• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/security/selinux/
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 *	Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License version 2,
14 *	as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34#include "classmap.h"
35
36#define AVC_CACHE_SLOTS			512
37#define AVC_DEF_CACHE_THRESHOLD		512
38#define AVC_CACHE_RECLAIM		16
39
40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41#define avc_cache_stats_incr(field)				\
42do {								\
43	per_cpu(avc_cache_stats, get_cpu()).field++;		\
44	put_cpu();						\
45} while (0)
46#else
47#define avc_cache_stats_incr(field)	do {} while (0)
48#endif
49
50struct avc_entry {
51	u32			ssid;
52	u32			tsid;
53	u16			tclass;
54	struct av_decision	avd;
55};
56
57struct avc_node {
58	struct avc_entry	ae;
59	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
60	struct rcu_head		rhead;
61};
62
63struct avc_cache {
64	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
65	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
66	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
67	atomic_t		active_nodes;
68	u32			latest_notif;	/* latest revocation notification */
69};
70
71struct avc_callback_node {
72	int (*callback) (u32 event, u32 ssid, u32 tsid,
73			 u16 tclass, u32 perms,
74			 u32 *out_retained);
75	u32 events;
76	u32 ssid;
77	u32 tsid;
78	u16 tclass;
79	u32 perms;
80	struct avc_callback_node *next;
81};
82
83/* Exported via selinufs */
84unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
85
86#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
88#endif
89
90static struct avc_cache avc_cache;
91static struct avc_callback_node *avc_callbacks;
92static struct kmem_cache *avc_node_cachep;
93
94static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
95{
96	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
97}
98
99/**
100 * avc_dump_av - Display an access vector in human-readable form.
101 * @tclass: target security class
102 * @av: access vector
103 */
104static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
105{
106	const char **perms;
107	int i, perm;
108
109	if (av == 0) {
110		audit_log_format(ab, " null");
111		return;
112	}
113
114	perms = secclass_map[tclass-1].perms;
115
116	audit_log_format(ab, " {");
117	i = 0;
118	perm = 1;
119	while (i < (sizeof(av) * 8)) {
120		if ((perm & av) && perms[i]) {
121			audit_log_format(ab, " %s", perms[i]);
122			av &= ~perm;
123		}
124		i++;
125		perm <<= 1;
126	}
127
128	if (av)
129		audit_log_format(ab, " 0x%x", av);
130
131	audit_log_format(ab, " }");
132}
133
134/**
135 * avc_dump_query - Display a SID pair and a class in human-readable form.
136 * @ssid: source security identifier
137 * @tsid: target security identifier
138 * @tclass: target security class
139 */
140static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
141{
142	int rc;
143	char *scontext;
144	u32 scontext_len;
145
146	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
147	if (rc)
148		audit_log_format(ab, "ssid=%d", ssid);
149	else {
150		audit_log_format(ab, "scontext=%s", scontext);
151		kfree(scontext);
152	}
153
154	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
155	if (rc)
156		audit_log_format(ab, " tsid=%d", tsid);
157	else {
158		audit_log_format(ab, " tcontext=%s", scontext);
159		kfree(scontext);
160	}
161
162	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
163	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
164}
165
166/**
167 * avc_init - Initialize the AVC.
168 *
169 * Initialize the access vector cache.
