• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/router/busybox/networking/
1/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this tarball for details.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
11 *
12 ***********************************************************************
13 *                                                                     *
14 * Copyright (c) University of Delaware 1992-2009                      *
15 *                                                                     *
16 * Permission to use, copy, modify, and distribute this software and   *
17 * its documentation for any purpose with or without fee is hereby     *
18 * granted, provided that the above copyright notice appears in all    *
19 * copies and that both the copyright notice and this permission       *
20 * notice appear in supporting documentation, and that the name        *
21 * University of Delaware not be used in advertising or publicity      *
22 * pertaining to distribution of the software without specific,        *
23 * written prior permission. The University of Delaware makes no       *
24 * representations about the suitability this software for any         *
25 * purpose. It is provided "as is" without express or implied          *
26 * warranty.                                                           *
27 *                                                                     *
28 ***********************************************************************
29 */
30#include "libbb.h"
31#include <math.h>
32#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
33#include <sys/timex.h>
34#ifndef IPTOS_LOWDELAY
35# define IPTOS_LOWDELAY 0x10
36#endif
37#ifndef IP_PKTINFO
38# error "Sorry, your kernel has to support IP_PKTINFO"
39#endif
40
41
42/* Verbosity control (max level of -dddd options accepted).
43 * max 5 is very talkative (and bloated). 2 is non-bloated,
44 * production level setting.
45 */
46#define MAX_VERBOSE     2
47
48
49/* High-level description of the algorithm:
50 *
51 * We start running with very small poll_exp, BURSTPOLL,
52 * in order to quickly accumulate INITIAL_SAMLPES datapoints
53 * for each peer. Then, time is stepped if the offset is larger
54 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
55 * poll_exp to MINPOLL and enter frequency measurement step:
56 * we collect new datapoints but ignore them for WATCH_THRESHOLD
57 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
58 * offset and estimate frequency drift.
59 *
60 * (frequency measurement step seems to not be strictly needed,
61 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
62 * define set to 0)
63 *
64 * After this, we enter "steady state": we collect a datapoint,
65 * we select the best peer, if this datapoint is not a new one
66 * (IOW: if this datapoint isn't for selected peer), sleep
67 * and collect another one; otherwise, use its offset to update
68 * frequency drift, if offset is somewhat large, reduce poll_exp,
69 * otherwise increase poll_exp.
70 *
71 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
72 * happen, we assume that something "bad" happened (computer
73 * was hibernated, someone set totally wrong date, etc),
74 * then the time is stepped, all datapoints are discarded,
75 * and we go back to steady state.
76 */
77
78#define RETRY_INTERVAL  5       /* on error, retry in N secs */
79#define RESPONSE_INTERVAL 15    /* wait for reply up to N secs */
80#define INITIAL_SAMLPES 4       /* how many samples do we want for init */
81
82/* Clock discipline parameters and constants */
83
84/* Step threshold (sec). std ntpd uses 0.128.
85 * Using exact power of 2 (1/8) results in smaller code */
86#define STEP_THRESHOLD  0.125
87#define WATCH_THRESHOLD 128     /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
88/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
89//UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
90
91#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
92#define BURSTPOLL       0	/* initial poll */
93#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
94#define BIGPOLL         10      /* drop to lower poll at any trouble (10: 17 min) */
95#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
96/* Actively lower poll when we see such big offsets.
97 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
98 * if offset increases over 0.03 sec */
99#define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
100#define MINDISP         0.01    /* minimum dispersion (sec) */
101#define MAXDISP         16      /* maximum dispersion (sec) */
102#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
103#define MAXDIST         1       /* distance threshold (sec) */
104#define MIN_SELECTED    1       /* minimum intersection survivors */
105#define MIN_CLUSTERED   3       /* minimum cluster survivors */
106
107#define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */
108
109/* Poll-adjust threshold.
110 * When we see that offset is small enough compared to discipline jitter,
111 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
112 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
113 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
114 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
115 */
116#define POLLADJ_LIMIT   36
117/* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
118 * poll interval (we think we can't improve timekeeping
119 * by staying at smaller poll).
120 */
121#define POLLADJ_GATE    4
122/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
123#define ALLAN           512
124/* PLL loop gain */
125#define PLL             65536
126/* FLL loop gain [why it depends on MAXPOLL??] */
127#define FLL             (MAXPOLL + 1)
128/* Parameter averaging constant */
129#define AVG             4
130
131
132enum {
133	NTP_VERSION     = 4,
134	NTP_MAXSTRATUM  = 15,
135
136	NTP_DIGESTSIZE     = 16,
137	NTP_MSGSIZE_NOAUTH = 48,
138	NTP_MSGSIZE        = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
139
140	/* Status Masks */
141	MODE_MASK       = (7 << 0),
142	VERSION_MASK    = (7 << 3),
143	VERSION_SHIFT   = 3,
144	LI_MASK         = (3 << 6),
145
146	/* Leap Second Codes (high order two bits of m_status) */
147	LI_NOWARNING    = (0 << 6),    /* no warning */
148	LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
149	LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
150	LI_ALARM        = (3 << 6),    /* alarm condition */
151
152	/* Mode values */
153	MODE_RES0       = 0,    /* reserved */
154	MODE_SYM_ACT    = 1,    /* symmetric active */
155	MODE_SYM_PAS    = 2,    /* symmetric passive */
156	MODE_CLIENT     = 3,    /* client */
157	MODE_SERVER     = 4,    /* server */
158	MODE_BROADCAST  = 5,    /* broadcast */
159	MODE_RES1       = 6,    /* reserved for NTP control message */
160	MODE_RES2       = 7,    /* reserved for private use */
161};
162
163//TODO: better base selection
164#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
165
166#define NUM_DATAPOINTS  8
167
168typedef struct {
169	uint32_t int_partl;
170	uint32_t fractionl;
171} l_fixedpt_t;
172
173typedef struct {
174	uint16_t int_parts;
175	uint16_t fractions;
176} s_fixedpt_t;
177
178typedef struct {
179	uint8_t     m_status;     /* status of local clock and leap info */
180	uint8_t     m_stratum;
181	uint8_t     m_ppoll;      /* poll value */
182	int8_t      m_precision_exp;
183	s_fixedpt_t m_rootdelay;
184	s_fixedpt_t m_rootdisp;
185	uint32_t    m_refid;
186	l_fixedpt_t m_reftime;
187	l_fixedpt_t m_orgtime;
188	l_fixedpt_t m_rectime;
189	l_fixedpt_t m_xmttime;
190	uint32_t    m_keyid;
191	uint8_t     m_digest[NTP_DIGESTSIZE];
192} msg_t;
193
194typedef struct {
195	double d_recv_time;
196	double d_offset;
197	double d_dispersion;
198} datapoint_t;
199
200typedef struct {
201	len_and_sockaddr *p_lsa;
202	char             *p_dotted;
203	/* when to send new query (if p_fd == -1)
204	 * or when receive times out (if p_fd >= 0): */
205	int              p_fd;
206	int              datapoint_idx;
207	uint32_t         lastpkt_refid;
208	uint8_t          lastpkt_status;
209	uint8_t          lastpkt_stratum;
210	uint8_t          reachable_bits;
211	double           next_action_time;
212	double           p_xmttime;
213	double           lastpkt_recv_time;
214	double           lastpkt_delay;
215	double           lastpkt_rootdelay;
216	double           lastpkt_rootdisp;
217	/* produced by filter algorithm: */
218	double           filter_offset;
219	double           filter_dispersion;
220	double           filter_jitter;
221	datapoint_t      filter_datapoint[NUM_DATAPOINTS];
222	/* last sent packet: */
223	msg_t            p_xmt_msg;
224} peer_t;
225
226
227#define USING_KERNEL_PLL_LOOP          1
228#define USING_INITIAL_FREQ_ESTIMATION  0
229
230enum {
231	OPT_n = (1 << 0),
232	OPT_q = (1 << 1),
233	OPT_N = (1 << 2),
234	OPT_x = (1 << 3),
235	/* Insert new options above this line. */
236	/* Non-compat options: */
237	OPT_w = (1 << 4),
238	OPT_p = (1 << 5),
239	OPT_S = (1 << 6),
240	OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
241};
242
243struct globals {
244	double   cur_time;
245	/* total round trip delay to currently selected reference clock */
246	double   rootdelay;
247	/* reference timestamp: time when the system clock was last set or corrected */
248	double   reftime;
249	/* total dispersion to currently selected reference clock */
250	double   rootdisp;
251
252	double   last_script_run;
253	char     *script_name;
254	llist_t  *ntp_peers;
255#if ENABLE_FEATURE_NTPD_SERVER
256	int      listen_fd;
257#endif
258	unsigned verbose;
259	unsigned peer_cnt;
260	/* refid: 32-bit code identifying the particular server or reference clock
261	 *  in stratum 0 packets this is a four-character ASCII string,
262	 *  called the kiss code, used for debugging and monitoring
263	 *  in stratum 1 packets this is a four-character ASCII string
264	 *  assigned to the reference clock by IANA. Example: "GPS "
265	 *  in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
266	 */
267	uint32_t refid;
268	uint8_t  ntp_status;
269	/* precision is defined as the larger of the resolution and time to
270	 * read the clock, in log2 units.  For instance, the precision of a
271	 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
272	 * system clock hardware representation is to the nanosecond.
273	 *
274	 * Delays, jitters of various kinds are clamper down to precision.
