775                    if (noise_flag-- > 0)
776                        offset[1] += get_bits(gb, 9) - 256;
777                    else
778                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
779                    if (offset[1] > 255U) {
780                        av_log(ac->avccontext, AV_LOG_ERROR,
781                               "%s (%d) out of range.\n", sf_str[1], offset[1]);
782                        return -1;
783                    }
784                    sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
785                }
786            } else {
787                for (; i < run_end; i++, idx++) {
788                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
789                    if (offset[0] > 255U) {
790                        av_log(ac->avccontext, AV_LOG_ERROR,
791                               "%s (%d) out of range.\n", sf_str[0], offset[0]);
792                        return -1;
793                    }
794                    sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
795                }
796            }
797        }
798    }
799    return 0;
800}
801
802/**
803 * Decode pulse data; reference: table 4.7.
804 */
805static int decode_pulses(Pulse *pulse, GetBitContext *gb,
806                         const uint16_t *swb_offset, int num_swb)
807{
808    int i, pulse_swb;
809    pulse->num_pulse = get_bits(gb, 2) + 1;
810    pulse_swb        = get_bits(gb, 6);
811    if (pulse_swb >= num_swb)
812        return -1;
813    pulse->pos[0]    = swb_offset[pulse_swb];
814    pulse->pos[0]   += get_bits(gb, 5);
815    if (pulse->pos[0] > 1023)
816        return -1;
817    pulse->amp[0]    = get_bits(gb, 4);
818    for (i = 1; i < pulse->num_pulse; i++) {
819        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
820        if (pulse->pos[i] > 1023)
821            return -1;
822        pulse->amp[i] = get_bits(gb, 4);
823    }
824    return 0;
825}
826
827/**
828 * Decode Temporal Noise Shaping data; reference: table 4.48.
829 *
830 * @return  Returns error status. 0 - OK, !0 - error
831 */
832static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
833                      GetBitContext *gb, const IndividualChannelStream *ics)
834{
835    int w, filt, i, coef_len, coef_res, coef_compress;
836    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
837    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
838    for (w = 0; w < ics->num_windows; w++) {
839        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
840            coef_res = get_bits1(gb);
841
842            for (filt = 0; filt < tns->n_filt[w]; filt++) {
843                int tmp2_idx;
844                tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
845
846                if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
847                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
848                           tns->order[w][filt], tns_max_order);
849                    tns->order[w][filt] = 0;
850                    return -1;
851                }
852                if (tns->order[w][filt]) {
853                    tns->direction[w][filt] = get_bits1(gb);
854                    coef_compress = get_bits1(gb);
855                    coef_len = coef_res + 3 - coef_compress;
856                    tmp2_idx = 2 * coef_compress + coef_res;
857
858                    for (i = 0; i < tns->order[w][filt]; i++)
859                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
860                }
861            }
862        }
863    }
864    return 0;
865}
866
867/**
868 * Decode Mid/Side data; reference: table 4.54.
869 *
870 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
871 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
872 *                      [3] reserved for scalable AAC
873 */
874static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
875                                   int ms_present)
876{
877    int idx;
878    if (ms_present == 1) {
879        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
880            cpe->ms_mask[idx] = get_bits1(gb);
881    } else if (ms_present == 2) {
882        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
883    }
884}
885
886#ifndef VMUL2
887static inline float *VMUL2(float *dst, const float *v, unsigned idx,
888                           const float *scale)
889{
890    float s = *scale;
891    *dst++ = v[idx    & 15] * s;
892    *dst++ = v[idx>>4 & 15] * s;
893    return dst;
894}
895#endif
896
897#ifndef VMUL4
898static inline float *VMUL4(float *dst, const float *v, unsigned idx,
899                           const float *scale)
900{
901    float s = *scale;
902    *dst++ = v[idx    & 3] * s;
903    *dst++ = v[idx>>2 & 3] * s;
904    *dst++ = v[idx>>4 & 3] * s;
905    *dst++ = v[idx>>6 & 3] * s;
906    return dst;
907}
908#endif
909
910#ifndef VMUL2S
911static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
912                            unsigned sign, const float *scale)
913{
914    union float754 s0, s1;
915
916    s0.f = s1.f = *scale;
917    s0.i ^= sign >> 1 << 31;
918    s1.i ^= sign      << 31;
919
920    *dst++ = v[idx    & 15] * s0.f;
921    *dst++ = v[idx>>4 & 15] * s1.f;
922
923    return dst;
924}
925#endif
926
927#ifndef VMUL4S
928static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
929                            unsigned sign, const float *scale)
930{
931    unsigned nz = idx >> 12;
932    union float754 s = { .f = *scale };
933    union float754 t;
934
935    t.i = s.i ^ (sign & 1<<31);
936    *dst++ = v[idx    & 3] * t.f;
937
938    sign <<= nz & 1; nz >>= 1;
939    t.i = s.i ^ (sign & 1<<31);
940    *dst++ = v[idx>>2 & 3] * t.f;
941
942    sign <<= nz & 1; nz >>= 1;
943    t.i = s.i ^ (sign & 1<<31);
944    *dst++ = v[idx>>4 & 3] * t.f;
945
946    sign <<= nz & 1; nz >>= 1;
947    t.i = s.i ^ (sign & 1<<31);
948    *dst++ = v[idx>>6 & 3] * t.f;
949
950    return dst;
951}
952#endif
953
954/**
955 * Decode spectral data; reference: table 4.50.