170 */
171void __init avc_init(void)
172{
173	int i;
174
175	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
176		INIT_HLIST_HEAD(&avc_cache.slots[i]);
177		spin_lock_init(&avc_cache.slots_lock[i]);
178	}
179	atomic_set(&avc_cache.active_nodes, 0);
180	atomic_set(&avc_cache.lru_hint, 0);
181
182	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
183					     0, SLAB_PANIC, NULL);
184
185	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
186}
187
188int avc_get_hash_stats(char *page)
189{
190	int i, chain_len, max_chain_len, slots_used;
191	struct avc_node *node;
192	struct hlist_head *head;
193
194	rcu_read_lock();
195
196	slots_used = 0;
197	max_chain_len = 0;
198	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
199		head = &avc_cache.slots[i];
200		if (!hlist_empty(head)) {
201			struct hlist_node *next;
202
203			slots_used++;
204			chain_len = 0;
205			hlist_for_each_entry_rcu(node, next, head, list)
206				chain_len++;
207			if (chain_len > max_chain_len)
208				max_chain_len = chain_len;
209		}
210	}
211
212	rcu_read_unlock();
213
214	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
215			 "longest chain: %d\n",
216			 atomic_read(&avc_cache.active_nodes),
217			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
218}
219
220static void avc_node_free(struct rcu_head *rhead)
221{
222	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
223	kmem_cache_free(avc_node_cachep, node);
224	avc_cache_stats_incr(frees);
225}
226
227static void avc_node_delete(struct avc_node *node)
228{
229	hlist_del_rcu(&node->list);
230	call_rcu(&node->rhead, avc_node_free);
231	atomic_dec(&avc_cache.active_nodes);
232}
233
234static void avc_node_kill(struct avc_node *node)
235{
236	kmem_cache_free(avc_node_cachep, node);
237	avc_cache_stats_incr(frees);
238	atomic_dec(&avc_cache.active_nodes);
239}
240
241static void avc_node_replace(struct avc_node *new, struct avc_node *old)
242{
243	hlist_replace_rcu(&old->list, &new->list);
244	call_rcu(&old->rhead, avc_node_free);
245	atomic_dec(&avc_cache.active_nodes);
246}
247
248static inline int avc_reclaim_node(void)
249{
250	struct avc_node *node;
251	int hvalue, try, ecx;
252	unsigned long flags;
253	struct hlist_head *head;
254	struct hlist_node *next;
255	spinlock_t *lock;
256
257	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
258		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
259		head = &avc_cache.slots[hvalue];
260		lock = &avc_cache.slots_lock[hvalue];
261
262		if (!spin_trylock_irqsave(lock, flags))
263			continue;
264
265		rcu_read_lock();
266		hlist_for_each_entry(node, next, head, list) {
267			avc_node_delete(node);
268			avc_cache_stats_incr(reclaims);
269			ecx++;
270			if (ecx >= AVC_CACHE_RECLAIM) {
271				rcu_read_unlock();
272				spin_unlock_irqrestore(lock, flags);
273				goto out;
274			}
275		}
276		rcu_read_unlock();
277		spin_unlock_irqrestore(lock, flags);
278	}
279out:
280	return ecx;
281}
282
283static struct avc_node *avc_alloc_node(void)
284{
285	struct avc_node *node;
286
287	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
288	if (!node)
289		goto out;
290
291	INIT_HLIST_NODE(&node->list);
292	avc_cache_stats_incr(allocations);
293
294	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
295		avc_reclaim_node();
296
297out:
298	return node;
299}
300
301static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
302{
303	node->ae.ssid = ssid;
304	node->ae.tsid = tsid;
305	node->ae.tclass = tclass;
306	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
307}
308
309static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
310{
311	struct avc_node *node, *ret = NULL;
312	int hvalue;
313	struct hlist_head *head;
314	struct hlist_node *next;
315
316	hvalue = avc_hash(ssid, tsid, tclass);
317	head = &avc_cache.slots[hvalue];
318	hlist_for_each_entry_rcu(node, next, head, list) {
319		if (ssid == node->ae.ssid &&
320		    tclass == node->ae.tclass &&
321		    tsid == node->ae.tsid) {
322			ret = node;
323			break;
324		}
325	}
326
327	return ret;
328}
329
330/**
331 * avc_lookup - Look up an AVC entry.
332 * @ssid: source security identifier
333 * @tsid: target security identifier
334 * @tclass: target security class
335 *
336 * Look up an AVC entry that is valid for the
337 * (@ssid, @tsid), interpreting the permissions
338 * based on @tclass.  If a valid AVC entry exists,
339 * then this function returns the avc_node.