275	 *
276	 * If precision_sec is too large, discipline_jitter gets clamped to it
277	 * and if offset is much smaller than discipline_jitter, poll interval
278	 * grows even though we really can benefit from staying at smaller one,
279	 * collecting non-lagged datapoits and correcting the offset.
280	 * (Lagged datapoits exist when poll_exp is large but we still have
281	 * systematic offset error - the time distance between datapoints
282	 * is significat and older datapoints have smaller offsets.
283	 * This makes our offset estimation a bit smaller than reality)
284	 * Due to this effect, setting G_precision_sec close to
285	 * STEP_THRESHOLD isn't such a good idea - offsets may grow
286	 * too big and we will step. I observed it with -6.
287	 *
288	 * OTOH, setting precision too small would result in futile attempts
289	 * to syncronize to the unachievable precision.
290	 *
291	 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
292	 */
293#define G_precision_exp  -8
294#define G_precision_sec  (1.0 / (1 << (- G_precision_exp)))
295	uint8_t  stratum;
296	/* Bool. After set to 1, never goes back to 0: */
297	smallint initial_poll_complete;
298
299#define STATE_NSET      0       /* initial state, "nothing is set" */
300//#define STATE_FSET    1       /* frequency set from file */
301#define STATE_SPIK      2       /* spike detected */
302//#define STATE_FREQ    3       /* initial frequency */
303#define STATE_SYNC      4       /* clock synchronized (normal operation) */
304	uint8_t  discipline_state;      // doc calls it c.state
305	uint8_t  poll_exp;              // s.poll
306	int      polladj_count;         // c.count
307	long     kernel_freq_drift;
308	peer_t   *last_update_peer;
309	double   last_update_offset;    // c.last
310	double   last_update_recv_time; // s.t
311	double   discipline_jitter;     // c.jitter
312	//double   cluster_offset;        // s.offset
313	//double   cluster_jitter;        // s.jitter
314#if !USING_KERNEL_PLL_LOOP
315	double   discipline_freq_drift; // c.freq
316	/* Maybe conditionally calculate wander? it's used only for logging */
317	double   discipline_wander;     // c.wander
318#endif
319};
320#define G (*ptr_to_globals)
321
322static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
323
324
325#define VERB1 if (MAX_VERBOSE && G.verbose)
326#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
327#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
328#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
329#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
330
331
332static double LOG2D(int a)
333{
334	if (a < 0)
335		return 1.0 / (1UL << -a);
336	return 1UL << a;
337}
338static ALWAYS_INLINE double SQUARE(double x)
339{
340	return x * x;
341}
342static ALWAYS_INLINE double MAXD(double a, double b)
343{
344	if (a > b)
345		return a;
346	return b;
347}
348static ALWAYS_INLINE double MIND(double a, double b)
349{
350	if (a < b)
351		return a;
352	return b;
353}
354static NOINLINE double my_SQRT(double X)
355{
356	union {
357		float   f;
358		int32_t i;
359	} v;
360	double invsqrt;
361	double Xhalf = X * 0.5;
362
363	/* Fast and good approximation to 1/sqrt(X), black magic */
364	v.f = X;
365	/*v.i = 0x5f3759df - (v.i >> 1);*/
366	v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
367	invsqrt = v.f; /* better than 0.2% accuracy */
368
369	/* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
370	 * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
371	 * f'(x) = -2/(x*x*x)
372	 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
373	 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
374	 */
375	invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
376	/* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
377	/* With 4 iterations, more than half results will be exact,
378	 * at 6th iterations result stabilizes with about 72% results exact.
379	 * We are well satisfied with 0.05% accuracy.
380	 */
381
382	return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
383}
384static ALWAYS_INLINE double SQRT(double X)
385{
386	/* If this arch doesn't use IEEE 754 floats, fall back to using libm */
387	if (sizeof(float) != 4)
388		return sqrt(X);
389
390	/* This avoids needing libm, saves about 0.5k on x86-32 */
391	return my_SQRT(X);
392}
393
394static double
395gettime1900d(void)
396{
397	struct timeval tv;
398	gettimeofday(&tv, NULL); /* never fails */
399	G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
400	return G.cur_time;
401}
402
403static void
404d_to_tv(double d, struct timeval *tv)
405{
406	tv->tv_sec = (long)d;
407	tv->tv_usec = (d - tv->tv_sec) * 1000000;
408}
409
410static double
411lfp_to_d(l_fixedpt_t lfp)
412{
413	double ret;
414	lfp.int_partl = ntohl(lfp.int_partl);
415	lfp.fractionl = ntohl(lfp.fractionl);
416	ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
417	return ret;
418}
419static double
420sfp_to_d(s_fixedpt_t sfp)
421{
422	double ret;
423	sfp.int_parts = ntohs(sfp.int_parts);
424	sfp.fractions = ntohs(sfp.fractions);
425	ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
426	return ret;
427}
428#if ENABLE_FEATURE_NTPD_SERVER
429static l_fixedpt_t
430d_to_lfp(double d)
431{
432	l_fixedpt_t lfp;
433	lfp.int_partl = (uint32_t)d;
434	lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
435	lfp.int_partl = htonl(lfp.int_partl);
436	lfp.fractionl = htonl(lfp.fractionl);
437	return lfp;
438}
439static s_fixedpt_t
440d_to_sfp(double d)
441{
442	s_fixedpt_t sfp;
443	sfp.int_parts = (uint16_t)d;
444	sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
445	sfp.int_parts = htons(sfp.int_parts);
446	sfp.fractions = htons(sfp.fractions);
447	return sfp;
448}
449#endif
450
451static double
452dispersion(const datapoint_t *dp)
453{
454	return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
455}
456
457static double
458root_distance(peer_t *p)
459{
460	/* The root synchronization distance is the maximum error due to
461	 * all causes of the local clock relative to the primary server.
462	 * It is defined as half the total delay plus total dispersion
463	 * plus peer jitter.
464	 */
465	return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
466		+ p->lastpkt_rootdisp
467		+ p->filter_dispersion
468		+ FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
469		+ p->filter_jitter;
470}
471
472static void
473set_next(peer_t *p, unsigned t)
474{
475	p->next_action_time = G.cur_time + t;
476}
477
478/*
479 * Peer clock filter and its helpers
480 */
481static void
482filter_datapoints(peer_t *p)
483{
484	int i, idx;
485	int got_newest;
486	double minoff, maxoff, wavg, sum, w;
487	double x = x; /* for compiler */
488	double oldest_off = oldest_off;
489	double oldest_age = oldest_age;
490	double newest_off = newest_off;
491	double newest_age = newest_age;
492
493	minoff = maxoff = p->filter_datapoint[0].d_offset;
494	for (i = 1; i < NUM_DATAPOINTS; i++) {
495		if (minoff > p->filter_datapoint[i].d_offset)
496			minoff = p->filter_datapoint[i].d_offset;
497		if (maxoff < p->filter_datapoint[i].d_offset)
498			maxoff = p->filter_datapoint[i].d_offset;
499	}
500
501	idx = p->datapoint_idx; /* most recent datapoint */
502	/* Average offset:
503	 * Drop two outliers and take weighted average of the rest:
504	 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
505	 * we use older6/32, not older6/64 since sum of weights should be 1:
506	 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
507	 */
508	wavg = 0;
509	w = 0.5;
510	/*                     n-1
511	 *                     ---    dispersion(i)
512	 * filter_dispersion =  \     -------------
513	 *                      /       (i+1)
514	 *                     ---     2
515	 *                     i=0
516	 */
517	got_newest = 0;
518	sum = 0;
519	for (i = 0; i < NUM_DATAPOINTS; i++) {
520		VERB4 {
521			bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
522				i,
523				p->filter_datapoint[idx].d_offset,
524				p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
525				G.cur_time - p->filter_datapoint[idx].d_recv_time,
526				(minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
527					? " (outlier by offset)" : ""
528			);
529		}
530
531		sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
532
533		if (minoff == p->filter_datapoint[idx].d_offset) {
534			minoff -= 1; /* so that we don't match it ever again */
535		} else
536		if (maxoff == p->filter_datapoint[idx].d_offset) {
537			maxoff += 1;
538		} else {
539			oldest_off = p->filter_datapoint[idx].d_offset;
540			oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
541			if (!got_newest) {
542				got_newest = 1;
543				newest_off = oldest_off;
544				newest_age = oldest_age;
545			}
546			x = oldest_off * w;
547			wavg += x;
548			w /= 2;
549		}
550
551		idx = (idx - 1) & (NUM_DATAPOINTS - 1);
552	}
553	p->filter_dispersion = sum;
554	wavg += x; /* add another older6/64 to form older6/32 */
555	/* Fix systematic underestimation with large poll intervals.