956 * Dequantize and scale spectral data; reference: 4.6.3.3.
957 *
958 * @param   coef            array of dequantized, scaled spectral data
959 * @param   sf              array of scalefactors or intensity stereo positions
960 * @param   pulse_present   set if pulses are present
961 * @param   pulse           pointer to pulse data struct
962 * @param   band_type       array of the used band type
963 *
964 * @return  Returns error status. 0 - OK, !0 - error
965 */
966static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
967                                       GetBitContext *gb, const float sf[120],
968                                       int pulse_present, const Pulse *pulse,
969                                       const IndividualChannelStream *ics,
970                                       enum BandType band_type[120])
971{
972    int i, k, g, idx = 0;
973    const int c = 1024 / ics->num_windows;
974    const uint16_t *offsets = ics->swb_offset;
975    float *coef_base = coef;
976    int err_idx;
977
978    for (g = 0; g < ics->num_windows; g++)
979        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
980
981    for (g = 0; g < ics->num_window_groups; g++) {
982        unsigned g_len = ics->group_len[g];
983
984        for (i = 0; i < ics->max_sfb; i++, idx++) {
985            const unsigned cbt_m1 = band_type[idx] - 1;
986            float *cfo = coef + offsets[i];
987            int off_len = offsets[i + 1] - offsets[i];
988            int group;
989
990            if (cbt_m1 >= INTENSITY_BT2 - 1) {
991                for (group = 0; group < g_len; group++, cfo+=128) {
992                    memset(cfo, 0, off_len * sizeof(float));
993                }
994            } else if (cbt_m1 == NOISE_BT - 1) {
995                for (group = 0; group < g_len; group++, cfo+=128) {
996                    float scale;
997                    float band_energy;
998
999                    for (k = 0; k < off_len; k++) {
1000                        ac->random_state  = lcg_random(ac->random_state);
1001                        cfo[k] = ac->random_state;
1002                    }
1003
1004                    band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
1005                    scale = sf[idx] / sqrtf(band_energy);
1006                    ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
1007                }
1008            } else {
1009                const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
1010                const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
1011                VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
1012                const int cb_size = ff_aac_spectral_sizes[cbt_m1];
1013                OPEN_READER(re, gb);
1014
1015                switch (cbt_m1 >> 1) {
1016                case 0:
1017                    for (group = 0; group < g_len; group++, cfo+=128) {
1018                        float *cf = cfo;
1019                        int len = off_len;
1020
1021                        do {
1022                            int code;
1023                            unsigned cb_idx;
1024
1025                            UPDATE_CACHE(re, gb);
1026                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
1027
1028                            if (code >= cb_size) {
1029                                err_idx = code;
1030                                goto err_cb_overflow;
1031                            }
1032
1033                            cb_idx = cb_vector_idx[code];
1034                            cf = VMUL4(cf, vq, cb_idx, sf + idx);
1035                        } while (len -= 4);
1036                    }
1037                    break;
1038
1039                case 1:
1040                    for (group = 0; group < g_len; group++, cfo+=128) {
1041                        float *cf = cfo;
1042                        int len = off_len;
1043
1044                        do {
1045                            int code;
1046                            unsigned nnz;
1047                            unsigned cb_idx;
1048                            uint32_t bits;
1049
1050                            UPDATE_CACHE(re, gb);
1051                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
1052
1053                            if (code >= cb_size) {
1054                                err_idx = code;
1055                                goto err_cb_overflow;
1056                            }
1057
1058#if MIN_CACHE_BITS < 20
1059                            UPDATE_CACHE(re, gb);
1060#endif
1061                            cb_idx = cb_vector_idx[code];
1062                            nnz = cb_idx >> 8 & 15;
1063                            bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1064                            LAST_SKIP_BITS(re, gb, nnz);
1065                            cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
1066                        } while (len -= 4);
1067                    }
1068                    break;
1069
1070                case 2:
1071                    for (group = 0; group < g_len; group++, cfo+=128) {
1072                        float *cf = cfo;
1073                        int len = off_len;
1074
1075                        do {
1076                            int code;
1077                            unsigned cb_idx;
1078
1079                            UPDATE_CACHE(re, gb);
1080                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
1081
1082                            if (code >= cb_size) {
1083                                err_idx = code;
1084                                goto err_cb_overflow;
1085                            }
1086
1087                            cb_idx = cb_vector_idx[code];
1088                            cf = VMUL2(cf, vq, cb_idx, sf + idx);
1089                        } while (len -= 2);
1090                    }
1091                    break;
1092
1093                case 3:
1094                case 4:
1095                    for (group = 0; group < g_len; group++, cfo+=128) {
1096                        float *cf = cfo;
1097                        int len = off_len;
1098
1099                        do {
1100                            int code;
1101                            unsigned nnz;
1102                            unsigned cb_idx;
1103                            unsigned sign;
1104
1105                            UPDATE_CACHE(re, gb);
1106                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
1107
1108                            if (code >= cb_size) {
1109                                err_idx = code;
