1/* SHA256 and SHA512-based Unix crypt implementation.
2 * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
3 */
4
5/* Prefix for optional rounds specification.  */
6static const char str_rounds[] = "rounds=%u$";
7
8/* Maximum salt string length.  */
9#define SALT_LEN_MAX 16
10/* Default number of rounds if not explicitly specified.  */
11#define ROUNDS_DEFAULT 5000
12/* Minimum number of rounds.  */
13#define ROUNDS_MIN 1000
14/* Maximum number of rounds.  */
15#define ROUNDS_MAX 999999999
16
17static char *
18NOINLINE
19sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
20{
21	void (*sha_begin)(void *ctx) FAST_FUNC;
22	void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
23	void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
24	int _32or64;
25
26	char *result, *resptr;
27
28	/* btw, sha256 needs [32] and uint32_t only */
29	struct {
30		unsigned char alt_result[64];
31		unsigned char temp_result[64];
32		union {
33			sha256_ctx_t x;
34			sha512_ctx_t y;
35		} ctx;
36		union {
37			sha256_ctx_t x;
38			sha512_ctx_t y;
39		} alt_ctx;
40	} L __attribute__((__aligned__(__alignof__(uint64_t))));
41#define alt_result  (L.alt_result )
42#define temp_result (L.temp_result)
43#define ctx         (L.ctx        )
44#define alt_ctx     (L.alt_ctx    )
45	unsigned salt_len;
46	unsigned key_len;
47	unsigned cnt;
48	unsigned rounds;
49	char *cp;
50	char is_sha512;
51
52	/* Analyze salt, construct already known part of result */
53	cnt = strlen(salt_data) + 1 + 43 + 1;
54	is_sha512 = salt_data[1];
55	if (is_sha512 == '6')
56		cnt += 43;
57	result = resptr = xzalloc(cnt); /* will provide NUL terminator */
58	*resptr++ = '$';
59	*resptr++ = is_sha512;
60	*resptr++ = '$';
61	rounds = ROUNDS_DEFAULT;
62	salt_data += 3;
63	if (strncmp(salt_data, str_rounds, 7) == 0) {
64		/* 7 == strlen("rounds=") */
65		char *endp;
66		cnt = bb_strtou(salt_data + 7, &endp, 10);
67		if (*endp == '$') {
68			salt_data = endp + 1;
69			rounds = cnt;
70			if (rounds < ROUNDS_MIN)
71				rounds = ROUNDS_MIN;
72			if (rounds > ROUNDS_MAX)
73				rounds = ROUNDS_MAX;
74			/* add "rounds=NNNNN$" to result */
75			resptr += sprintf(resptr, str_rounds, rounds);
76		}
77	}
78	salt_len = strchrnul(salt_data, '$') - salt_data;
79	if (salt_len > SALT_LEN_MAX)
80		salt_len = SALT_LEN_MAX;
81	/* xstrdup assures suitable alignment; also we will use it
82	   as a scratch space later. */
83	salt_data = xstrndup(salt_data, salt_len);
84	/* add "salt$" to result */
85	strcpy(resptr, salt_data);
86	resptr += salt_len;
87	*resptr++ = '$';
88	/* key data doesn't need much processing */
89	key_len = strlen(key_data);
90	key_data = xstrdup(key_data);
91
92	/* Which flavor of SHAnnn ops to use? */
93	sha_begin = (void*)sha256_begin;
94	sha_hash = (void*)sha256_hash;
95	sha_end = (void*)sha256_end;
96	_32or64 = 32;
97	if (is_sha512 == '6') {
98		sha_begin = (void*)sha512_begin;
99		sha_hash = (void*)sha512_hash;
100		sha_end = (void*)sha512_end;
101		_32or64 = 64;
102	}
103
104	/* Add KEY, SALT.  */
105	sha_begin(&ctx);
106	sha_hash(key_data, key_len, &ctx);
107	sha_hash(salt_data, salt_len, &ctx);
108
109	/* Compute alternate SHA sum with input KEY, SALT, and KEY.