556	 * Imagine that we still have a bit of uncorrected drift,
557	 * and poll interval is big (say, 100 sec). Offsets form a progression:
558	 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
559	 * The algorithm above drops 0.0 and 0.7 as outliers,
560	 * and then we have this estimation, ~25% off from 0.7:
561	 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
562	 */
563	x = oldest_age - newest_age;
564	if (x != 0) {
565		x = newest_age / x; /* in above example, 100 / (600 - 100) */
566		if (x < 1) { /* paranoia check */
567			x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
568			wavg += x;
569		}
570	}
571	p->filter_offset = wavg;
572
573	/*                  +-----                 -----+ ^ 1/2
574	 *                  |       n-1                 |
575	 *                  |       ---                 |
576	 *                  |  1    \                2  |
577	 * filter_jitter =  | --- * /  (avg-offset_j)   |
578	 *                  |  n    ---                 |
579	 *                  |       j=0                 |
580	 *                  +-----                 -----+
581	 * where n is the number of valid datapoints in the filter (n > 1);
582	 * if filter_jitter < precision then filter_jitter = precision
583	 */
584	sum = 0;
585	for (i = 0; i < NUM_DATAPOINTS; i++) {
586		sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
587	}
588	sum = SQRT(sum / NUM_DATAPOINTS);
589	p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
590
591	VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
592			p->filter_offset, x,
593			p->filter_dispersion,
594			p->filter_jitter);
595
596}
597
598static void
599reset_peer_stats(peer_t *p, double offset)
600{
601	int i;
602	bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
603
604	for (i = 0; i < NUM_DATAPOINTS; i++) {
605		if (small_ofs) {
606			p->filter_datapoint[i].d_recv_time += offset;
607			if (p->filter_datapoint[i].d_offset != 0) {
608				p->filter_datapoint[i].d_offset += offset;
609			}
610		} else {
611			p->filter_datapoint[i].d_recv_time  = G.cur_time;
612			p->filter_datapoint[i].d_offset     = 0;
613			p->filter_datapoint[i].d_dispersion = MAXDISP;
614		}
615	}
616	if (small_ofs) {
617		p->lastpkt_recv_time += offset;
618	} else {
619		p->reachable_bits = 0;
620		p->lastpkt_recv_time = G.cur_time;
621	}
622	filter_datapoints(p); /* recalc p->filter_xxx */
623	VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
624}
625
626static void
627add_peers(char *s)
628{
629	peer_t *p;
630
631	p = xzalloc(sizeof(*p));
632	p->p_lsa = xhost2sockaddr(s, 123);
633	p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
634	p->p_fd = -1;
635	p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
636	p->next_action_time = G.cur_time; /* = set_next(p, 0); */
637	reset_peer_stats(p, 16 * STEP_THRESHOLD);
638
639	llist_add_to(&G.ntp_peers, p);
640	G.peer_cnt++;
641}
642
643static int
644do_sendto(int fd,
645		const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
646		msg_t *msg, ssize_t len)
647{
648	ssize_t ret;
649
650	errno = 0;
651	if (!from) {
652		ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
653	} else {
654		ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
655	}
656	if (ret != len) {
657		bb_perror_msg("send failed");
658		return -1;
659	}
660	return 0;
661}
662
663static void
664send_query_to_peer(peer_t *p)
665{
666	/* Why do we need to bind()?
667	 * See what happens when we don't bind:
668	 *
669	 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
670	 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
671	 * gettimeofday({1259071266, 327885}, NULL) = 0
672	 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
673	 * ^^^ we sent it from some source port picked by kernel.
674	 * time(NULL)              = 1259071266
675	 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
676	 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
677	 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
678	 * ^^^ this recv will receive packets to any local port!
679	 *
680	 * Uncomment this and use strace to see it in action:
681	 */
682#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
683
684	if (p->p_fd == -1) {
685		int fd, family;
686		len_and_sockaddr *local_lsa;
687
688		family = p->p_lsa->u.sa.sa_family;
689		p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
690		/* local_lsa has "null" address and port 0 now.
691		 * bind() ensures we have a *particular port* selected by kernel
692		 * and remembered in p->p_fd, thus later recv(p->p_fd)
693		 * receives only packets sent to this port.
694		 */
695		PROBE_LOCAL_ADDR
696		xbind(fd, &local_lsa->u.sa, local_lsa->len);
697		PROBE_LOCAL_ADDR
698#if ENABLE_FEATURE_IPV6
699		if (family == AF_INET)
700#endif
701			setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
702		free(local_lsa);
703	}
704
705	/*
706	 * Send out a random 64-bit number as our transmit time.  The NTP
707	 * server will copy said number into the originate field on the
708	 * response that it sends us.  This is totally legal per the SNTP spec.
709	 *
710	 * The impact of this is two fold: we no longer send out the current
711	 * system time for the world to see (which may aid an attacker), and
712	 * it gives us a (not very secure) way of knowing that we're not
713	 * getting spoofed by an attacker that can't capture our traffic
714	 * but can spoof packets from the NTP server we're communicating with.
715	 *
716	 * Save the real transmit timestamp locally.
717	 */
718	p->p_xmt_msg.m_xmttime.int_partl = random();
719	p->p_xmt_msg.m_xmttime.fractionl = random();
720	p->p_xmttime = gettime1900d();
721
722	if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
723			&p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
724	) {
725		close(p->p_fd);
726		p->p_fd = -1;
727		set_next(p, RETRY_INTERVAL);
728		return;
729	}
730
731	p->reachable_bits <<= 1;
732	VERB1 bb_error_msg("sent query to %s", p->p_dotted);
733	set_next(p, RESPONSE_INTERVAL);
734}
735
736
737/* Note that there is no provision to prevent several run_scripts
738 * to be done in quick succession. In fact, it happens rather often
739 * if initial syncronization results in a step.
740 * You will see "step" and then "stratum" script runs, sometimes
741 * as close as only 0.002 seconds apart.
742 * Script should be ready to deal with this.
743 */
744static void run_script(const char *action, double offset)
745{
746	char *argv[3];
747	char *env1, *env2, *env3, *env4;
748
749	if (!G.script_name)
750		return;
751
752	argv[0] = (char*) G.script_name;
753	argv[1] = (char*) action;
754	argv[2] = NULL;
755
756	VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
757
758	env1 = xasprintf("%s=%u", "stratum", G.stratum);
759	putenv(env1);
760	env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
761	putenv(env2);
762	env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
763	putenv(env3);
764	env4 = xasprintf("%s=%f", "offset", offset);
765	putenv(env4);
766	/* Other items of potential interest: selected peer,
767	 * rootdelay, reftime, rootdisp, refid, ntp_status,
768	 * last_update_offset, last_update_recv_time, discipline_jitter,
769	 * how many peers have reachable_bits = 0?
770	 */
771
772	/* Don't want to wait: it may run hwclock --systohc, and that
773	 * may take some time (seconds): */
774	/*spawn_and_wait(argv);*/
775	spawn(argv);
776
777	unsetenv("stratum");
778	unsetenv("freq_drift_ppm");
779	unsetenv("poll_interval");
780	unsetenv("offset");
781	free(env1);
782	free(env2);
783	free(env3);
784	free(env4);
785
786	G.last_script_run = G.cur_time;
787}
788
789static NOINLINE void
790step_time(double offset)
791{
792	llist_t *item;
793	double dtime;
794	struct timeval tv;
795	char buf[80];
796	time_t tval;
797
798	gettimeofday(&tv, NULL); /* never fails */
799	dtime = offset + tv.tv_sec;
800	dtime += 1.0e-6 * tv.tv_usec;
801	d_to_tv(dtime, &tv);
802
803	if (settimeofday(&tv, NULL) == -1)
804		bb_perror_msg_and_die("settimeofday");
805
806	tval = tv.tv_sec;
807	strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
808
809	bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
810
811	/* Correct various fields which contain time-relative values: */
812
813	/* p->lastpkt_recv_time, p->next_action_time and such: */
814	for (item = G.ntp_peers; item != NULL; item = item->link) {
815		peer_t *pp = (peer_t *) item->data;
816		reset_peer_stats(pp, offset);
817		//bb_error_msg("offset:%f pp->next_action_time:%f -> %f",
818		//	offset, pp->next_action_time, pp->next_action_time + offset);
819		pp->next_action_time += offset;
820	}
821	/* Globals: */
822	G.cur_time += offset;
823	G.last_update_recv_time += offset;
824	G.last_script_run += offset;
825}
826
827
828/*
829 * Selection and clustering, and their helpers
830 */
831typedef struct {
832	peer_t *p;
833	int    type;
834	double edge;
835	double opt_rd; /* optimization */
836} point_t;
837static int
838compare_point_edge(const void *aa, const void *bb)
839{
840	const point_t *a = aa;
841	const point_t *b = bb;
842	if (a->edge < b->edge) {
843		return -1;
844	}
845	return (a->edge > b->edge);
846}
847typedef struct {
848	peer_t *p;
849	double metric;
850} survivor_t;
851static int
852compare_survivor_metric(const void *aa, const void *bb)
853{
854	const survivor_t *a = aa;
855	const survivor_t *b = bb;
856	if (a->metric < b->metric) {
857		return -1;
858	}
859	return (a->metric > b->metric);
860}
861static int
862fit(peer_t *p, double rd)
863{
864	if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
865		/* One or zero bits in reachable_bits */
866		VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
867		return 0;
868	}
869#if 0	/* we filter out such packets earlier */
870	if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
871	 || p->lastpkt_stratum >= MAXSTRAT
872	) {
873		VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
874		return 0;
875	}
876#endif
877	/* rd is root_distance(p) */
878	if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
879		VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
880		return 0;
881	}
882//TODO
883//	/* Do we have a loop? */
884//	if (p->refid == p->dstaddr || p->refid == s.refid)
885//		return 0;
886        return 1;
887}
888static peer_t*
889select_and_cluster(void)
890{
891	peer_t     *p;
892	llist_t    *item;
893	int        i, j;
894	int        size = 3 * G.peer_cnt;
895	/* for selection algorithm */
896	point_t    point[size];
897	unsigned   num_points, num_candidates;
898	double     low, high;
899	unsigned   num_falsetickers;
900	/* for cluster algorithm */
901	survivor_t survivor[size];
902	unsigned   num_survivors;
903
904	/* Selection */
905
906	num_points = 0;
907	item = G.ntp_peers;
908	if (G.initial_poll_complete) while (item != NULL) {
909		double rd, offset;
910
911		p = (peer_t *) item->data;
912		rd = root_distance(p);
913		offset = p->filter_offset;
914		if (!fit(p, rd)) {
915			item = item->link;
916			continue;
917		}
918
919		VERB4 bb_error_msg("interval: [%f %f %f] %s",
920				offset - rd,
921				offset,
922				offset + rd,
923				p->p_dotted
924		);
925		point[num_points].p = p;
926		point[num_points].type = -1;
927		point[num_points].edge = offset - rd;
928		point[num_points].opt_rd = rd;
929		num_points++;
930		point[num_points].p = p;
931		point[num_points].type = 0;
932		point[num_points].edge = offset;
933		point[num_points].opt_rd = rd;
934		num_points++;
935		point[num_points].p = p;
936		point[num_points].type = 1;
937		point[num_points].edge = offset + rd;
938		point[num_points].opt_rd = rd;
939		num_points++;
940		item = item->link;
941	}
942	num_candidates = num_points / 3;
943	if (num_candidates == 0) {
944		VERB3 bb_error_msg("no valid datapoints, no peer selected");
945		return NULL;
946	}
947//TODO: sorting does not seem to be done in reference code
948	qsort(point, num_points, sizeof(point[0]), compare_point_edge);
949
950	/* Start with the assumption that there are no falsetickers.