340 * Otherwise, this function returns NULL.
341 */
342static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
343{
344	struct avc_node *node;
345
346	avc_cache_stats_incr(lookups);
347	node = avc_search_node(ssid, tsid, tclass);
348
349	if (node)
350		avc_cache_stats_incr(hits);
351	else
352		avc_cache_stats_incr(misses);
353
354	return node;
355}
356
357static int avc_latest_notif_update(int seqno, int is_insert)
358{
359	int ret = 0;
360	static DEFINE_SPINLOCK(notif_lock);
361	unsigned long flag;
362
363	spin_lock_irqsave(&notif_lock, flag);
364	if (is_insert) {
365		if (seqno < avc_cache.latest_notif) {
366			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
367			       seqno, avc_cache.latest_notif);
368			ret = -EAGAIN;
369		}
370	} else {
371		if (seqno > avc_cache.latest_notif)
372			avc_cache.latest_notif = seqno;
373	}
374	spin_unlock_irqrestore(&notif_lock, flag);
375
376	return ret;
377}
378
379/**
380 * avc_insert - Insert an AVC entry.
381 * @ssid: source security identifier
382 * @tsid: target security identifier
383 * @tclass: target security class
384 * @avd: resulting av decision
385 *
386 * Insert an AVC entry for the SID pair
387 * (@ssid, @tsid) and class @tclass.
388 * The access vectors and the sequence number are
389 * normally provided by the security server in
390 * response to a security_compute_av() call.  If the
391 * sequence number @avd->seqno is not less than the latest
392 * revocation notification, then the function copies
393 * the access vectors into a cache entry, returns
394 * avc_node inserted. Otherwise, this function returns NULL.
395 */
396static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
397{
398	struct avc_node *pos, *node = NULL;
399	int hvalue;
400	unsigned long flag;
401
402	if (avc_latest_notif_update(avd->seqno, 1))
403		goto out;
404
405	node = avc_alloc_node();
406	if (node) {
407		struct hlist_head *head;
408		struct hlist_node *next;
409		spinlock_t *lock;
410
411		hvalue = avc_hash(ssid, tsid, tclass);
412		avc_node_populate(node, ssid, tsid, tclass, avd);
413
414		head = &avc_cache.slots[hvalue];
415		lock = &avc_cache.slots_lock[hvalue];
416
417		spin_lock_irqsave(lock, flag);
418		hlist_for_each_entry(pos, next, head, list) {
419			if (pos->ae.ssid == ssid &&
420			    pos->ae.tsid == tsid &&
421			    pos->ae.tclass == tclass) {
422				avc_node_replace(node, pos);
423				goto found;
424			}
425		}
426		hlist_add_head_rcu(&node->list, head);
427found:
428		spin_unlock_irqrestore(lock, flag);
429	}
430out:
431	return node;
432}
433
434/**
435 * avc_audit_pre_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
440static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
441{
442	struct common_audit_data *ad = a;
443	audit_log_format(ab, "avc:  %s ",
444			 ad->selinux_audit_data.denied ? "denied" : "granted");
445	avc_dump_av(ab, ad->selinux_audit_data.tclass,
446			ad->selinux_audit_data.audited);
447	audit_log_format(ab, " for ");
448}
449
450/**
451 * avc_audit_post_callback - SELinux specific information
452 * will be called by generic audit code
453 * @ab: the audit buffer
454 * @a: audit_data
455 */
456static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
457{
458	struct common_audit_data *ad = a;
459	audit_log_format(ab, " ");
460	avc_dump_query(ab, ad->selinux_audit_data.ssid,
461			   ad->selinux_audit_data.tsid,
462			   ad->selinux_audit_data.tclass);
463}
464
465/**
466 * avc_audit - Audit the granting or denial of permissions.
