• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/net/sunrpc/
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/smp_lock.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17
18#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
19
20static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21static int svc_deferred_recv(struct svc_rqst *rqstp);
22static struct cache_deferred_req *svc_defer(struct cache_req *req);
23static void svc_age_temp_xprts(unsigned long closure);
24
25/* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 *   http://www.connectathon.org/talks96/nfstcp.pdf
29 */
30static int svc_conn_age_period = 6*60;
31
32/* List of registered transport classes */
33static DEFINE_SPINLOCK(svc_xprt_class_lock);
34static LIST_HEAD(svc_xprt_class_list);
35
36/* SMP locking strategy:
37 *
38 *	svc_pool->sp_lock protects most of the fields of that pool.
39 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 *	when both need to be taken (rare), svc_serv->sv_lock is first.
41 *	BKL protects svc_serv->sv_nrthread.
42 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 *             and the ->sk_info_authunix cache.
44 *
45 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 *	enqueued multiply. During normal transport processing this bit
47 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 *	Providers should not manipulate this bit directly.
49 *
50 *	Some flags can be set to certain values at any time
51 *	providing that certain rules are followed:
52 *
53 *	XPT_CONN, XPT_DATA:
54 *		- Can be set or cleared at any time.
55 *		- After a set, svc_xprt_enqueue must be called to enqueue
56 *		  the transport for processing.
57 *		- After a clear, the transport must be read/accepted.
58 *		  If this succeeds, it must be set again.
59 *	XPT_CLOSE:
60 *		- Can set at any time. It is never cleared.
61 *      XPT_DEAD:
62 *		- Can only be set while XPT_BUSY is held which ensures
63 *		  that no other thread will be using the transport or will
64 *		  try to set XPT_DEAD.
65 */
66
67int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68{
69	struct svc_xprt_class *cl;
70	int res = -EEXIST;
71
72	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73
74	INIT_LIST_HEAD(&xcl->xcl_list);
75	spin_lock(&svc_xprt_class_lock);
76	/* Make sure there isn't already a class with the same name */
77	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79			goto out;
80	}
81	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82	res = 0;
83out:
84	spin_unlock(&svc_xprt_class_lock);
85	return res;
86}
87EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88
89void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90{
91	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92	spin_lock(&svc_xprt_class_lock);
93	list_del_init(&xcl->xcl_list);
94	spin_unlock(&svc_xprt_class_lock);
95}
96EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97
98/*
99 * Format the transport list for printing
100 */
101int svc_print_xprts(char *buf, int maxlen)
102{
103	struct list_head *le;
104	char tmpstr[80];
105	int len = 0;
106	buf[0] = '\0';
107
108	spin_lock(&svc_xprt_class_lock);
109	list_for_each(le, &svc_xprt_class_list) {
110		int slen;
111		struct svc_xprt_class *xcl =
112			list_entry(le, struct svc_xprt_class, xcl_list);
113
114		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115		slen = strlen(tmpstr);
116		if (len + slen > maxlen)
117			break;
118		len += slen;
119		strcat(buf, tmpstr);
120	}
121	spin_unlock(&svc_xprt_class_lock);
122
123	return len;
124}
125
126static void svc_xprt_free(struct kref *kref)
127{
128	struct svc_xprt *xprt =
129		container_of(kref, struct svc_xprt, xpt_ref);
130	struct module *owner = xprt->xpt_class->xcl_owner;
131	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
132	    xprt->xpt_auth_cache != NULL)
133		svcauth_unix_info_release(xprt->xpt_auth_cache);
134	xprt->xpt_ops->xpo_free(xprt);
135	module_put(owner);
136}
137
138void svc_xprt_put(struct svc_xprt *xprt)
139{
140	kref_put(&xprt->xpt_ref, svc_xprt_free);
141}
142EXPORT_SYMBOL_GPL(svc_xprt_put);
143
144/*
145 * Called by transport drivers to initialize the transport independent
146 * portion of the transport instance.