951	 * Attempt to find a nonempty intersection interval containing
952	 * the midpoints of all truechimers.
953	 * If a nonempty interval cannot be found, increase the number
954	 * of assumed falsetickers by one and try again.
955	 * If a nonempty interval is found and the number of falsetickers
956	 * is less than the number of truechimers, a majority has been found
957	 * and the midpoint of each truechimer represents
958	 * the candidates available to the cluster algorithm.
959	 */
960	num_falsetickers = 0;
961	while (1) {
962		int c;
963		unsigned num_midpoints = 0;
964
965		low = 1 << 9;
966		high = - (1 << 9);
967		c = 0;
968		for (i = 0; i < num_points; i++) {
969			/* We want to do:
970			 * if (point[i].type == -1) c++;
971			 * if (point[i].type == 1) c--;
972			 * and it's simpler to do it this way:
973			 */
974			c -= point[i].type;
975			if (c >= num_candidates - num_falsetickers) {
976				/* If it was c++ and it got big enough... */
977				low = point[i].edge;
978				break;
979			}
980			if (point[i].type == 0)
981				num_midpoints++;
982		}
983		c = 0;
984		for (i = num_points-1; i >= 0; i--) {
985			c += point[i].type;
986			if (c >= num_candidates - num_falsetickers) {
987				high = point[i].edge;
988				break;
989			}
990			if (point[i].type == 0)
991				num_midpoints++;
992		}
993		/* If the number of midpoints is greater than the number
994		 * of allowed falsetickers, the intersection contains at
995		 * least one truechimer with no midpoint - bad.
996		 * Also, interval should be nonempty.
997		 */
998		if (num_midpoints <= num_falsetickers && low < high)
999			break;
1000		num_falsetickers++;
1001		if (num_falsetickers * 2 >= num_candidates) {
1002			VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1003					num_falsetickers, num_candidates);
1004			return NULL;
1005		}
1006	}
1007	VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1008			low, high, num_candidates, num_falsetickers);
1009
1010	/* Clustering */
1011
1012	/* Construct a list of survivors (p, metric)
1013	 * from the chime list, where metric is dominated
1014	 * first by stratum and then by root distance.
1015	 * All other things being equal, this is the order of preference.
1016	 */
1017	num_survivors = 0;
1018	for (i = 0; i < num_points; i++) {
1019		if (point[i].edge < low || point[i].edge > high)
1020			continue;
1021		p = point[i].p;
1022		survivor[num_survivors].p = p;
1023		/* x.opt_rd == root_distance(p); */
1024		survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1025		VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1026			num_survivors, survivor[num_survivors].metric, p->p_dotted);
1027		num_survivors++;
1028	}
1029	/* There must be at least MIN_SELECTED survivors to satisfy the
1030	 * correctness assertions. Ordinarily, the Byzantine criteria
1031	 * require four survivors, but for the demonstration here, one
1032	 * is acceptable.
1033	 */
1034	if (num_survivors < MIN_SELECTED) {
1035		VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1036				num_survivors, MIN_SELECTED);
1037		return NULL;
1038	}
1039
1040//looks like this is ONLY used by the fact that later we pick survivor[0].
1041//we can avoid sorting then, just find the minimum once!
1042	qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1043
1044	/* For each association p in turn, calculate the selection
1045	 * jitter p->sjitter as the square root of the sum of squares
1046	 * (p->offset - q->offset) over all q associations. The idea is
1047	 * to repeatedly discard the survivor with maximum selection
1048	 * jitter until a termination condition is met.
1049	 */
1050	while (1) {
1051		unsigned max_idx = max_idx;
1052		double max_selection_jitter = max_selection_jitter;
1053		double min_jitter = min_jitter;
1054
1055		if (num_survivors <= MIN_CLUSTERED) {
1056			VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
1057					num_survivors, MIN_CLUSTERED);
1058			break;
1059		}
1060
1061		/* To make sure a few survivors are left
1062		 * for the clustering algorithm to chew on,
1063		 * we stop if the number of survivors
1064		 * is less than or equal to MIN_CLUSTERED (3).
1065		 */
1066		for (i = 0; i < num_survivors; i++) {
1067			double selection_jitter_sq;
1068
1069			p = survivor[i].p;
1070			if (i == 0 || p->filter_jitter < min_jitter)
1071				min_jitter = p->filter_jitter;
1072
1073			selection_jitter_sq = 0;
1074			for (j = 0; j < num_survivors; j++) {
1075				peer_t *q = survivor[j].p;
1076				selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1077			}
1078			if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1079				max_selection_jitter = selection_jitter_sq;
1080				max_idx = i;
1081			}
1082			VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1083					i, selection_jitter_sq);
1084		}
1085		max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1086		VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1087				max_idx, max_selection_jitter, min_jitter);
1088
1089		/* If the maximum selection jitter is less than the
1090		 * minimum peer jitter, then tossing out more survivors
1091		 * will not lower the minimum peer jitter, so we might
1092		 * as well stop.
1093		 */
1094		if (max_selection_jitter < min_jitter) {
1095			VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1096					max_selection_jitter, min_jitter, num_survivors);
1097			break;
1098		}
1099
1100		/* Delete survivor[max_idx] from the list
1101		 * and go around again.
1102		 */
1103		VERB5 bb_error_msg("dropping survivor %d", max_idx);
1104		num_survivors--;
1105		while (max_idx < num_survivors) {
1106			survivor[max_idx] = survivor[max_idx + 1];
1107			max_idx++;
1108		}
1109	}
1110
1111	if (0) {
1112		/* Combine the offsets of the clustering algorithm survivors
1113		 * using a weighted average with weight determined by the root
1114		 * distance. Compute the selection jitter as the weighted RMS
1115		 * difference between the first survivor and the remaining
1116		 * survivors. In some cases the inherent clock jitter can be
1117		 * reduced by not using this algorithm, especially when frequent
1118		 * clockhopping is involved. bbox: thus we don't do it.
1119		 */
1120		double x, y, z, w;
1121		y = z = w = 0;
1122		for (i = 0; i < num_survivors; i++) {
1123			p = survivor[i].p;
1124			x = root_distance(p);
1125			y += 1 / x;
1126			z += p->filter_offset / x;
1127			w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1128		}
1129		//G.cluster_offset = z / y;
1130		//G.cluster_jitter = SQRT(w / y);
1131	}
1132
1133	/* Pick the best clock. If the old system peer is on the list
1134	 * and at the same stratum as the first survivor on the list,
1135	 * then don't do a clock hop. Otherwise, select the first
1136	 * survivor on the list as the new system peer.
1137	 */
1138	p = survivor[0].p;
1139	if (G.last_update_peer
1140	 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1141	) {
1142		/* Starting from 1 is ok here */
1143		for (i = 1; i < num_survivors; i++) {
1144			if (G.last_update_peer == survivor[i].p) {
1145				VERB4 bb_error_msg("keeping old synced peer");
1146				p = G.last_update_peer;
1147				goto keep_old;
1148			}
1149		}
1150	}
1151	G.last_update_peer = p;
1152 keep_old:
1153	VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
1154			p->p_dotted,
1155			p->filter_offset,
1156			G.cur_time - p->lastpkt_recv_time
1157	);
1158	return p;
1159}
1160
1161
1162/*
1163 * Local clock discipline and its helpers
1164 */
1165static void
1166set_new_values(int disc_state, double offset, double recv_time)
1167{
1168	/* Enter new state and set state variables. Note we use the time
1169	 * of the last clock filter sample, which must be earlier than
1170	 * the current time.