1110                                goto err_cb_overflow;
1111                            }
1112
1113                            cb_idx = cb_vector_idx[code];
1114                            nnz = cb_idx >> 8 & 15;
1115                            sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
1116                            LAST_SKIP_BITS(re, gb, nnz);
1117                            cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
1118                        } while (len -= 2);
1119                    }
1120                    break;
1121
1122                default:
1123                    for (group = 0; group < g_len; group++, cfo+=128) {
1124                        float *cf = cfo;
1125                        uint32_t *icf = (uint32_t *) cf;
1126                        int len = off_len;
1127
1128                        do {
1129                            int code;
1130                            unsigned nzt, nnz;
1131                            unsigned cb_idx;
1132                            uint32_t bits;
1133                            int j;
1134
1135                            UPDATE_CACHE(re, gb);
1136                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
1137
1138                            if (!code) {
1139                                *icf++ = 0;
1140                                *icf++ = 0;
1141                                continue;
1142                            }
1143
1144                            if (code >= cb_size) {
1145                                err_idx = code;
1146                                goto err_cb_overflow;
1147                            }
1148
1149                            cb_idx = cb_vector_idx[code];
1150                            nnz = cb_idx >> 12;
1151                            nzt = cb_idx >> 8;
1152                            bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1153                            LAST_SKIP_BITS(re, gb, nnz);
1154
1155                            for (j = 0; j < 2; j++) {
1156                                if (nzt & 1<<j) {
1157                                    uint32_t b;
1158                                    int n;
1159                                    /* The total length of escape_sequence must be < 22 bits according
1160                                       to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
1161                                    UPDATE_CACHE(re, gb);
1162                                    b = GET_CACHE(re, gb);
1163                                    b = 31 - av_log2(~b);
1164
1165                                    if (b > 8) {
1166                                        av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
1167                                        return -1;
1168                                    }
1169
1170#if MIN_CACHE_BITS < 21
1171                                    LAST_SKIP_BITS(re, gb, b + 1);
1172                                    UPDATE_CACHE(re, gb);
1173#else
1174                                    SKIP_BITS(re, gb, b + 1);
1175#endif
1176                                    b += 4;
1177                                    n = (1 << b) + SHOW_UBITS(re, gb, b);
1178                                    LAST_SKIP_BITS(re, gb, b);
1179                                    *icf++ = cbrt_tab[n] | (bits & 1<<31);
1180                                    bits <<= 1;
1181                                } else {
1182                                    unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
1183                                    *icf++ = (bits & 1<<31) | v;
1184                                    bits <<= !!v;
1185                                }
1186                                cb_idx >>= 4;
1187                            }
1188                        } while (len -= 2);
1189
1190                        ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
1191                    }
1192                }
1193
1194                CLOSE_READER(re, gb);
1195            }
1196        }
1197        coef += g_len << 7;
1198    }
1199
1200    if (pulse_present) {
1201        idx = 0;
1202        for (i = 0; i < pulse->num_pulse; i++) {
1203            float co = coef_base[ pulse->pos[i] ];
1204            while (offsets[idx + 1] <= pulse->pos[i])
1205                idx++;
1206            if (band_type[idx] != NOISE_BT && sf[idx]) {
1207                float ico = -pulse->amp[i];
1208                if (co) {
1209                    co /= sf[idx];
1210                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
1211                }
1212                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
1213            }
1214        }
1215    }
1216    return 0;
1217
1218err_cb_overflow:
1219    av_log(ac->avccontext, AV_LOG_ERROR,
1220           "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
1221           band_type[idx], err_idx, ff_aac_spectral_sizes[band_type[idx]]);
1222    return -1;
1223}
1224
1225static av_always_inline float flt16_round(float pf)
1226{
1227    union float754 tmp;
1228    tmp.f = pf;
1229    tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
1230    return tmp.f;
1231}
1232
1233static av_always_inline float flt16_even(float pf)
1234{
1235    union float754 tmp;
1236    tmp.f = pf;
1237    tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
1238    return tmp.f;
1239}
1240
1241static av_always_inline float flt16_trunc(float pf)
1242{
1243    union float754 pun;
1244    pun.f = pf;
1245    pun.i &= 0xFFFF0000U;
1246    return pun.f;
1247}
1248
1249static av_always_inline void predict(AACContext *ac, PredictorState *ps, float *coef,
1250                    int output_enable)
1251{
1252    const float a     = 0.953125; // 61.0 / 64
1253    const float alpha = 0.90625;  // 29.0 / 32
1254    float e0, e1;
1255    float pv;
1256    float k1, k2;
1257
1258    k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
1259    k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
1260
1261    pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
1262    if (output_enable)
1263        *coef += pv * ac->sf_scale;
1264
1265    e0 = *coef / ac->sf_scale;
1266    e1 = e0 - k1 * ps->r0;
1267
1268    ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
1269    ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
1270    ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
1271    ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
1272
1273    ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
1274    ps->r0 = flt16_trunc(a * e0);
1275}
1276
1277/**
1278 * Apply AAC-Main style frequency domain prediction.