467 * @ssid: source security identifier
468 * @tsid: target security identifier
469 * @tclass: target security class
470 * @requested: requested permissions
471 * @avd: access vector decisions
472 * @result: result from avc_has_perm_noaudit
473 * @a:  auxiliary audit data
474 *
475 * Audit the granting or denial of permissions in accordance
476 * with the policy.  This function is typically called by
477 * avc_has_perm() after a permission check, but can also be
478 * called directly by callers who use avc_has_perm_noaudit()
479 * in order to separate the permission check from the auditing.
480 * For example, this separation is useful when the permission check must
481 * be performed under a lock, to allow the lock to be released
482 * before calling the auditing code.
483 */
484void avc_audit(u32 ssid, u32 tsid,
485	       u16 tclass, u32 requested,
486	       struct av_decision *avd, int result, struct common_audit_data *a)
487{
488	struct common_audit_data stack_data;
489	u32 denied, audited;
490	denied = requested & ~avd->allowed;
491	if (denied) {
492		audited = denied & avd->auditdeny;
493		/*
494		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
495		 * this field means that ANY denials should NOT be audited if
496		 * the policy contains an explicit dontaudit rule for that
497		 * permission.  Take notice that this is unrelated to the
498		 * actual permissions that were denied.  As an example lets
499		 * assume:
500		 *
501		 * denied == READ
502		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
503		 * selinux_audit_data.auditdeny & ACCESS == 1
504		 *
505		 * We will NOT audit the denial even though the denied
506		 * permission was READ and the auditdeny checks were for
507		 * ACCESS
508		 */
509		if (a &&
510		    a->selinux_audit_data.auditdeny &&
511		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
512			audited = 0;
513	} else if (result)
514		audited = denied = requested;
515	else
516		audited = requested & avd->auditallow;
517	if (!audited)
518		return;
519	if (!a) {
520		a = &stack_data;
521		COMMON_AUDIT_DATA_INIT(a, NONE);
522	}
523	a->selinux_audit_data.tclass = tclass;
524	a->selinux_audit_data.requested = requested;
525	a->selinux_audit_data.ssid = ssid;
526	a->selinux_audit_data.tsid = tsid;
527	a->selinux_audit_data.audited = audited;
528	a->selinux_audit_data.denied = denied;
529	a->lsm_pre_audit = avc_audit_pre_callback;
530	a->lsm_post_audit = avc_audit_post_callback;
531	common_lsm_audit(a);
532}
533
534/**
535 * avc_add_callback - Register a callback for security events.
536 * @callback: callback function
537 * @events: security events
538 * @ssid: source security identifier or %SECSID_WILD
539 * @tsid: target security identifier or %SECSID_WILD
540 * @tclass: target security class
541 * @perms: permissions
542 *
543 * Register a callback function for events in the set @events
544 * related to the SID pair (@ssid, @tsid)
545 * and the permissions @perms, interpreting
546 * @perms based on @tclass.  Returns %0 on success or
547 * -%ENOMEM if insufficient memory exists to add the callback.
548 */
549int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
550				     u16 tclass, u32 perms,
551				     u32 *out_retained),
552		     u32 events, u32 ssid, u32 tsid,
553		     u16 tclass, u32 perms)
554{
555	struct avc_callback_node *c;
556	int rc = 0;
557
558	c = kmalloc(sizeof(*c), GFP_ATOMIC);
559	if (!c) {
560		rc = -ENOMEM;
561		goto out;
562	}
563
564	c->callback = callback;
565	c->events = events;
566	c->ssid = ssid;
567	c->tsid = tsid;
568	c->perms = perms;
569	c->next = avc_callbacks;
570	avc_callbacks = c;
571out:
572	return rc;
573}
574
575static inline int avc_sidcmp(u32 x, u32 y)
576{
577	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
578}
579
580/**
581 * avc_update_node Update an AVC entry
582 * @event : Updating event
583 * @perms : Permission mask bits
584 * @ssid,@tsid,@tclass : identifier of an AVC entry
585 * @seqno : sequence number when decision was made
586 *
587 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
588 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
589 * otherwise, this function updates the AVC entry. The original AVC-entry object
590 * will release later by RCU.