1171	 */
1172	VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1173			disc_state, offset, recv_time);
1174	G.discipline_state = disc_state;
1175	G.last_update_offset = offset;
1176	G.last_update_recv_time = recv_time;
1177}
1178/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1179static NOINLINE int
1180update_local_clock(peer_t *p)
1181{
1182	int rc;
1183	struct timex tmx;
1184	/* Note: can use G.cluster_offset instead: */
1185	double offset = p->filter_offset;
1186	double recv_time = p->lastpkt_recv_time;
1187	double abs_offset;
1188#if !USING_KERNEL_PLL_LOOP
1189	double freq_drift;
1190#endif
1191	double since_last_update;
1192	double etemp, dtemp;
1193
1194	abs_offset = fabs(offset);
1195
1196#if 0
1197	/* If needed, -S script can do it by looking at $offset
1198	 * env var and killing parent */
1199	/* If the offset is too large, give up and go home */
1200	if (abs_offset > PANIC_THRESHOLD) {
1201		bb_error_msg_and_die("offset %f far too big, exiting", offset);
1202	}
1203#endif
1204
1205	/* If this is an old update, for instance as the result
1206	 * of a system peer change, avoid it. We never use
1207	 * an old sample or the same sample twice.
1208	 */
1209	if (recv_time <= G.last_update_recv_time) {
1210		VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1211				G.last_update_recv_time, recv_time);
1212		return 0; /* "leave poll interval as is" */
1213	}
1214
1215	/* Clock state machine transition function. This is where the
1216	 * action is and defines how the system reacts to large time
1217	 * and frequency errors.
1218	 */
1219	since_last_update = recv_time - G.reftime;
1220#if !USING_KERNEL_PLL_LOOP
1221	freq_drift = 0;
1222#endif
1223#if USING_INITIAL_FREQ_ESTIMATION
1224	if (G.discipline_state == STATE_FREQ) {
1225		/* Ignore updates until the stepout threshold */
1226		if (since_last_update < WATCH_THRESHOLD) {
1227			VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1228					WATCH_THRESHOLD - since_last_update);
1229			return 0; /* "leave poll interval as is" */
1230		}
1231# if !USING_KERNEL_PLL_LOOP
1232		freq_drift = (offset - G.last_update_offset) / since_last_update;
1233# endif
1234	}
1235#endif
1236
1237	/* There are two main regimes: when the
1238	 * offset exceeds the step threshold and when it does not.
1239	 */
1240	if (abs_offset > STEP_THRESHOLD) {
1241		switch (G.discipline_state) {
1242		case STATE_SYNC:
1243			/* The first outlyer: ignore it, switch to SPIK state */
1244			VERB3 bb_error_msg("offset:%f - spike detected", offset);
1245			G.discipline_state = STATE_SPIK;
1246			return -1; /* "decrease poll interval" */
1247
1248		case STATE_SPIK:
1249			/* Ignore succeeding outlyers until either an inlyer
1250			 * is found or the stepout threshold is exceeded.
1251			 */
1252			if (since_last_update < WATCH_THRESHOLD) {
1253				VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1254						WATCH_THRESHOLD - since_last_update);
1255				return -1; /* "decrease poll interval" */
1256			}
1257			/* fall through: we need to step */
1258		} /* switch */
1259
1260		/* Step the time and clamp down the poll interval.
1261		 *
1262		 * In NSET state an initial frequency correction is
1263		 * not available, usually because the frequency file has
1264		 * not yet been written. Since the time is outside the
1265		 * capture range, the clock is stepped. The frequency
1266		 * will be set directly following the stepout interval.
1267		 *
1268		 * In FSET state the initial frequency has been set
1269		 * from the frequency file. Since the time is outside
1270		 * the capture range, the clock is stepped immediately,
1271		 * rather than after the stepout interval. Guys get
1272		 * nervous if it takes 17 minutes to set the clock for
1273		 * the first time.
1274		 *
1275		 * In SPIK state the stepout threshold has expired and
1276		 * the phase is still above the step threshold. Note
1277		 * that a single spike greater than the step threshold
1278		 * is always suppressed, even at the longer poll
1279		 * intervals.
1280		 */
1281		VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1282		step_time(offset);
1283		if (option_mask32 & OPT_q) {
1284			/* We were only asked to set time once. Done. */
1285			exit(0);
1286		}
1287
1288		G.polladj_count = 0;
1289		G.poll_exp = MINPOLL;
1290		G.stratum = MAXSTRAT;
1291
1292		run_script("step", offset);
1293
1294#if USING_INITIAL_FREQ_ESTIMATION
1295		if (G.discipline_state == STATE_NSET) {
1296			set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1297			return 1; /* "ok to increase poll interval" */
1298		}
1299#endif
1300		set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1301
1302	} else { /* abs_offset <= STEP_THRESHOLD */
1303
1304		if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1305			VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1306			G.polladj_count = 0;
1307			G.poll_exp = MINPOLL;
1308		}
1309
1310		/* Compute the clock jitter as the RMS of exponentially
1311		 * weighted offset differences. Used by the poll adjust code.
1312		 */
1313		etemp = SQUARE(G.discipline_jitter);
1314		dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1315		G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1316		VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1317
1318		switch (G.discipline_state) {
1319		case STATE_NSET:
1320			if (option_mask32 & OPT_q) {
1321				/* We were only asked to set time once.
1322				 * The clock is precise enough, no need to step.
1323				 */
1324				exit(0);
1325			}
1326#if USING_INITIAL_FREQ_ESTIMATION
1327			/* This is the first update received and the frequency
1328			 * has not been initialized. The first thing to do
1329			 * is directly measure the oscillator frequency.
1330			 */
1331			set_new_values(STATE_FREQ, offset, recv_time);
1332#else
1333			set_new_values(STATE_SYNC, offset, recv_time);
1334#endif
1335			VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1336			return 0; /* "leave poll interval as is" */
1337
1338#if 0 /* this is dead code for now */
1339		case STATE_FSET:
1340			/* This is the first update and the frequency
1341			 * has been initialized. Adjust the phase, but
1342			 * don't adjust the frequency until the next update.
1343			 */
1344			set_new_values(STATE_SYNC, offset, recv_time);
1345			/* freq_drift remains 0 */
1346			break;
1347#endif
1348
1349#if USING_INITIAL_FREQ_ESTIMATION
1350		case STATE_FREQ:
1351			/* since_last_update >= WATCH_THRESHOLD, we waited enough.
1352			 * Correct the phase and frequency and switch to SYNC state.
1353			 * freq_drift was already estimated (see code above)
1354			 */
1355			set_new_values(STATE_SYNC, offset, recv_time);
1356			break;
1357#endif
1358
1359		default:
1360#if !USING_KERNEL_PLL_LOOP
1361			/* Compute freq_drift due to PLL and FLL contributions.
1362			 *
1363			 * The FLL and PLL frequency gain constants
1364			 * depend on the poll interval and Allan
1365			 * intercept. The FLL is not used below one-half
1366			 * the Allan intercept. Above that the loop gain
1367			 * increases in steps to 1 / AVG.
1368			 */
1369			if ((1 << G.poll_exp) > ALLAN / 2) {
1370				etemp = FLL - G.poll_exp;
1371				if (etemp < AVG)
1372					etemp = AVG;
1373				freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1374			}
1375			/* For the PLL the integration interval
1376			 * (numerator) is the minimum of the update
1377			 * interval and poll interval. This allows
1378			 * oversampling, but not undersampling.
1379			 */
1380			etemp = MIND(since_last_update, (1 << G.poll_exp));
1381			dtemp = (4 * PLL) << G.poll_exp;
1382			freq_drift += offset * etemp / SQUARE(dtemp);
1383#endif
1384			set_new_values(STATE_SYNC, offset, recv_time);
1385			break;
1386		}
1387		if (G.stratum != p->lastpkt_stratum + 1) {
1388			G.stratum = p->lastpkt_stratum + 1;
1389			run_script("stratum", offset);
1390		}
1391	}
1392
1393	G.reftime = G.cur_time;
1394	G.ntp_status = p->lastpkt_status;
1395	G.refid = p->lastpkt_refid;
1396	G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1397	dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1398	dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1399	G.rootdisp = p->lastpkt_rootdisp + dtemp;
1400	VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1401
1402	/* We are in STATE_SYNC now, but did not do adjtimex yet.
1403	 * (Any other state does not reach this, they all return earlier)
1404	 * By this time, freq_drift and G.last_update_offset are set
1405	 * to values suitable for adjtimex.
1406	 */
1407#if !USING_KERNEL_PLL_LOOP
1408	/* Calculate the new frequency drift and frequency stability (wander).
1409	 * Compute the clock wander as the RMS of exponentially weighted
1410	 * frequency differences. This is not used directly, but can,
1411	 * along with the jitter, be a highly useful monitoring and
1412	 * debugging tool.