1279 */
1280static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
1281{
1282    int sfb, k;
1283
1284    if (!sce->ics.predictor_initialized) {
1285        reset_all_predictors(sce->predictor_state);
1286        sce->ics.predictor_initialized = 1;
1287    }
1288
1289    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1290        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1291            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
1292                predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
1293                        sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
1294            }
1295        }
1296        if (sce->ics.predictor_reset_group)
1297            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1298    } else
1299        reset_all_predictors(sce->predictor_state);
1300}
1301
1302/**
1303 * Decode an individual_channel_stream payload; reference: table 4.44.
1304 *
1305 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
1306 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1307 *
1308 * @return  Returns error status. 0 - OK, !0 - error
1309 */
1310static int decode_ics(AACContext *ac, SingleChannelElement *sce,
1311                      GetBitContext *gb, int common_window, int scale_flag)
1312{
1313    Pulse pulse;
1314    TemporalNoiseShaping    *tns = &sce->tns;
1315    IndividualChannelStream *ics = &sce->ics;
1316    float *out = sce->coeffs;
1317    int global_gain, pulse_present = 0;
1318
1319    /* This assignment is to silence a GCC warning about the variable being used
1320     * uninitialized when in fact it always is.
1321     */
1322    pulse.num_pulse = 0;
1323
1324    global_gain = get_bits(gb, 8);
1325
1326    if (!common_window && !scale_flag) {
1327        if (decode_ics_info(ac, ics, gb, 0) < 0)
1328            return -1;
1329    }
1330
1331    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1332        return -1;
1333    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1334        return -1;
1335
1336    pulse_present = 0;
1337    if (!scale_flag) {
1338        if ((pulse_present = get_bits1(gb))) {
1339            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1340                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1341                return -1;
1342            }
1343            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1344                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1345                return -1;
1346            }
1347        }
1348        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1349            return -1;
1350        if (get_bits1(gb)) {
1351            av_log_missing_feature(ac->avccontext, "SSR", 1);
1352            return -1;
1353        }
1354    }
1355
1356    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1357        return -1;
1358
1359    if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1360        apply_prediction(ac, sce);
1361
1362    return 0;
1363}
1364
1365/**
1366 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1367 */
1368static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
1369{
1370    const IndividualChannelStream *ics = &cpe->ch[0].ics;
1371    float *ch0 = cpe->ch[0].coeffs;
1372    float *ch1 = cpe->ch[1].coeffs;
1373    int g, i, group, idx = 0;
1374    const uint16_t *offsets = ics->swb_offset;
1375    for (g = 0; g < ics->num_window_groups; g++) {
1376        for (i = 0; i < ics->max_sfb; i++, idx++) {
1377            if (cpe->ms_mask[idx] &&
1378                    cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1379                for (group = 0; group < ics->group_len[g]; group++) {
1380                    ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
1381                                              ch1 + group * 128 + offsets[i],
1382                                              offsets[i+1] - offsets[i]);
1383                }
1384            }
1385        }
1386        ch0 += ics->group_len[g] * 128;
1387        ch1 += ics->group_len[g] * 128;
1388    }
1389}
1390
1391/**
1392 * intensity stereo decoding; reference: 4.6.8.2.3
1393 *
1394 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
1395 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
1396 *                      [3] reserved for scalable AAC
1397 */
1398static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
1399{
1400    const IndividualChannelStream *ics = &cpe->ch[1].ics;
1401    SingleChannelElement         *sce1 = &cpe->ch[1];
1402    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1403    const uint16_t *offsets = ics->swb_offset;
1404    int g, group, i, k, idx = 0;
1405    int c;
1406    float scale;
1407    for (g = 0; g < ics->num_window_groups; g++) {
1408        for (i = 0; i < ics->max_sfb;) {
1409            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1410                const int bt_run_end = sce1->band_type_run_end[idx];
1411                for (; i < bt_run_end; i++, idx++) {
1412                    c = -1 + 2 * (sce1->band_type[idx] - 14);
1413                    if (ms_present)
1414                        c *= 1 - 2 * cpe->ms_mask[idx];
1415                    scale = c * sce1->sf[idx];
1416                    for (group = 0; group < ics->group_len[g]; group++)
1417                        for (k = offsets[i]; k < offsets[i + 1]; k++)
1418                            coef1[group * 128 + k] = scale * coef0[group * 128 + k];
1419                }
1420            } else {
1421                int bt_run_end = sce1->band_type_run_end[idx];
1422                idx += bt_run_end - i;
1423                i    = bt_run_end;
1424            }
1425        }
1426        coef0 += ics->group_len[g] * 128;
1427        coef1 += ics->group_len[g] * 128;
1428    }
1429}
1430
1431/**
1432 * Decode a channel_pair_element; reference: table 4.4.
1433 *
1434 * @param   elem_id Identifies the instance of a syntax element.
