• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/sound/pci/vx222/
1/*
2 * Driver for Digigram VX222 V2/Mic soundcards
3 *
4 * VX222-specific low-level routines
5 *
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7 *
8 *   This program is free software; you can redistribute it and/or modify
9 *   it under the terms of the GNU General Public License as published by
10 *   the Free Software Foundation; either version 2 of the License, or
11 *   (at your option) any later version.
12 *
13 *   This program is distributed in the hope that it will be useful,
14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *   GNU General Public License for more details.
17 *
18 *   You should have received a copy of the GNU General Public License
19 *   along with this program; if not, write to the Free Software
20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21 */
22
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/firmware.h>
26#include <linux/mutex.h>
27
28#include <sound/core.h>
29#include <sound/control.h>
30#include <sound/tlv.h>
31#include <asm/io.h>
32#include "vx222.h"
33
34
35static int vx2_reg_offset[VX_REG_MAX] = {
36	[VX_ICR]    = 0x00,
37	[VX_CVR]    = 0x04,
38	[VX_ISR]    = 0x08,
39	[VX_IVR]    = 0x0c,
40	[VX_RXH]    = 0x14,
41	[VX_RXM]    = 0x18,
42	[VX_RXL]    = 0x1c,
43	[VX_DMA]    = 0x10,
44	[VX_CDSP]   = 0x20,
45	[VX_CFG]    = 0x24,
46	[VX_RUER]   = 0x28,
47	[VX_DATA]   = 0x2c,
48	[VX_STATUS] = 0x30,
49	[VX_LOFREQ] = 0x34,
50	[VX_HIFREQ] = 0x38,
51	[VX_CSUER]  = 0x3c,
52	[VX_SELMIC] = 0x40,
53	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
58	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
59};
60
61static int vx2_reg_index[VX_REG_MAX] = {
62	[VX_ICR]	= 1,
63	[VX_CVR]	= 1,
64	[VX_ISR]	= 1,
65	[VX_IVR]	= 1,
66	[VX_RXH]	= 1,
67	[VX_RXM]	= 1,
68	[VX_RXL]	= 1,
69	[VX_DMA]	= 1,
70	[VX_CDSP]	= 1,
71	[VX_CFG]	= 1,
72	[VX_RUER]	= 1,
73	[VX_DATA]	= 1,
74	[VX_STATUS]	= 1,
75	[VX_LOFREQ]	= 1,
76	[VX_HIFREQ]	= 1,
77	[VX_CSUER]	= 1,
78	[VX_SELMIC]	= 1,
79	[VX_COMPOT]	= 1,
80	[VX_SCOMPR]	= 1,
81	[VX_GLIMIT]	= 1,
82	[VX_INTCSR]	= 0,	/* on the PLX */
83	[VX_CNTRL]	= 0,	/* on the PLX */
84	[VX_GPIOC]	= 0,	/* on the PLX */
85};
86
87static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
88{
89	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91}
92
93/**
94 * snd_vx_inb - read a byte from the register
95 * @offset: register enum
96 */
97static unsigned char vx2_inb(struct vx_core *chip, int offset)
98{
99	return inb(vx2_reg_addr(chip, offset));
100}
101
102/**
103 * snd_vx_outb - write a byte on the register
104 * @offset: the register offset
105 * @val: the value to write
106 */
107static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
108{
109	outb(val, vx2_reg_addr(chip, offset));
110	/*
111	printk(KERN_DEBUG "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
112	*/
113}
114
115/**
116 * snd_vx_inl - read a 32bit word from the register
117 * @offset: register enum
118 */
119static unsigned int vx2_inl(struct vx_core *chip, int offset)
120{
121	return inl(vx2_reg_addr(chip, offset));
122}
123
124/**
125 * snd_vx_outl - write a 32bit word on the register
126 * @offset: the register enum
127 * @val: the value to write
128 */
129static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
130{
131	/*
132	printk(KERN_DEBUG "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
133	*/
134	outl(val, vx2_reg_addr(chip, offset));
135}
136
137/*
138 * redefine macros to call directly
139 */
140#undef vx_inb
141#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
142#undef vx_outb
143#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
144#undef vx_inl
145#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
146#undef vx_outl
147#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
148
149
150/*
151 * vx_reset_dsp - reset the DSP
152 */
153
154#define XX_DSP_RESET_WAIT_TIME		2	/* ms */
155
156static void vx2_reset_dsp(struct vx_core *_chip)
157{
158	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
159
160	/* set the reset dsp bit to 0 */