110	   The final result will be added to the first context.  */
111	sha_begin(&alt_ctx);
112	sha_hash(key_data, key_len, &alt_ctx);
113	sha_hash(salt_data, salt_len, &alt_ctx);
114	sha_hash(key_data, key_len, &alt_ctx);
115	sha_end(alt_result, &alt_ctx);
116
117	/* Add result of this to the other context.  */
118	/* Add for any character in the key one byte of the alternate sum.  */
119	for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
120		sha_hash(alt_result, _32or64, &ctx);
121	sha_hash(alt_result, cnt, &ctx);
122
123	/* Take the binary representation of the length of the key and for every
124	   1 add the alternate sum, for every 0 the key.  */
125	for (cnt = key_len; cnt != 0; cnt >>= 1)
126		if ((cnt & 1) != 0)
127			sha_hash(alt_result, _32or64, &ctx);
128		else
129			sha_hash(key_data, key_len, &ctx);
130
131	/* Create intermediate result.  */
132	sha_end(alt_result, &ctx);
133
134	/* Start computation of P byte sequence.  */
135	/* For every character in the password add the entire password.  */
136	sha_begin(&alt_ctx);
137	for (cnt = 0; cnt < key_len; ++cnt)
138		sha_hash(key_data, key_len, &alt_ctx);
139	sha_end(temp_result, &alt_ctx);
140
141	/* NB: past this point, raw key_data is not used anymore */
142
143	/* Create byte sequence P.  */
144#define p_bytes key_data /* reuse the buffer as it is of the key_len size */
145	cp = p_bytes; /* was: ... = alloca(key_len); */
146	for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
147		cp = memcpy(cp, temp_result, _32or64);
148		cp += _32or64;
149	}
150	memcpy(cp, temp_result, cnt);
151
152	/* Start computation of S byte sequence.  */
153	/* For every character in the password add the entire password.  */
154	sha_begin(&alt_ctx);
155	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
156		sha_hash(salt_data, salt_len, &alt_ctx);
157	sha_end(temp_result, &alt_ctx);
158
159	/* NB: past this point, raw salt_data is not used anymore */
160
161	/* Create byte sequence S.  */
162#define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
163	cp = s_bytes; /* was: ... = alloca(salt_len); */
164	for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
165		cp = memcpy(cp, temp_result, _32or64);
166		cp += _32or64;
167	}
168	memcpy(cp, temp_result, cnt);
169
170	/* Repeatedly run the collected hash value through SHA to burn
171	   CPU cycles.  */
172	for (cnt = 0; cnt < rounds; ++cnt) {
173		sha_begin(&ctx);
174
175		/* Add key or last result.  */
176		if ((cnt & 1) != 0)
177			sha_hash(p_bytes, key_len, &ctx);
178		else
179			sha_hash(alt_result, _32or64, &ctx);
180		/* Add salt for numbers not divisible by 3.  */
181		if (cnt % 3 != 0)
182			sha_hash(s_bytes, salt_len, &ctx);
183		/* Add key for numbers not divisible by 7.  */
184		if (cnt % 7 != 0)
185			sha_hash(p_bytes, key_len, &ctx);
186		/* Add key or last result.  */
187		if ((cnt & 1) != 0)
188			sha_hash(alt_result, _32or64, &ctx);
189		else
190			sha_hash(p_bytes, key_len, &ctx);
191
192		sha_end(alt_result, &ctx);
193	}
194
195	/* Append encrypted password to result buffer */
196//TODO: replace with something like
197//	bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
198#define b64_from_24bit(B2, B1, B0, N) \
199do {							\
200	unsigned w = ((B2) << 16) | ((B1) << 8) | (B0);	\
201	resptr = to64(resptr, w, N);			\
202} while (0)
203	if (is_sha512 == '5') {
204		unsigned i = 0;
205		while (1) {
206			unsigned j = i + 10;
207			unsigned k = i + 20;
208			if (j >= 30) j -= 30;
209			if (k >= 30) k -= 30;
210			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
211			if (k == 29)
212				break;
213			i = k + 1;
214		}
215		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
216		/* was:
217		b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
218		b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
219		b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
220		b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
221		b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
222		b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
223		b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
224		b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
225		b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
226		b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
227		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
228		*/
229	} else {
230		unsigned i = 0;
231		while (1) {
232			unsigned j = i + 21;
233			unsigned k = i + 42;
234			if (j >= 63) j -= 63;
235			if (k >= 63) k -= 63;
236			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
237			if (j == 20)
238				break;
239			i = j + 1;
240		}
241		b64_from_24bit(0, 0, alt_result[63], 2);
242		/* was:
243		b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
244		b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
245		b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
246		b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
247		b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
248		b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
249		b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
250		b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
251		b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
252		b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
253		b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
254		b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
255		b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
256		b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
257		b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
258		b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
259		b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
260		b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
261		b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
262		b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
263		b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
264		b64_from_24bit(0, 0, alt_result[63], 2);
265		*/
266	}
267	/* *resptr = '\0'; - xzalloc did it */
268#undef b64_from_24bit
269
270	/* Clear the buffer for the intermediate result so that people
271	   attaching to processes or reading core dumps cannot get any
272	   information.  */
273	memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */
274	memset(key_data, 0, key_len); /* also p_bytes */
275	memset(salt_data, 0, salt_len); /* also s_bytes */
276	free(key_data);
277	free(salt_data);
278#undef p_bytes
279#undef s_bytes
280
281	return result;
282#undef alt_result
283#undef temp_result
284#undef ctx
285#undef alt_ctx
286}
287