1413	 */
1414	dtemp = G.discipline_freq_drift + freq_drift;
1415	G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1416	etemp = SQUARE(G.discipline_wander);
1417	dtemp = SQUARE(dtemp);
1418	G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1419
1420	VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1421			G.discipline_freq_drift,
1422			(long)(G.discipline_freq_drift * 65536e6),
1423			freq_drift,
1424			G.discipline_wander);
1425#endif
1426	VERB3 {
1427		memset(&tmx, 0, sizeof(tmx));
1428		if (adjtimex(&tmx) < 0)
1429			bb_perror_msg_and_die("adjtimex");
1430		VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1431				tmx.freq, tmx.offset, tmx.constant, tmx.status);
1432	}
1433
1434	memset(&tmx, 0, sizeof(tmx));
1435#if 0
1436//doesn't work, offset remains 0 (!) in kernel:
1437//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1438//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1439//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1440	tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1441	/* 65536 is one ppm */
1442	tmx.freq = G.discipline_freq_drift * 65536e6;
1443	tmx.offset = G.last_update_offset * 1000000; /* usec */
1444#endif
1445	tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1446	tmx.offset = (G.last_update_offset * 1000000); /* usec */
1447			/* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
1448	tmx.status = STA_PLL;
1449	if (G.ntp_status & LI_PLUSSEC)
1450		tmx.status |= STA_INS;
1451	if (G.ntp_status & LI_MINUSSEC)
1452		tmx.status |= STA_DEL;
1453	tmx.constant = G.poll_exp - 4;
1454	//tmx.esterror = (u_int32)(clock_jitter * 1e6);
1455	//tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1456	rc = adjtimex(&tmx);
1457	if (rc < 0)
1458		bb_perror_msg_and_die("adjtimex");
1459	/* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1460	 * Not sure why. Perhaps it is normal.
1461	 */
1462	VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
1463				rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
1464#if 0
1465	VERB3 {
1466		/* always gives the same output as above msg */
1467		memset(&tmx, 0, sizeof(tmx));
1468		if (adjtimex(&tmx) < 0)
1469			bb_perror_msg_and_die("adjtimex");
1470		VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1471				tmx.freq, tmx.offset, tmx.constant, tmx.status);
1472	}
1473#endif
1474	G.kernel_freq_drift = tmx.freq / 65536;
1475	VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1476			p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
1477
1478	return 1; /* "ok to increase poll interval" */
1479}
1480
1481
1482/*
1483 * We've got a new reply packet from a peer, process it
1484 * (helpers first)
1485 */
1486static unsigned
1487retry_interval(void)
1488{
1489	/* Local problem, want to retry soon */
1490	unsigned interval, r;
1491	interval = RETRY_INTERVAL;
1492	r = random();
1493	interval += r % (unsigned)(RETRY_INTERVAL / 4);
1494	VERB3 bb_error_msg("chose retry interval:%u", interval);
1495	return interval;
1496}
1497static unsigned
1498poll_interval(int exponent)
1499{
1500	unsigned interval, r;
1501	exponent = G.poll_exp + exponent;
1502	if (exponent < 0)
1503		exponent = 0;
1504	interval = 1 << exponent;
1505	r = random();
1506	interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1507	VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1508	return interval;
1509}
1510static NOINLINE void
1511recv_and_process_peer_pkt(peer_t *p)
1512{
1513	int         rc;
1514	ssize_t     size;
1515	msg_t       msg;
1516	double      T1, T2, T3, T4;
1517	unsigned    interval;
1518	datapoint_t *datapoint;
1519	peer_t      *q;
1520
1521	/* We can recvfrom here and check from.IP, but some multihomed
1522	 * ntp servers reply from their *other IP*.
1523	 * TODO: maybe we should check at least what we can: from.port == 123?
1524	 */
1525	size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1526	if (size == -1) {
1527		bb_perror_msg("recv(%s) error", p->p_dotted);
1528		if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1529		 || errno == ENETUNREACH || errno == ENETDOWN
1530		 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1531		 || errno == EAGAIN
1532		) {
1533//TODO: always do this?
1534			interval = retry_interval();
1535			goto set_next_and_close_sock;
1536		}
1537		xfunc_die();
1538	}
1539
1540	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1541		bb_error_msg("malformed packet received from %s", p->p_dotted);
1542		goto bail;
1543	}
1544
1545	if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1546	 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1547	) {
1548		goto bail;
1549	}
1550
1551	if ((msg.m_status & LI_ALARM) == LI_ALARM
1552	 || msg.m_stratum == 0
1553	 || msg.m_stratum > NTP_MAXSTRATUM
1554	) {
1555// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1556// "DENY", "RSTR" - peer does not like us at all
1557// "RATE" - peer is overloaded, reduce polling freq
1558		interval = poll_interval(0);
1559		bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1560		goto set_next_and_close_sock;
1561	}
1562
1563//	/* Verify valid root distance */
1564//	if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1565//		return;                 /* invalid header values */
1566
1567	p->lastpkt_status = msg.m_status;
1568	p->lastpkt_stratum = msg.m_stratum;
1569	p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1570	p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1571	p->lastpkt_refid = msg.m_refid;
1572
1573	/*
1574	 * From RFC 2030 (with a correction to the delay math):
1575	 *
1576	 * Timestamp Name          ID   When Generated
1577	 * ------------------------------------------------------------
1578	 * Originate Timestamp     T1   time request sent by client
1579	 * Receive Timestamp       T2   time request received by server
1580	 * Transmit Timestamp      T3   time reply sent by server
1581	 * Destination Timestamp   T4   time reply received by client
1582	 *
1583	 * The roundtrip delay and local clock offset are defined as
1584	 *
1585	 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1586	 */
1587	T1 = p->p_xmttime;
1588	T2 = lfp_to_d(msg.m_rectime);
1589	T3 = lfp_to_d(msg.m_xmttime);
1590	T4 = G.cur_time;
1591
1592	p->lastpkt_recv_time = T4;
1593
1594	VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1595	p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1596	datapoint = &p->filter_datapoint[p->datapoint_idx];
1597	datapoint->d_recv_time = T4;
1598	datapoint->d_offset    = ((T2 - T1) + (T3 - T4)) / 2;
1599	/* The delay calculation is a special case. In cases where the
1600	 * server and client clocks are running at different rates and
1601	 * with very fast networks, the delay can appear negative. In
1602	 * order to avoid violating the Principle of Least Astonishment,
1603	 * the delay is clamped not less than the system precision.
1604	 */
1605	p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1606	if (p->lastpkt_delay < G_precision_sec)
1607		p->lastpkt_delay = G_precision_sec;
1608	datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1609	if (!p->reachable_bits) {
1610		/* 1st datapoint ever - replicate offset in every element */
1611		int i;
1612		for (i = 1; i < NUM_DATAPOINTS; i++) {
1613			p->filter_datapoint[i].d_offset = datapoint->d_offset;
1614		}
1615	}
1616
1617	p->reachable_bits |= 1;
1618	if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1619		bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
1620			p->p_dotted,
1621			p->reachable_bits,
1622			datapoint->d_offset,
1623			p->lastpkt_delay,
1624			p->lastpkt_status,
1625			p->lastpkt_stratum,
1626			p->lastpkt_refid,
1627			p->lastpkt_rootdelay
1628			/* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1629			 * m_reftime, m_orgtime, m_rectime, m_xmttime
1630			 */
1631		);
1632	}
1633
1634	/* Muck with statictics and update the clock */
1635	filter_datapoints(p);
1636	q = select_and_cluster();
1637	rc = -1;
1638	if (q) {
1639		rc = 0;
1640		if (!(option_mask32 & OPT_w)) {
1641			rc = update_local_clock(q);
1642			/* If drift is dangerously large, immediately
1643			 * drop poll interval one step down.
1644			 */
1645			if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1646				VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
1647				goto poll_down;
1648			}
1649		}
1650	}
1651	/* else: no peer selected, rc = -1: we want to poll more often */
1652
1653	if (rc != 0) {
1654		/* Adjust the poll interval by comparing the current offset
1655		 * with the clock jitter. If the offset is less than
1656		 * the clock jitter times a constant, then the averaging interval
1657		 * is increased, otherwise it is decreased. A bit of hysteresis
1658		 * helps calm the dance. Works best using burst mode.
1659		 */
1660		VERB4 if (rc > 0) {
1661			bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1662				q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1663				fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1664					? "grows" : "falls"
1665			);
1666		}
1667		if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
1668			/* was += G.poll_exp but it is a bit
1669			 * too optimistic for my taste at high poll_exp's */
1670			G.polladj_count += MINPOLL;
1671			if (G.polladj_count > POLLADJ_LIMIT) {
1672				G.polladj_count = 0;
1673				if (G.poll_exp < MAXPOLL) {
1674					G.poll_exp++;
1675					VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1676							G.discipline_jitter, G.poll_exp);
1677				}
1678			} else {
1679				VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1680			}
1681		} else {
1682			G.polladj_count -= G.poll_exp * 2;
1683			if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1684 poll_down:
1685				G.polladj_count = 0;
1686				if (G.poll_exp > MINPOLL) {
1687					llist_t *item;
1688
1689					G.poll_exp--;
1690					/* Correct p->next_action_time in each peer
1691					 * which waits for sending, so that they send earlier.
1692					 * Old pp->next_action_time are on the order
1693					 * of t + (1 << old_poll_exp) + small_random,
1694					 * we simply need to subtract ~half of that.
1695					 */
1696					for (item = G.ntp_peers; item != NULL; item = item->link) {
1697						peer_t *pp = (peer_t *) item->data;
1698						if (pp->p_fd < 0)
1699							pp->next_action_time -= (1 << G.poll_exp);
1700					}
1701					VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1702							G.discipline_jitter, G.poll_exp);
1703				}
1704			} else {
1705				VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1706			}
1707		}
1708	}
1709
1710	/* Decide when to send new query for this peer */
1711	interval = poll_interval(0);
1712
1713 set_next_and_close_sock:
1714	set_next(p, interval);
1715	/* We do not expect any more packets from this peer for now.