161	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
162
163	mdelay(XX_DSP_RESET_WAIT_TIME);
164
165	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
166	/* set the reset dsp bit to 1 */
167	vx_outl(chip, CDSP, chip->regCDSP);
168}
169
170
171static int vx2_test_xilinx(struct vx_core *_chip)
172{
173	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
174	unsigned int data;
175
176	snd_printdd("testing xilinx...\n");
177	/* This test uses several write/read sequences on TEST0 and TEST1 bits
178	 * to figure out whever or not the xilinx was correctly loaded
179	 */
180
181	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
182	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
183	vx_inl(chip, ISR);
184	data = vx_inl(chip, STATUS);
185	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
186		snd_printdd("bad!\n");
187		return -ENODEV;
188	}
189
190	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
191	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
192	vx_inl(chip, ISR);
193	data = vx_inl(chip, STATUS);
194	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
195		snd_printdd("bad! #2\n");
196		return -ENODEV;
197	}
198
199	if (_chip->type == VX_TYPE_BOARD) {
200		/* not implemented on VX_2_BOARDS */
201		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
202		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
203		vx_inl(chip, ISR);
204		data = vx_inl(chip, STATUS);
205		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
206			snd_printdd("bad! #3\n");
207			return -ENODEV;
208		}
209
210		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
211		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
212		vx_inl(chip, ISR);
213		data = vx_inl(chip, STATUS);
214		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
215			snd_printdd("bad! #4\n");
216			return -ENODEV;
217		}
218	}
219	snd_printdd("ok, xilinx fine.\n");
220	return 0;
221}
222
223
224/**
225 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
226 * @do_write: 0 = read, 1 = set up for DMA write
227 */
228static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
229{
230	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
231	 * (in case of the use of the pseudo-dma facility).
232	 */
233	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
234
235	/* Reset the pseudo-dma register (in case of the use of the
236	 * pseudo-dma facility).
237	 */
238	vx_outl(chip, RESET_DMA, 0);
239}
240
241/*
242 * vx_release_pseudo_dma - disable the pseudo-DMA mode
243 */
244static inline void vx2_release_pseudo_dma(struct vx_core *chip)
245{
246	/* HREQ pin disabled. */
247	vx_outl(chip, ICR, 0);
248}
249
250
251
252/* pseudo-dma write */
253static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
254			  struct vx_pipe *pipe, int count)
255{
256	unsigned long port = vx2_reg_addr(chip, VX_DMA);
257	int offset = pipe->hw_ptr;
258	u32 *addr = (u32 *)(runtime->dma_area + offset);
259
260	if (snd_BUG_ON(count % 4))
261		return;
262
263	vx2_setup_pseudo_dma(chip, 1);
264
265	/* Transfer using pseudo-dma.
266	 */
267	if (offset + count > pipe->buffer_bytes) {
268		int length = pipe->buffer_bytes - offset;
269		count -= length;
270		length >>= 2; /* in 32bit words */
271		/* Transfer using pseudo-dma. */
272		while (length-- > 0) {
273			outl(cpu_to_le32(*addr), port);
274			addr++;
275		}
276		addr = (u32 *)runtime->dma_area;
277		pipe->hw_ptr = 0;
278	}
279	pipe->hw_ptr += count;
280	count >>= 2; /* in 32bit words */
281	/* Transfer using pseudo-dma. */
282	while (count-- > 0) {
283		outl(cpu_to_le32(*addr), port);
284		addr++;
285	}
286
287	vx2_release_pseudo_dma(chip);
288}
289
290
291/* pseudo dma read */
292static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
293			 struct vx_pipe *pipe, int count)
294{
295	int offset = pipe->hw_ptr;
296	u32 *addr = (u32 *)(runtime->dma_area + offset);
297	unsigned long port = vx2_reg_addr(chip, VX_DMA);
298
299	if (snd_BUG_ON(count % 4))
300		return;
301
302	vx2_setup_pseudo_dma(chip, 0);
303	/* Transfer using pseudo-dma.