591 */
592static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
593			   u32 seqno)
594{
595	int hvalue, rc = 0;
596	unsigned long flag;
597	struct avc_node *pos, *node, *orig = NULL;
598	struct hlist_head *head;
599	struct hlist_node *next;
600	spinlock_t *lock;
601
602	node = avc_alloc_node();
603	if (!node) {
604		rc = -ENOMEM;
605		goto out;
606	}
607
608	/* Lock the target slot */
609	hvalue = avc_hash(ssid, tsid, tclass);
610
611	head = &avc_cache.slots[hvalue];
612	lock = &avc_cache.slots_lock[hvalue];
613
614	spin_lock_irqsave(lock, flag);
615
616	hlist_for_each_entry(pos, next, head, list) {
617		if (ssid == pos->ae.ssid &&
618		    tsid == pos->ae.tsid &&
619		    tclass == pos->ae.tclass &&
620		    seqno == pos->ae.avd.seqno){
621			orig = pos;
622			break;
623		}
624	}
625
626	if (!orig) {
627		rc = -ENOENT;
628		avc_node_kill(node);
629		goto out_unlock;
630	}
631
632	/*
633	 * Copy and replace original node.
634	 */
635
636	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
637
638	switch (event) {
639	case AVC_CALLBACK_GRANT:
640		node->ae.avd.allowed |= perms;
641		break;
642	case AVC_CALLBACK_TRY_REVOKE:
643	case AVC_CALLBACK_REVOKE:
644		node->ae.avd.allowed &= ~perms;
645		break;
646	case AVC_CALLBACK_AUDITALLOW_ENABLE:
647		node->ae.avd.auditallow |= perms;
648		break;
649	case AVC_CALLBACK_AUDITALLOW_DISABLE:
650		node->ae.avd.auditallow &= ~perms;
651		break;
652	case AVC_CALLBACK_AUDITDENY_ENABLE:
653		node->ae.avd.auditdeny |= perms;
654		break;
655	case AVC_CALLBACK_AUDITDENY_DISABLE:
656		node->ae.avd.auditdeny &= ~perms;
657		break;
658	}
659	avc_node_replace(node, orig);
660out_unlock:
661	spin_unlock_irqrestore(lock, flag);
662out:
663	return rc;
664}
665
666/**
667 * avc_flush - Flush the cache
668 */
669static void avc_flush(void)
670{
671	struct hlist_head *head;
672	struct hlist_node *next;
673	struct avc_node *node;
674	spinlock_t *lock;
675	unsigned long flag;
676	int i;
677
678	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
679		head = &avc_cache.slots[i];
680		lock = &avc_cache.slots_lock[i];
681
682		spin_lock_irqsave(lock, flag);
683		/*
684		 * With preemptable RCU, the outer spinlock does not
685		 * prevent RCU grace periods from ending.
686		 */
687		rcu_read_lock();
688		hlist_for_each_entry(node, next, head, list)
689			avc_node_delete(node);
690		rcu_read_unlock();
691		spin_unlock_irqrestore(lock, flag);
692	}
693}
694
695/**
696 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
697 * @seqno: policy sequence number
698 */
699int avc_ss_reset(u32 seqno)
700{
701	struct avc_callback_node *c;
702	int rc = 0, tmprc;
703
704	avc_flush();
705
706	for (c = avc_callbacks; c; c = c->next) {
707		if (c->events & AVC_CALLBACK_RESET) {
708			tmprc = c->callback(AVC_CALLBACK_RESET,
709					    0, 0, 0, 0, NULL);
710			/* save the first error encountered for the return
711			   value and continue processing the callbacks */
712			if (!rc)
713				rc = tmprc;
714		}
715	}
716
717	avc_latest_notif_update(seqno, 0);
718	return rc;
719}
720
721/**
722 * avc_has_perm_noaudit - Check permissions but perform no auditing.