1716	 * Closing the socket informs kernel about it.
1717	 * We open a new socket when we send a new query.
1718	 */
1719	close(p->p_fd);
1720	p->p_fd = -1;
1721 bail:
1722	return;
1723}
1724
1725#if ENABLE_FEATURE_NTPD_SERVER
1726static NOINLINE void
1727recv_and_process_client_pkt(void /*int fd*/)
1728{
1729	ssize_t          size;
1730	uint8_t          version;
1731	len_and_sockaddr *to;
1732	struct sockaddr  *from;
1733	msg_t            msg;
1734	uint8_t          query_status;
1735	l_fixedpt_t      query_xmttime;
1736
1737	to = get_sock_lsa(G.listen_fd);
1738	from = xzalloc(to->len);
1739
1740	size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1741	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1742		char *addr;
1743		if (size < 0) {
1744			if (errno == EAGAIN)
1745				goto bail;
1746			bb_perror_msg_and_die("recv");
1747		}
1748		addr = xmalloc_sockaddr2dotted_noport(from);
1749		bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1750		free(addr);
1751		goto bail;
1752	}
1753
1754	query_status = msg.m_status;
1755	query_xmttime = msg.m_xmttime;
1756
1757	/* Build a reply packet */
1758	memset(&msg, 0, sizeof(msg));
1759	msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
1760	msg.m_status |= (query_status & VERSION_MASK);
1761	msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1762			 MODE_SERVER : MODE_SYM_PAS;
1763	msg.m_stratum = G.stratum;
1764	msg.m_ppoll = G.poll_exp;
1765	msg.m_precision_exp = G_precision_exp;
1766	/* this time was obtained between poll() and recv() */
1767	msg.m_rectime = d_to_lfp(G.cur_time);
1768	msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1769	msg.m_reftime = d_to_lfp(G.reftime);
1770	msg.m_orgtime = query_xmttime;
1771	msg.m_rootdelay = d_to_sfp(G.rootdelay);
1772//simple code does not do this, fix simple code!
1773	msg.m_rootdisp = d_to_sfp(G.rootdisp);
1774	version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1775	msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1776
1777	/* We reply from the local address packet was sent to,
1778	 * this makes to/from look swapped here: */
1779	do_sendto(G.listen_fd,
1780		/*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1781		&msg, size);
1782
1783 bail:
1784	free(to);
1785	free(from);
1786}
1787#endif
1788
1789/* Upstream ntpd's options:
1790 *
1791 * -4   Force DNS resolution of host names to the IPv4 namespace.
1792 * -6   Force DNS resolution of host names to the IPv6 namespace.
1793 * -a   Require cryptographic authentication for broadcast client,
1794 *      multicast client and symmetric passive associations.
1795 *      This is the default.
1796 * -A   Do not require cryptographic authentication for broadcast client,
1797 *      multicast client and symmetric passive associations.
1798 *      This is almost never a good idea.
1799 * -b   Enable the client to synchronize to broadcast servers.
1800 * -c conffile
1801 *      Specify the name and path of the configuration file,
1802 *      default /etc/ntp.conf
1803 * -d   Specify debugging mode. This option may occur more than once,
1804 *      with each occurrence indicating greater detail of display.
1805 * -D level
1806 *      Specify debugging level directly.
1807 * -f driftfile
1808 *      Specify the name and path of the frequency file.
1809 *      This is the same operation as the "driftfile FILE"
1810 *      configuration command.
1811 * -g   Normally, ntpd exits with a message to the system log
1812 *      if the offset exceeds the panic threshold, which is 1000 s
1813 *      by default. This option allows the time to be set to any value
1814 *      without restriction; however, this can happen only once.
1815 *      If the threshold is exceeded after that, ntpd will exit
1816 *      with a message to the system log. This option can be used
1817 *      with the -q and -x options. See the tinker command for other options.
1818 * -i jaildir
1819 *      Chroot the server to the directory jaildir. This option also implies
1820 *      that the server attempts to drop root privileges at startup
1821 *      (otherwise, chroot gives very little additional security).
1822 *      You may need to also specify a -u option.
1823 * -k keyfile
1824 *      Specify the name and path of the symmetric key file,
1825 *      default /etc/ntp/keys. This is the same operation
1826 *      as the "keys FILE" configuration command.
1827 * -l logfile
1828 *      Specify the name and path of the log file. The default
1829 *      is the system log file. This is the same operation as
1830 *      the "logfile FILE" configuration command.
1831 * -L   Do not listen to virtual IPs. The default is to listen.
1832 * -n   Don't fork.
1833 * -N   To the extent permitted by the operating system,
1834 *      run the ntpd at the highest priority.
1835 * -p pidfile
1836 *      Specify the name and path of the file used to record the ntpd
1837 *      process ID. This is the same operation as the "pidfile FILE"
1838 *      configuration command.
1839 * -P priority
1840 *      To the extent permitted by the operating system,
1841 *      run the ntpd at the specified priority.
1842 * -q   Exit the ntpd just after the first time the clock is set.
1843 *      This behavior mimics that of the ntpdate program, which is
1844 *      to be retired. The -g and -x options can be used with this option.
1845 *      Note: The kernel time discipline is disabled with this option.
1846 * -r broadcastdelay
1847 *      Specify the default propagation delay from the broadcast/multicast
1848 *      server to this client. This is necessary only if the delay
1849 *      cannot be computed automatically by the protocol.
1850 * -s statsdir
1851 *      Specify the directory path for files created by the statistics
1852 *      facility. This is the same operation as the "statsdir DIR"
1853 *      configuration command.
1854 * -t key
1855 *      Add a key number to the trusted key list. This option can occur
1856 *      more than once.
1857 * -u user[:group]
1858 *      Specify a user, and optionally a group, to switch to.
1859 * -v variable
1860 * -V variable
1861 *      Add a system variable listed by default.
1862 * -x   Normally, the time is slewed if the offset is less than the step
1863 *      threshold, which is 128 ms by default, and stepped if above
1864 *      the threshold. This option sets the threshold to 600 s, which is
1865 *      well within the accuracy window to set the clock manually.
1866 *      Note: since the slew rate of typical Unix kernels is limited
1867 *      to 0.5 ms/s, each second of adjustment requires an amortization
1868 *      interval of 2000 s. Thus, an adjustment as much as 600 s
1869 *      will take almost 14 days to complete. This option can be used
1870 *      with the -g and -q options. See the tinker command for other options.
1871 *      Note: The kernel time discipline is disabled with this option.
1872 */
1873
1874/* By doing init in a separate function we decrease stack usage
1875 * in main loop.
1876 */
1877static NOINLINE void ntp_init(char **argv)
1878{
1879	unsigned opts;
1880	llist_t *peers;
1881
1882	srandom(getpid());
1883
1884	if (getuid())
1885		bb_error_msg_and_die(bb_msg_you_must_be_root);
1886
1887	/* Set some globals */
1888	G.stratum = MAXSTRAT;
1889	if (BURSTPOLL != 0)
1890		G.poll_exp = BURSTPOLL; /* speeds up initial sync */
1891	G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
1892
1893	/* Parse options */
1894	peers = NULL;
1895	opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
1896	opts = getopt32(argv,
1897			"nqNx" /* compat */
1898			"wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1899			"d" /* compat */
1900			"46aAbgL", /* compat, ignored */
1901			&peers, &G.script_name, &G.verbose);
1902	if (!(opts & (OPT_p|OPT_l)))
1903		bb_show_usage();
1904//	if (opts & OPT_x) /* disable stepping, only slew is allowed */
1905//		G.time_was_stepped = 1;
1906	while (peers)
1907		add_peers(llist_pop(&peers));
1908	if (!(opts & OPT_n)) {
1909		bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1910		logmode = LOGMODE_NONE;
1911	}
1912#if ENABLE_FEATURE_NTPD_SERVER
1913	G.listen_fd = -1;
1914	if (opts & OPT_l) {
1915		G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1916		socket_want_pktinfo(G.listen_fd);
1917		setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1918	}
1919#endif
1920	/* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1921	if (opts & OPT_N)
1922		setpriority(PRIO_PROCESS, 0, -15);
1923
1924	bb_signals((1 << SIGTERM) | (1 << SIGINT), record_signo);
1925	/* Removed SIGHUP here: */
1926	bb_signals((1 << SIGPIPE) | (1 << SIGCHLD), SIG_IGN);
1927}
1928
1929int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1930int ntpd_main(int argc UNUSED_PARAM, char **argv)
1931{
1932#undef G
1933	struct globals G;
1934	struct pollfd *pfd;
1935	peer_t **idx2peer;
1936	unsigned cnt;
1937
1938	memset(&G, 0, sizeof(G));
1939	SET_PTR_TO_GLOBALS(&G);
1940
1941	ntp_init(argv);
1942
1943	/* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1944	cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1945	idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1946	pfd = xzalloc(sizeof(pfd[0]) * cnt);
1947
1948	/* Countdown: we never sync before we sent INITIAL_SAMLPES+1
1949	 * packets to each peer.
1950	 * NB: if some peer is not responding, we may end up sending
1951	 * fewer packets to it and more to other peers.
1952	 * NB2: sync usually happens using INITIAL_SAMLPES packets,
1953	 * since last reply does not come back instantaneously.