304	 */
305	if (offset + count > pipe->buffer_bytes) {
306		int length = pipe->buffer_bytes - offset;
307		count -= length;
308		length >>= 2; /* in 32bit words */
309		/* Transfer using pseudo-dma. */
310		while (length-- > 0)
311			*addr++ = le32_to_cpu(inl(port));
312		addr = (u32 *)runtime->dma_area;
313		pipe->hw_ptr = 0;
314	}
315	pipe->hw_ptr += count;
316	count >>= 2; /* in 32bit words */
317	/* Transfer using pseudo-dma. */
318	while (count-- > 0)
319		*addr++ = le32_to_cpu(inl(port));
320
321	vx2_release_pseudo_dma(chip);
322}
323
324#define VX_XILINX_RESET_MASK        0x40000000
325#define VX_USERBIT0_MASK            0x00000004
326#define VX_USERBIT1_MASK            0x00000020
327#define VX_CNTRL_REGISTER_VALUE     0x00172012
328
329/*
330 * transfer counts bits to PLX
331 */
332static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
333{
334	unsigned int i;
335
336	for (i = 0; i < counts; i++) {
337		unsigned int val;
338
339		/* set the clock bit to 0. */
340		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
341		vx2_outl(chip, port, val);
342		vx2_inl(chip, port);
343		udelay(1);
344
345		if (data & (1 << i))
346			val |= VX_USERBIT1_MASK;
347		else
348			val &= ~VX_USERBIT1_MASK;
349		vx2_outl(chip, port, val);
350		vx2_inl(chip, port);
351
352		/* set the clock bit to 1. */
353		val |= VX_USERBIT0_MASK;
354		vx2_outl(chip, port, val);
355		vx2_inl(chip, port);
356		udelay(1);
357	}
358	return 0;
359}
360
361/*
362 * load the xilinx image
363 */
364static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
365{
366	unsigned int i;
367	unsigned int port;
368	const unsigned char *image;
369
370	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
371	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
372	vx_inl(chip, CNTRL);
373	msleep(10);
374	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
375	vx_inl(chip, CNTRL);
376	msleep(10);
377
378	if (chip->type == VX_TYPE_BOARD)
379		port = VX_CNTRL;
380	else
381		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
382
383	image = xilinx->data;
384	for (i = 0; i < xilinx->size; i++, image++) {
385		if (put_xilinx_data(chip, port, 8, *image) < 0)
386			return -EINVAL;
387		/* don't take too much time in this loop... */
388		cond_resched();
389	}
390	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
391
392	msleep(200);
393
394	/* test after loading (is buggy with VX222) */
395	if (chip->type != VX_TYPE_BOARD) {
396		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
397		i = vx_inl(chip, GPIOC);
398		if (i & 0x0100)
399			return 0;
400		snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
401		return -EINVAL;
402	}
403
404	return 0;
405}
406
407
408/*
409 * load the boot/dsp images
410 */
411static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
412{
413	int err;
414
415	switch (index) {
416	case 1:
417		/* xilinx image */
418		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
419			return err;
420		if ((err = vx2_test_xilinx(vx)) < 0)
421			return err;
422		return 0;
423	case 2:
424		/* DSP boot */
425		return snd_vx_dsp_boot(vx, dsp);
426	case 3:
427		/* DSP image */
428		return snd_vx_dsp_load(vx, dsp);
429	default:
430		snd_BUG();
431		return -EINVAL;
432	}
433}
434
435
436/*
437 * vx_test_and_ack - test and acknowledge interrupt
438 *
439 * called from irq hander, too
440 *
441 * spinlock held!