1435 *
1436 * @return  Returns error status. 0 - OK, !0 - error
1437 */
1438static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
1439{
1440    int i, ret, common_window, ms_present = 0;
1441
1442    common_window = get_bits1(gb);
1443    if (common_window) {
1444        if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1445            return -1;
1446        i = cpe->ch[1].ics.use_kb_window[0];
1447        cpe->ch[1].ics = cpe->ch[0].ics;
1448        cpe->ch[1].ics.use_kb_window[1] = i;
1449        ms_present = get_bits(gb, 2);
1450        if (ms_present == 3) {
1451            av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1452            return -1;
1453        } else if (ms_present)
1454            decode_mid_side_stereo(cpe, gb, ms_present);
1455    }
1456    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1457        return ret;
1458    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1459        return ret;
1460
1461    if (common_window) {
1462        if (ms_present)
1463            apply_mid_side_stereo(ac, cpe);
1464        if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1465            apply_prediction(ac, &cpe->ch[0]);
1466            apply_prediction(ac, &cpe->ch[1]);
1467        }
1468    }
1469
1470    apply_intensity_stereo(cpe, ms_present);
1471    return 0;
1472}
1473
1474/**
1475 * Decode coupling_channel_element; reference: table 4.8.
1476 *
1477 * @param   elem_id Identifies the instance of a syntax element.
1478 *
1479 * @return  Returns error status. 0 - OK, !0 - error
1480 */
1481static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
1482{
1483    int num_gain = 0;
1484    int c, g, sfb, ret;
1485    int sign;
1486    float scale;
1487    SingleChannelElement *sce = &che->ch[0];
1488    ChannelCoupling     *coup = &che->coup;
1489
1490    coup->coupling_point = 2 * get_bits1(gb);
1491    coup->num_coupled = get_bits(gb, 3);
1492    for (c = 0; c <= coup->num_coupled; c++) {
1493        num_gain++;
1494        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1495        coup->id_select[c] = get_bits(gb, 4);
1496        if (coup->type[c] == TYPE_CPE) {
1497            coup->ch_select[c] = get_bits(gb, 2);
1498            if (coup->ch_select[c] == 3)
1499                num_gain++;
1500        } else
1501            coup->ch_select[c] = 2;
1502    }
1503    coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
1504
1505    sign  = get_bits(gb, 1);
1506    scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1507
1508    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1509        return ret;
1510
1511    for (c = 0; c < num_gain; c++) {
1512        int idx  = 0;
1513        int cge  = 1;
1514        int gain = 0;
1515        float gain_cache = 1.;
1516        if (c) {
1517            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1518            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1519            gain_cache = pow(scale, -gain);
1520        }
1521        if (coup->coupling_point == AFTER_IMDCT) {
1522            coup->gain[c][0] = gain_cache;
1523        } else {
1524            for (g = 0; g < sce->ics.num_window_groups; g++) {
1525                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1526                    if (sce->band_type[idx] != ZERO_BT) {
1527                        if (!cge) {
1528                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1529                            if (t) {
1530                                int s = 1;
1531                                t = gain += t;
1532                                if (sign) {
1533                                    s  -= 2 * (t & 0x1);
1534                                    t >>= 1;
1535                                }
1536                                gain_cache = pow(scale, -t) * s;
1537                            }
1538                        }
1539                        coup->gain[c][idx] = gain_cache;
1540                    }
1541                }
1542            }
1543        }
1544    }
1545    return 0;
1546}
1547
1548/**
1549 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1550 *
1551 * @return  Returns number of bytes consumed.
1552 */
1553static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
1554                                         GetBitContext *gb)
1555{
1556    int i;
1557    int num_excl_chan = 0;
1558
1559    do {
1560        for (i = 0; i < 7; i++)
1561            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1562    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1563
1564    return num_excl_chan / 7;
1565}
1566
1567/**
1568 * Decode dynamic range information; reference: table 4.52.
1569 *
1570 * @param   cnt length of TYPE_FIL syntactic element in bytes
1571 *
1572 * @return  Returns number of bytes consumed.
1573 */
1574static int decode_dynamic_range(DynamicRangeControl *che_drc,
1575                                GetBitContext *gb, int cnt)
1576{
1577    int n             = 1;
1578    int drc_num_bands = 1;
1579    int i;
1580
1581    /* pce_tag_present? */
1582    if (get_bits1(gb)) {
1583        che_drc->pce_instance_tag  = get_bits(gb, 4);
1584        skip_bits(gb, 4); // tag_reserved_bits
1585        n++;
1586    }
1587
1588    /* excluded_chns_present? */
1589    if (get_bits1(gb)) {
1590        n += decode_drc_channel_exclusions(che_drc, gb);
1591    }
1592
1593    /* drc_bands_present? */
1594    if (get_bits1(gb)) {
1595        che_drc->band_incr            = get_bits(gb, 4);
1596        che_drc->interpolation_scheme = get_bits(gb, 4);
1597        n++;
1598        drc_num_bands += che_drc->band_incr;
1599        for (i = 0; i < drc_num_bands; i++) {
1600            che_drc->band_top[i] = get_bits(gb, 8);
1601            n++;
1602        }
1603    }
1604
1605    /* prog_ref_level_present? */
1606    if (get_bits1(gb)) {
1607        che_drc->prog_ref_level = get_bits(gb, 7);
1608        skip_bits1(gb); // prog_ref_level_reserved_bits
1609        n++;
1610    }
1611
1612    for (i = 0; i < drc_num_bands; i++) {
1613        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1614        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1615        n++;
1616    }
1617
1618    return n;
1619}
1620
1621/**
1622 * Decode extension data (incomplete); reference: table 4.51.