1954	 */
1955	cnt = G.peer_cnt * (INITIAL_SAMLPES + 1);
1956
1957	while (!bb_got_signal) {
1958		llist_t *item;
1959		unsigned i, j;
1960		int nfds, timeout;
1961		double nextaction;
1962
1963		/* Nothing between here and poll() blocks for any significant time */
1964
1965		nextaction = G.cur_time + 3600;
1966
1967		i = 0;
1968#if ENABLE_FEATURE_NTPD_SERVER
1969		if (G.listen_fd != -1) {
1970			pfd[0].fd = G.listen_fd;
1971			pfd[0].events = POLLIN;
1972			i++;
1973		}
1974#endif
1975		/* Pass over peer list, send requests, time out on receives */
1976		for (item = G.ntp_peers; item != NULL; item = item->link) {
1977			peer_t *p = (peer_t *) item->data;
1978
1979			if (p->next_action_time <= G.cur_time) {
1980				if (p->p_fd == -1) {
1981					/* Time to send new req */
1982					if (--cnt == 0) {
1983						G.initial_poll_complete = 1;
1984					}
1985					send_query_to_peer(p);
1986				} else {
1987					/* Timed out waiting for reply */
1988					close(p->p_fd);
1989					p->p_fd = -1;
1990					timeout = poll_interval(-2); /* -2: try a bit sooner */
1991					bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
1992							p->p_dotted, p->reachable_bits, timeout);
1993					set_next(p, timeout);
1994				}
1995			}
1996
1997			if (p->next_action_time < nextaction)
1998				nextaction = p->next_action_time;
1999
2000			if (p->p_fd >= 0) {
2001				/* Wait for reply from this peer */
2002				pfd[i].fd = p->p_fd;
2003				pfd[i].events = POLLIN;
2004				idx2peer[i] = p;
2005				i++;
2006			}
2007		}
2008
2009		timeout = nextaction - G.cur_time;
2010		if (timeout < 0)
2011			timeout = 0;
2012		timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2013
2014		/* Here we may block */
2015		VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
2016		nfds = poll(pfd, i, timeout * 1000);
2017		gettime1900d(); /* sets G.cur_time */
2018		if (nfds <= 0) {
2019			if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
2020				/* Useful for updating battery-backed RTC and such */
2021				run_script("periodic", G.last_update_offset);
2022				gettime1900d(); /* sets G.cur_time */
2023			}
2024			continue;
2025		}
2026
2027		/* Process any received packets */
2028		j = 0;
2029#if ENABLE_FEATURE_NTPD_SERVER
2030		if (G.listen_fd != -1) {
2031			if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2032				nfds--;
2033				recv_and_process_client_pkt(/*G.listen_fd*/);
2034				gettime1900d(); /* sets G.cur_time */
2035			}
2036			j = 1;
2037		}
2038#endif
2039		for (; nfds != 0 && j < i; j++) {
2040			if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2041				nfds--;
2042				recv_and_process_peer_pkt(idx2peer[j]);
2043				gettime1900d(); /* sets G.cur_time */
2044			}
2045		}
2046	} /* while (!bb_got_signal) */
2047
2048	kill_myself_with_sig(bb_got_signal);
2049}
2050
2051
2052
2053
2054
2055
2056/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2057
2058/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2059
2060#if 0
2061static double
2062direct_freq(double fp_offset)
2063{
2064
2065#ifdef KERNEL_PLL
2066	/*
2067	 * If the kernel is enabled, we need the residual offset to
2068	 * calculate the frequency correction.
2069	 */
2070	if (pll_control && kern_enable) {
2071		memset(&ntv, 0, sizeof(ntv));
2072		ntp_adjtime(&ntv);
2073#ifdef STA_NANO
2074		clock_offset = ntv.offset / 1e9;
2075#else /* STA_NANO */
2076		clock_offset = ntv.offset / 1e6;
2077#endif /* STA_NANO */
2078		drift_comp = FREQTOD(ntv.freq);
2079	}
2080#endif /* KERNEL_PLL */
2081	set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2082	wander_resid = 0;
2083	return drift_comp;
2084}
2085
2086static void
2087set_freq(double	freq) /* frequency update */
2088{
2089	char tbuf[80];
2090
2091	drift_comp = freq;
2092
2093#ifdef KERNEL_PLL
2094	/*
2095	 * If the kernel is enabled, update the kernel frequency.
2096	 */
2097	if (pll_control && kern_enable) {
2098		memset(&ntv, 0, sizeof(ntv));
2099		ntv.modes = MOD_FREQUENCY;
2100		ntv.freq = DTOFREQ(drift_comp);
2101		ntp_adjtime(&ntv);
2102		snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2103		report_event(EVNT_FSET, NULL, tbuf);
2104	} else {
2105		snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2106		report_event(EVNT_FSET, NULL, tbuf);
2107	}
2108#else /* KERNEL_PLL */
2109	snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2110	report_event(EVNT_FSET, NULL, tbuf);
2111#endif /* KERNEL_PLL */
2112}
2113
2114...
2115...
2116...
2117
2118#ifdef KERNEL_PLL
2119	/*
2120	 * This code segment works when clock adjustments are made using
2121	 * precision time kernel support and the ntp_adjtime() system
2122	 * call. This support is available in Solaris 2.6 and later,
2123	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2124	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2125	 * DECstation 5000/240 and Alpha AXP, additional kernel
2126	 * modifications provide a true microsecond clock and nanosecond
2127	 * clock, respectively.
2128	 *
2129	 * Important note: The kernel discipline is used only if the
2130	 * step threshold is less than 0.5 s, as anything higher can
2131	 * lead to overflow problems. This might occur if some misguided
2132	 * lad set the step threshold to something ridiculous.
2133	 */
2134	if (pll_control && kern_enable) {
2135
2136#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2137
2138		/*
2139		 * We initialize the structure for the ntp_adjtime()
2140		 * system call. We have to convert everything to
2141		 * microseconds or nanoseconds first. Do not update the
2142		 * system variables if the ext_enable flag is set. In
2143		 * this case, the external clock driver will update the
2144		 * variables, which will be read later by the local
2145		 * clock driver. Afterwards, remember the time and
2146		 * frequency offsets for jitter and stability values and
2147		 * to update the frequency file.
2148		 */
2149		memset(&ntv,  0, sizeof(ntv));
2150		if (ext_enable) {
2151			ntv.modes = MOD_STATUS;
2152		} else {
2153#ifdef STA_NANO
2154			ntv.modes = MOD_BITS | MOD_NANO;
2155#else /* STA_NANO */
2156			ntv.modes = MOD_BITS;
2157#endif /* STA_NANO */
2158			if (clock_offset < 0)
2159				dtemp = -.5;
2160			else
2161				dtemp = .5;
2162#ifdef STA_NANO
2163			ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2164			ntv.constant = sys_poll;
2165#else /* STA_NANO */
2166			ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2167			ntv.constant = sys_poll - 4;
2168#endif /* STA_NANO */
2169			ntv.esterror = (u_int32)(clock_jitter * 1e6);
2170			ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2171			ntv.status = STA_PLL;
2172
2173			/*
2174			 * Enable/disable the PPS if requested.
2175			 */
2176			if (pps_enable) {
2177				if (!(pll_status & STA_PPSTIME))
2178					report_event(EVNT_KERN,
2179					    NULL, "PPS enabled");
2180				ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2181			} else {
2182				if (pll_status & STA_PPSTIME)
2183					report_event(EVNT_KERN,
2184					    NULL, "PPS disabled");
2185				ntv.status &= ~(STA_PPSTIME |
2186				    STA_PPSFREQ);
2187			}
2188			if (sys_leap == LEAP_ADDSECOND)
2189				ntv.status |= STA_INS;
2190			else if (sys_leap == LEAP_DELSECOND)
2191				ntv.status |= STA_DEL;
2192		}
2193
2194		/*
2195		 * Pass the stuff to the kernel. If it squeals, turn off
2196		 * the pps. In any case, fetch the kernel offset,
2197		 * frequency and jitter.
2198		 */
2199		if (ntp_adjtime(&ntv) == TIME_ERROR) {
2200			if (!(ntv.status & STA_PPSSIGNAL))
2201				report_event(EVNT_KERN, NULL,
2202				    "PPS no signal");
2203		}
2204		pll_status = ntv.status;
2205#ifdef STA_NANO
2206		clock_offset = ntv.offset / 1e9;
2207#else /* STA_NANO */
2208		clock_offset = ntv.offset / 1e6;
2209#endif /* STA_NANO */
2210		clock_frequency = FREQTOD(ntv.freq);
2211
2212		/*
2213		 * If the kernel PPS is lit, monitor its performance.
2214		 */
2215		if (ntv.status & STA_PPSTIME) {
2216#ifdef STA_NANO
2217			clock_jitter = ntv.jitter / 1e9;
2218#else /* STA_NANO */
2219			clock_jitter = ntv.jitter / 1e6;
2220#endif /* STA_NANO */
2221		}
2222
2223#if defined(STA_NANO) && NTP_API == 4
2224		/*
2225		 * If the TAI changes, update the kernel TAI.
2226		 */
2227		if (loop_tai != sys_tai) {
2228			loop_tai = sys_tai;
2229			ntv.modes = MOD_TAI;
2230			ntv.constant = sys_tai;
2231			ntp_adjtime(&ntv);
2232		}
2233#endif /* STA_NANO */
2234	}
2235#endif /* KERNEL_PLL */
2236#endif
2237