442 */
443static int vx2_test_and_ack(struct vx_core *chip)
444{
445	/* not booted yet? */
446	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
447		return -ENXIO;
448
449	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
450		return -EIO;
451
452	/* ok, interrupts generated, now ack it */
453	/* set ACQUIT bit up and down */
454	vx_outl(chip, STATUS, 0);
455	/* useless read just to spend some time and maintain
456	 * the ACQUIT signal up for a while ( a bus cycle )
457	 */
458	vx_inl(chip, STATUS);
459	/* ack */
460	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
461	/* useless read just to spend some time and maintain
462	 * the ACQUIT signal up for a while ( a bus cycle ) */
463	vx_inl(chip, STATUS);
464	/* clear */
465	vx_outl(chip, STATUS, 0);
466
467	return 0;
468}
469
470
471/*
472 * vx_validate_irq - enable/disable IRQ
473 */
474static void vx2_validate_irq(struct vx_core *_chip, int enable)
475{
476	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
477
478	/* Set the interrupt enable bit to 1 in CDSP register */
479	if (enable) {
480		/* Set the PCI interrupt enable bit to 1.*/
481		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
482		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
483	} else {
484		/* Set the PCI interrupt enable bit to 0. */
485		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
486		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
487	}
488	vx_outl(chip, CDSP, chip->regCDSP);
489}
490
491
492/*
493 * write an AKM codec data (24bit)
494 */
495static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
496{
497	unsigned int i;
498
499	vx_inl(chip, HIFREQ);
500
501	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
502	for (i = 0; i < 24; i++, data <<= 1)
503		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
504	/* Terminate access to codec registers */
505	vx_inl(chip, RUER);
506}
507
508
509#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
510#define AKM_CODEC_RESET_ON_CMD      0xA100
511#define AKM_CODEC_RESET_OFF_CMD     0xA103
512#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
513#define AKM_CODEC_MUTE_CMD          0xA38D
514#define AKM_CODEC_UNMUTE_CMD        0xA30D
515#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
516#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
517
518static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
519    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
520    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
521    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
522    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
523    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
524    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
525    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
526    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
527    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
528    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
529    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
530    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
531    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
532    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
533    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
534    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
535    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
536    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
537    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
538    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
539    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
540    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
541    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
542    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
543    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
544    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
545    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
546    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
547    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
548    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
549    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
550    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
551    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
552    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
553    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
554    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
555    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
556    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
557    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
558    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
559    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
560    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
561    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
562    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
563    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
564    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
565    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
566    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
567    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
568    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
569    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
570    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
571    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
572    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
573    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
574    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
575    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
576    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
577    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
578    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
579    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
580    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
581    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
582    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
583    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
584    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
585    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
586    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
587    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
588    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
589    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
590    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
591    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
592    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
593    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
594    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
595    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
596    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
597    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
598    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