1623 *
1624 * @param   cnt length of TYPE_FIL syntactic element in bytes
1625 *
1626 * @return Returns number of bytes consumed
1627 */
1628static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
1629                                    ChannelElement *che, enum RawDataBlockType elem_type)
1630{
1631    int crc_flag = 0;
1632    int res = cnt;
1633    switch (get_bits(gb, 4)) { // extension type
1634    case EXT_SBR_DATA_CRC:
1635        crc_flag++;
1636    case EXT_SBR_DATA:
1637        if (!che) {
1638            av_log(ac->avccontext, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
1639            return res;
1640        } else if (!ac->m4ac.sbr) {
1641            av_log(ac->avccontext, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
1642            skip_bits_long(gb, 8 * cnt - 4);
1643            return res;
1644        } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
1645            av_log(ac->avccontext, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
1646            skip_bits_long(gb, 8 * cnt - 4);
1647            return res;
1648        } else {
1649            ac->m4ac.sbr = 1;
1650        }
1651        res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
1652        break;
1653    case EXT_DYNAMIC_RANGE:
1654        res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1655        break;
1656    case EXT_FILL:
1657    case EXT_FILL_DATA:
1658    case EXT_DATA_ELEMENT:
1659    default:
1660        skip_bits_long(gb, 8 * cnt - 4);
1661        break;
1662    };
1663    return res;
1664}
1665
1666/**
1667 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1668 *
1669 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
1670 * @param   coef    spectral coefficients
1671 */
1672static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
1673                      IndividualChannelStream *ics, int decode)
1674{
1675    const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1676    int w, filt, m, i;
1677    int bottom, top, order, start, end, size, inc;
1678    float lpc[TNS_MAX_ORDER];
1679
1680    for (w = 0; w < ics->num_windows; w++) {
1681        bottom = ics->num_swb;
1682        for (filt = 0; filt < tns->n_filt[w]; filt++) {
1683            top    = bottom;
1684            bottom = FFMAX(0, top - tns->length[w][filt]);
1685            order  = tns->order[w][filt];
1686            if (order == 0)
1687                continue;
1688
1689            // tns_decode_coef
1690            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1691
1692            start = ics->swb_offset[FFMIN(bottom, mmm)];
1693            end   = ics->swb_offset[FFMIN(   top, mmm)];
1694            if ((size = end - start) <= 0)
1695                continue;
1696            if (tns->direction[w][filt]) {
1697                inc = -1;
1698                start = end - 1;
1699            } else {
1700                inc = 1;
1701            }
1702            start += w * 128;
1703
1704            // ar filter
1705            for (m = 0; m < size; m++, start += inc)
1706                for (i = 1; i <= FFMIN(m, order); i++)
1707                    coef[start] -= coef[start - i * inc] * lpc[i - 1];
1708        }
1709    }
1710}
1711
1712/**
1713 * Conduct IMDCT and windowing.
1714 */
1715static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce, float bias)
1716{
1717    IndividualChannelStream *ics = &sce->ics;
1718    float *in    = sce->coeffs;
1719    float *out   = sce->ret;
1720    float *saved = sce->saved;
1721    const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1722    const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1723    const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1724    float *buf  = ac->buf_mdct;
1725    float *temp = ac->temp;
1726    int i;
1727
1728    // imdct
1729    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1730        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1731            av_log(ac->avccontext, AV_LOG_WARNING,
1732                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1733                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1734        for (i = 0; i < 1024; i += 128)
1735            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1736    } else
1737        ff_imdct_half(&ac->mdct, buf, in);
1738
1739    /* window overlapping
1740     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1741     * and long to short transitions are considered to be short to short
1742     * transitions. This leaves just two cases (long to long and short to short)
1743     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1744     */
1745    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1746            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1747        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, bias, 512);
1748    } else {
1749        for (i = 0; i < 448; i++)
1750            out[i] = saved[i] + bias;
1751
1752        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1753            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, bias, 64);
1754            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      bias, 64);
1755            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      bias, 64);
1756            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      bias, 64);
1757            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      bias, 64);
1758            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
1759        } else {
1760            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, bias, 64);
1761            for (i = 576; i < 1024; i++)
1762                out[i] = buf[i-512] + bias;
1763        }
1764    }
1765
1766    // buffer update
1767    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1768        for (i = 0; i < 64; i++)
1769            saved[i] = temp[64 + i] - bias;
1770        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1771        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1772        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1773        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1774    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1775        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
1776        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1777    } else { // LONG_STOP or ONLY_LONG
1778        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
1779    }
1780}
1781
1782/**
1783 * Apply dependent channel coupling (applied before IMDCT).