723 * @ssid: source security identifier
724 * @tsid: target security identifier
725 * @tclass: target security class
726 * @requested: requested permissions, interpreted based on @tclass
727 * @flags:  AVC_STRICT or 0
728 * @avd: access vector decisions
729 *
730 * Check the AVC to determine whether the @requested permissions are granted
731 * for the SID pair (@ssid, @tsid), interpreting the permissions
732 * based on @tclass, and call the security server on a cache miss to obtain
733 * a new decision and add it to the cache.  Return a copy of the decisions
734 * in @avd.  Return %0 if all @requested permissions are granted,
735 * -%EACCES if any permissions are denied, or another -errno upon
736 * other errors.  This function is typically called by avc_has_perm(),
737 * but may also be called directly to separate permission checking from
738 * auditing, e.g. in cases where a lock must be held for the check but
739 * should be released for the auditing.
740 */
741int avc_has_perm_noaudit(u32 ssid, u32 tsid,
742			 u16 tclass, u32 requested,
743			 unsigned flags,
744			 struct av_decision *in_avd)
745{
746	struct avc_node *node;
747	struct av_decision avd_entry, *avd;
748	int rc = 0;
749	u32 denied;
750
751	BUG_ON(!requested);
752
753	rcu_read_lock();
754
755	node = avc_lookup(ssid, tsid, tclass);
756	if (!node) {
757		rcu_read_unlock();
758
759		if (in_avd)
760			avd = in_avd;
761		else
762			avd = &avd_entry;
763
764		security_compute_av(ssid, tsid, tclass, avd);
765		rcu_read_lock();
766		node = avc_insert(ssid, tsid, tclass, avd);
767	} else {
768		if (in_avd)
769			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
770		avd = &node->ae.avd;
771	}
772
773	denied = requested & ~(avd->allowed);
774
775	if (denied) {
776		if (flags & AVC_STRICT)
777			rc = -EACCES;
778		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
779			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
780					tsid, tclass, avd->seqno);
781		else
782			rc = -EACCES;
783	}
784
785	rcu_read_unlock();
786	return rc;
787}
788
789/**
790 * avc_has_perm - Check permissions and perform any appropriate auditing.
791 * @ssid: source security identifier
792 * @tsid: target security identifier
793 * @tclass: target security class
794 * @requested: requested permissions, interpreted based on @tclass
795 * @auditdata: auxiliary audit data
796 *
797 * Check the AVC to determine whether the @requested permissions are granted
798 * for the SID pair (@ssid, @tsid), interpreting the permissions
799 * based on @tclass, and call the security server on a cache miss to obtain
800 * a new decision and add it to the cache.  Audit the granting or denial of
801 * permissions in accordance with the policy.  Return %0 if all @requested
802 * permissions are granted, -%EACCES if any permissions are denied, or
803 * another -errno upon other errors.
804 */
805int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
806		 u32 requested, struct common_audit_data *auditdata)
807{
808	struct av_decision avd;
809	int rc;
810
811	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
812	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
813	return rc;
814}
815
816u32 avc_policy_seqno(void)
817{
818	return avc_cache.latest_notif;
819}
820
821void avc_disable(void)
822{
823	/*
824	 * If you are looking at this because you have realized that we are
825	 * not destroying the avc_node_cachep it might be easy to fix, but
826	 * I don't know the memory barrier semantics well enough to know.  It's
827	 * possible that some other task dereferenced security_ops when
828	 * it still pointed to selinux operations.  If that is the case it's
829	 * possible that it is about to use the avc and is about to need the
830	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
831	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
832	 * the cache and get that memory back.
833	 */
834	if (avc_node_cachep) {
835		avc_flush();
836		/* kmem_cache_destroy(avc_node_cachep); */
837	}
838}
839