599    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
600    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
601    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
602    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
603    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
604    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
605    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
606    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
607    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
608    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
609    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
610    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
611    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
612    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
613    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
614    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
615    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
616    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
617    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
618    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
619    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
620    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
621    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
622    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
623    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
624    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
625    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
626    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
627    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
628    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
629    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
630    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
631    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
632    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
633    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
634    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
635    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
636    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
637    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
638    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
639    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
640    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
641    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
642    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
643    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
644    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
645    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
646    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
647    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
648    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
649    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
650    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
651    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
652    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
653    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
654    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
655    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
656    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
657    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
658    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
659    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
660    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
661    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
662    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
663    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
664    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
665    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
666    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
667
668/*
669 * pseudo-codec write entry
670 */
671static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
672{
673	unsigned int val;
674
675	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
676		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
677		return;
678	}
679
680	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
681	   a look up table, as there is no linear matching between the driver codec values
682	   and the real dBu value
683	*/
684	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
685		return;
686
687	switch (reg) {
688	case XX_CODEC_LEVEL_LEFT_REGISTER:
689		val = AKM_CODEC_LEFT_LEVEL_CMD;
690		break;
691	case XX_CODEC_LEVEL_RIGHT_REGISTER:
692		val = AKM_CODEC_RIGHT_LEVEL_CMD;
693		break;
694	default:
695		snd_BUG();
696		return;
697	}
698	val |= vx2_akm_gains_lut[data];
699
700	vx2_write_codec_reg(chip, val);
701}
702
703
704/*
705 * write codec bit for old VX222 board
706 */
707static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
708{
709	int i;
710
711	/* activate access to codec registers */
712	vx_inl(chip, HIFREQ);
713
714	for (i = 0; i < 24; i++, data <<= 1)
715		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
716
717	/* Terminate access to codec registers */
718	vx_inl(chip, RUER);
719}
720
721
722/*
723 * reset codec bit
724 */
725static void vx2_reset_codec(struct vx_core *_chip)
726{
727	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
728
729	/* Set the reset CODEC bit to 0. */
730	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
731	vx_inl(chip, CDSP);
732	msleep(10);
733	/* Set the reset CODEC bit to 1. */
734	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
735	vx_outl(chip, CDSP, chip->regCDSP);
736	vx_inl(chip, CDSP);
737	if (_chip->type == VX_TYPE_BOARD) {
738		msleep(1);
739		return;
740	}
741
742	msleep(5);  /* additionnel wait time for AKM's */
743
744	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
745
746	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
747	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
748	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
749
750	if (_chip->type == VX_TYPE_MIC) {
751		/* set up the micro input selector */
752		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
753			MICRO_SELECT_PREAMPLI_G_0 |
754			MICRO_SELECT_NOISE_T_52DB;
755
756		/* reset phantom power supply */
757		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
758
759		vx_outl(_chip, SELMIC, chip->regSELMIC);
760	}
761}
762
763
764/*
765 * change the audio source
766 */
767static void vx2_change_audio_source(struct vx_core *_chip, int src)
768{
769	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
770
771	switch (src) {
772	case VX_AUDIO_SRC_DIGITAL:
773		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
774		break;
775	default:
776		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
777		break;
778	}
779	vx_outl(chip, CFG, chip->regCFG);
780}
781
782
783/*
784 * set the clock source
785 */
786static void vx2_set_clock_source(struct vx_core *_chip, int source)
787{
788	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
789
790	if (source == INTERNAL_QUARTZ)