1784 *
1785 * @param   index   index into coupling gain array
1786 */
1787static void apply_dependent_coupling(AACContext *ac,
1788                                     SingleChannelElement *target,
1789                                     ChannelElement *cce, int index)
1790{
1791    IndividualChannelStream *ics = &cce->ch[0].ics;
1792    const uint16_t *offsets = ics->swb_offset;
1793    float *dest = target->coeffs;
1794    const float *src = cce->ch[0].coeffs;
1795    int g, i, group, k, idx = 0;
1796    if (ac->m4ac.object_type == AOT_AAC_LTP) {
1797        av_log(ac->avccontext, AV_LOG_ERROR,
1798               "Dependent coupling is not supported together with LTP\n");
1799        return;
1800    }
1801    for (g = 0; g < ics->num_window_groups; g++) {
1802        for (i = 0; i < ics->max_sfb; i++, idx++) {
1803            if (cce->ch[0].band_type[idx] != ZERO_BT) {
1804                const float gain = cce->coup.gain[index][idx];
1805                for (group = 0; group < ics->group_len[g]; group++) {
1806                    for (k = offsets[i]; k < offsets[i + 1]; k++) {
1807                        // XXX dsputil-ize
1808                        dest[group * 128 + k] += gain * src[group * 128 + k];
1809                    }
1810                }
1811            }
1812        }
1813        dest += ics->group_len[g] * 128;
1814        src  += ics->group_len[g] * 128;
1815    }
1816}
1817
1818/**
1819 * Apply independent channel coupling (applied after IMDCT).
1820 *
1821 * @param   index   index into coupling gain array
1822 */
1823static void apply_independent_coupling(AACContext *ac,
1824                                       SingleChannelElement *target,
1825                                       ChannelElement *cce, int index)
1826{
1827    int i;
1828    const float gain = cce->coup.gain[index][0];
1829    const float bias = ac->add_bias;
1830    const float *src = cce->ch[0].ret;
1831    float *dest = target->ret;
1832    const int len = 1024 << (ac->m4ac.sbr == 1);
1833
1834    for (i = 0; i < len; i++)
1835        dest[i] += gain * (src[i] - bias);
1836}
1837
1838/**
1839 * channel coupling transformation interface
1840 *
1841 * @param   index   index into coupling gain array
1842 * @param   apply_coupling_method   pointer to (in)dependent coupling function
1843 */
1844static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
1845                                   enum RawDataBlockType type, int elem_id,
1846                                   enum CouplingPoint coupling_point,
1847                                   void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
1848{
1849    int i, c;
1850
1851    for (i = 0; i < MAX_ELEM_ID; i++) {
1852        ChannelElement *cce = ac->che[TYPE_CCE][i];
1853        int index = 0;
1854
1855        if (cce && cce->coup.coupling_point == coupling_point) {
1856            ChannelCoupling *coup = &cce->coup;
1857
1858            for (c = 0; c <= coup->num_coupled; c++) {
1859                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1860                    if (coup->ch_select[c] != 1) {
1861                        apply_coupling_method(ac, &cc->ch[0], cce, index);
1862                        if (coup->ch_select[c] != 0)
1863                            index++;
1864                    }
1865                    if (coup->ch_select[c] != 2)
1866                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
1867                } else
1868                    index += 1 + (coup->ch_select[c] == 3);
1869            }
1870        }
1871    }
1872}
1873
1874/**
1875 * Convert spectral data to float samples, applying all supported tools as appropriate.
1876 */
1877static void spectral_to_sample(AACContext *ac)
1878{
1879    int i, type;
1880    float imdct_bias = (ac->m4ac.sbr <= 0) ? ac->add_bias : 0.0f;
1881    for (type = 3; type >= 0; type--) {
1882        for (i = 0; i < MAX_ELEM_ID; i++) {
1883            ChannelElement *che = ac->che[type][i];
1884            if (che) {
1885                if (type <= TYPE_CPE)
1886                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1887                if (che->ch[0].tns.present)
1888                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1889                if (che->ch[1].tns.present)
1890                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1891                if (type <= TYPE_CPE)
1892                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1893                if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
1894                    imdct_and_windowing(ac, &che->ch[0], imdct_bias);
1895                    if (type == TYPE_CPE) {
1896                        imdct_and_windowing(ac, &che->ch[1], imdct_bias);
1897                    }
1898                    if (ac->m4ac.sbr > 0) {
1899                        ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
1900                    }
1901                }
1902                if (type <= TYPE_CCE)
1903                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1904            }
1905        }
1906    }
1907}
1908
1909static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
1910{
1911    int size;
1912    AACADTSHeaderInfo hdr_info;
1913
1914    size = ff_aac_parse_header(gb, &hdr_info);
1915    if (size > 0) {
1916        if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
1917            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1918            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1919            ac->m4ac.chan_config = hdr_info.chan_config;
1920            if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
1921                return -7;
1922            if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
1923                return -7;
1924        } else if (ac->output_configured != OC_LOCKED) {
1925            ac->output_configured = OC_NONE;
1926        }
1927        if (ac->output_configured != OC_LOCKED)
1928            ac->m4ac.sbr = -1;
1929        ac->m4ac.sample_rate     = hdr_info.sample_rate;
1930        ac->m4ac.sampling_index  = hdr_info.sampling_index;
1931        ac->m4ac.object_type     = hdr_info.object_type;
1932        if (!ac->avccontext->sample_rate)
1933            ac->avccontext->sample_rate = hdr_info.sample_rate;
1934        if (hdr_info.num_aac_frames == 1) {
1935            if (!hdr_info.crc_absent)
1936                skip_bits(gb, 16);
1937        } else {
1938            av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1939            return -1;
1940        }
1941    }
1942    return size;
1943}
1944
1945static int aac_decode_frame(AVCodecContext *avccontext, void *data,
1946                            int *data_size, AVPacket *avpkt)
1947{
1948    const uint8_t *buf = avpkt->data;
1949    int buf_size = avpkt->size;
1950    AACContext *ac = avccontext->priv_data;
1951    ChannelElement *che = NULL, *che_prev = NULL;
1952    GetBitContext gb;
1953    enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
1954    int err, elem_id, data_size_tmp;
1955    int buf_consumed;
1956    int samples = 1024, multiplier;
1957    int buf_offset;
1958
1959    init_get_bits(&gb, buf, buf_size * 8);
1960
1961    if (show_bits(&gb, 12) == 0xfff) {
1962        if (parse_adts_frame_header(ac, &gb) < 0) {
1963            av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1964            return -1;
1965        }
1966        if (ac->m4ac.sampling_index > 12) {
1967            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1968            return -1;
1969        }
1970    }
1971
1972    // parse
1973    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1974        elem_id = get_bits(&gb, 4);
1975
1976        if (elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1977            av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1978            return -1;
1979        }
1980
1981        switch (elem_type) {
1982
1983        case TYPE_SCE:
1984            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1985            break;
1986
1987        case TYPE_CPE:
1988            err = decode_cpe(ac, &gb, che);
1989            break;
1990
1991        case TYPE_CCE:
1992            err = decode_cce(ac, &gb, che);
1993            break;
1994
1995        case TYPE_LFE:
1996            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1997            break;
1998
1999        case TYPE_DSE:
2000            err = skip_data_stream_element(ac, &gb);
2001            break;
2002
2003        case TYPE_PCE: {
2004            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
2005            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
2006            if ((err = decode_pce(ac, new_che_pos, &gb)))
2007                break;
2008            if (ac->output_configured > OC_TRIAL_PCE)
2009                av_log(avccontext, AV_LOG_ERROR,
2010                       "Not evaluating a further program_config_element as this construct is dubious at best.\n");
2011            else
2012                err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
2013            break;
2014        }
2015
2016        case TYPE_FIL:
2017            if (elem_id == 15)
2018                elem_id += get_bits(&gb, 8) - 1;
2019            if (get_bits_left(&gb) < 8 * elem_id) {
2020                    av_log(avccontext, AV_LOG_ERROR, overread_err);
2021                    return -1;
2022            }
2023            while (elem_id > 0)
2024                elem_id -= decode_extension_payload(ac, &gb, elem_id, che_prev, elem_type_prev);
2025            err = 0; /* FIXME */
2026            break;
2027
2028        default:
2029            err = -1; /* should not happen, but keeps compiler happy */
2030            break;
2031        }
2032
2033        che_prev       = che;
2034        elem_type_prev = elem_type;
2035
2036        if (err)
2037            return err;
2038
2039        if (get_bits_left(&gb) < 3) {
2040            av_log(avccontext, AV_LOG_ERROR, overread_err);
2041            return -1;
2042        }
2043    }
2044
2045    spectral_to_sample(ac);
2046
2047    multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
2048    samples <<= multiplier;
2049    if (ac->output_configured < OC_LOCKED) {
2050        avccontext->sample_rate = ac->m4ac.sample_rate << multiplier;
2051        avccontext->frame_size = samples;
2052    }
2053
2054    data_size_tmp = samples * avccontext->channels * sizeof(int16_t);
2055    if (*data_size < data_size_tmp) {
2056        av_log(avccontext, AV_LOG_ERROR,
2057               "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
2058               *data_size, data_size_tmp);
2059        return -1;
2060    }
2061    *data_size = data_size_tmp;
2062
2063    ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avccontext->channels);
2064
2065    if (ac->output_configured)
2066        ac->output_configured = OC_LOCKED;
2067
2068    buf_consumed = (get_bits_count(&gb) + 7) >> 3;
2069    for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
2070        if (buf[buf_offset])
2071            break;
2072
2073    return buf_size > buf_offset ? buf_consumed : buf_size;
2074}
2075
2076static av_cold int aac_decode_close(AVCodecContext *avccontext)
2077{
2078    AACContext *ac = avccontext->priv_data;
2079    int i, type;
2080
2081    for (i = 0; i < MAX_ELEM_ID; i++) {
2082        for (type = 0; type < 4; type++) {
2083            if (ac->che[type][i])
2084                ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
2085            av_freep(&ac->che[type][i]);
2086        }
2087    }
2088
2089    ff_mdct_end(&ac->mdct);
2090    ff_mdct_end(&ac->mdct_small);
2091    return 0;
2092}
2093
2094AVCodec aac_decoder = {
2095    "aac",
2096    AVMEDIA_TYPE_AUDIO,
2097    CODEC_ID_AAC,
2098    sizeof(AACContext),
2099    aac_decode_init,
2100    NULL,
2101    aac_decode_close,
2102    aac_decode_frame,
2103    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
2104    .sample_fmts = (const enum SampleFormat[]) {
2105        SAMPLE_FMT_S16,SAMPLE_FMT_NONE
2106    },
2107    .channel_layouts = aac_channel_layout,
2108};
2109