791		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
792	else
793		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
794	vx_outl(chip, CFG, chip->regCFG);
795}
796
797/*
798 * reset the board
799 */
800static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
801{
802	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
803
804	/* initialize the register values */
805	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
806	chip->regCFG = 0;
807}
808
809
810
811/*
812 * input level controls for VX222 Mic
813 */
814
815/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
816 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
817 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
818 */
819#define V2_MICRO_LEVEL_RANGE        (318 - 255)
820
821static void vx2_set_input_level(struct snd_vx222 *chip)
822{
823	int i, miclevel, preamp;
824	unsigned int data;
825
826	miclevel = chip->mic_level;
827	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
828	preamp = 0;
829        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
830		preamp++;	/* raise pre ampli + 18dB */
831		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
832        }
833	if (snd_BUG_ON(preamp >= 4))
834		return;
835
836	/* set pre-amp level */
837	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
838	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
839	vx_outl(chip, SELMIC, chip->regSELMIC);
840
841	data = (unsigned int)miclevel << 16 |
842		(unsigned int)chip->input_level[1] << 8 |
843		(unsigned int)chip->input_level[0];
844	vx_inl(chip, DATA); /* Activate input level programming */
845
846	/* We have to send 32 bits (4 x 8 bits) */
847	for (i = 0; i < 32; i++, data <<= 1)
848		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
849
850	vx_inl(chip, RUER); /* Terminate input level programming */
851}
852
853
854#define MIC_LEVEL_MAX	0xff
855
856static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
857
858/*
859 * controls API for input levels
860 */
861
862/* input levels */
863static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
864{
865	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
866	uinfo->count = 2;
867	uinfo->value.integer.min = 0;
868	uinfo->value.integer.max = MIC_LEVEL_MAX;
869	return 0;
870}
871
872static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
873{
874	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
875	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
876	mutex_lock(&_chip->mixer_mutex);
877	ucontrol->value.integer.value[0] = chip->input_level[0];
878	ucontrol->value.integer.value[1] = chip->input_level[1];
879	mutex_unlock(&_chip->mixer_mutex);
880	return 0;
881}
882
883static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
884{
885	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
886	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
887	if (ucontrol->value.integer.value[0] < 0 ||
888	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
889		return -EINVAL;
890	if (ucontrol->value.integer.value[1] < 0 ||
891	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
892		return -EINVAL;
893	mutex_lock(&_chip->mixer_mutex);
894	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
895	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
896		chip->input_level[0] = ucontrol->value.integer.value[0];
897		chip->input_level[1] = ucontrol->value.integer.value[1];
898		vx2_set_input_level(chip);
899		mutex_unlock(&_chip->mixer_mutex);
900		return 1;
901	}
902	mutex_unlock(&_chip->mixer_mutex);
903	return 0;
904}
905
906/* mic level */
907static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
908{
909	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
910	uinfo->count = 1;
911	uinfo->value.integer.min = 0;
912	uinfo->value.integer.max = MIC_LEVEL_MAX;
913	return 0;
914}
915
916static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
917{
918	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
919	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
920	ucontrol->value.integer.value[0] = chip->mic_level;
921	return 0;
922}
923
924static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
925{
926	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
927	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
928	if (ucontrol->value.integer.value[0] < 0 ||
929	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
930		return -EINVAL;
931	mutex_lock(&_chip->mixer_mutex);
932	if (chip->mic_level != ucontrol->value.integer.value[0]) {
933		chip->mic_level = ucontrol->value.integer.value[0];
934		vx2_set_input_level(chip);
935		mutex_unlock(&_chip->mixer_mutex);
936		return 1;
937	}
938	mutex_unlock(&_chip->mixer_mutex);
939	return 0;
940}
941
942static struct snd_kcontrol_new vx_control_input_level = {
943	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
944	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
945			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
946	.name =		"Capture Volume",
947	.info =		vx_input_level_info,
948	.get =		vx_input_level_get,
949	.put =		vx_input_level_put,
950	.tlv = { .p = db_scale_mic },
951};
952
953static struct snd_kcontrol_new vx_control_mic_level = {
954	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
955	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
956			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
957	.name =		"Mic Capture Volume",
958	.info =		vx_mic_level_info,
959	.get =		vx_mic_level_get,
960	.put =		vx_mic_level_put,
961	.tlv = { .p = db_scale_mic },
962};
963
964
965static int vx2_add_mic_controls(struct vx_core *_chip)
966{
967	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
968	int err;
969
970	if (_chip->type != VX_TYPE_MIC)
971		return 0;
972
973	/* mute input levels */
974	chip->input_level[0] = chip->input_level[1] = 0;
975	chip->mic_level = 0;
976	vx2_set_input_level(chip);
977
978	/* controls */
979	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
980		return err;
981	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
982		return err;
983
984	return 0;
985}
986
987
988/*
989 * callbacks
990 */
991struct snd_vx_ops vx222_ops = {
992	.in8 = vx2_inb,
993	.in32 = vx2_inl,
994	.out8 = vx2_outb,
995	.out32 = vx2_outl,
996	.test_and_ack = vx2_test_and_ack,
997	.validate_irq = vx2_validate_irq,
998	.akm_write = vx2_write_akm,
999	.reset_codec = vx2_reset_codec,
1000	.change_audio_source = vx2_change_audio_source,
1001	.set_clock_source = vx2_set_clock_source,
1002	.load_dsp = vx2_load_dsp,
1003	.reset_dsp = vx2_reset_dsp,
1004	.reset_board = vx2_reset_board,
1005	.dma_write = vx2_dma_write,
1006	.dma_read = vx2_dma_read,
1007	.add_controls = vx2_add_mic_controls,
1008};
1009
1010/* for old VX222 board */
1011struct snd_vx_ops vx222_old_ops = {
1012	.in8 = vx2_inb,
1013	.in32 = vx2_inl,
1014	.out8 = vx2_outb,
1015	.out32 = vx2_outl,
1016	.test_and_ack = vx2_test_and_ack,
1017	.validate_irq = vx2_validate_irq,
1018	.write_codec = vx2_old_write_codec_bit,
1019	.reset_codec = vx2_reset_codec,
1020	.change_audio_source = vx2_change_audio_source,
1021	.set_clock_source = vx2_set_clock_source,
1022	.load_dsp = vx2_load_dsp,
1023	.reset_dsp = vx2_reset_dsp,
1024	.reset_board = vx2_reset_board,
1025	.dma_write = vx2_dma_write,
1026	.dma_read = vx2_dma_read,
1027};
1028