147 */
148void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
149		   struct svc_serv *serv)
150{
151	memset(xprt, 0, sizeof(*xprt));
152	xprt->xpt_class = xcl;
153	xprt->xpt_ops = xcl->xcl_ops;
154	kref_init(&xprt->xpt_ref);
155	xprt->xpt_server = serv;
156	INIT_LIST_HEAD(&xprt->xpt_list);
157	INIT_LIST_HEAD(&xprt->xpt_ready);
158	INIT_LIST_HEAD(&xprt->xpt_deferred);
159	mutex_init(&xprt->xpt_mutex);
160	spin_lock_init(&xprt->xpt_lock);
161	set_bit(XPT_BUSY, &xprt->xpt_flags);
162	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
163}
164EXPORT_SYMBOL_GPL(svc_xprt_init);
165
166static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167					 struct svc_serv *serv,
168					 const int family,
169					 const unsigned short port,
170					 int flags)
171{
172	struct sockaddr_in sin = {
173		.sin_family		= AF_INET,
174		.sin_addr.s_addr	= htonl(INADDR_ANY),
175		.sin_port		= htons(port),
176	};
177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178	struct sockaddr_in6 sin6 = {
179		.sin6_family		= AF_INET6,
180		.sin6_addr		= IN6ADDR_ANY_INIT,
181		.sin6_port		= htons(port),
182	};
183#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184	struct sockaddr *sap;
185	size_t len;
186
187	switch (family) {
188	case PF_INET:
189		sap = (struct sockaddr *)&sin;
190		len = sizeof(sin);
191		break;
192#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193	case PF_INET6:
194		sap = (struct sockaddr *)&sin6;
195		len = sizeof(sin6);
196		break;
197#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198	default:
199		return ERR_PTR(-EAFNOSUPPORT);
200	}
201
202	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
203}
204
205int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206		    const int family, const unsigned short port,
207		    int flags)
208{
209	struct svc_xprt_class *xcl;
210
211	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212	spin_lock(&svc_xprt_class_lock);
213	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214		struct svc_xprt *newxprt;
215		unsigned short newport;
216
217		if (strcmp(xprt_name, xcl->xcl_name))
218			continue;
219
220		if (!try_module_get(xcl->xcl_owner))
221			goto err;
222
223		spin_unlock(&svc_xprt_class_lock);
224		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
225		if (IS_ERR(newxprt)) {
226			module_put(xcl->xcl_owner);
227			return PTR_ERR(newxprt);
228		}
229
230		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
231		spin_lock_bh(&serv->sv_lock);
232		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
233		spin_unlock_bh(&serv->sv_lock);
234		newport = svc_xprt_local_port(newxprt);
235		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
236		return newport;
237	}
238 err:
239	spin_unlock(&svc_xprt_class_lock);
240	dprintk("svc: transport %s not found\n", xprt_name);
241
242	/* This errno is exposed to user space.  Provide a reasonable
243	 * perror msg for a bad transport. */
244	return -EPROTONOSUPPORT;
245}
246EXPORT_SYMBOL_GPL(svc_create_xprt);
247
248/*
249 * Copy the local and remote xprt addresses to the rqstp structure
250 */
251void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
252{
253	struct sockaddr *sin;
254
255	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
256	rqstp->rq_addrlen = xprt->xpt_remotelen;
257
258	/*
259	 * Destination address in request is needed for binding the
260	 * source address in RPC replies/callbacks later.
261	 */
262	sin = (struct sockaddr *)&xprt->xpt_local;
263	switch (sin->sa_family) {
264	case AF_INET:
265		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
266		break;
267	case AF_INET6:
268		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
269		break;
270	}
271}
272EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
273
274/**
275 * svc_print_addr - Format rq_addr field for printing
276 * @rqstp: svc_rqst struct containing address to print
277 * @buf: target buffer for formatted address
278 * @len: length of target buffer
279 *
280 */
281char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
282{
283	return __svc_print_addr(svc_addr(rqstp), buf, len);
284}
285EXPORT_SYMBOL_GPL(svc_print_addr);
286
287/*
288 * Queue up an idle server thread.  Must have pool->sp_lock held.
289 * Note: this is really a stack rather than a queue, so that we only
290 * use as many different threads as we need, and the rest don't pollute
291 * the cache.
292 */
293static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
294{
295	list_add(&rqstp->rq_list, &pool->sp_threads);
296}
297
298/*
299 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
300 */
301static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
302{
303	list_del(&rqstp->rq_list);
304}
305
306/*
307 * Queue up a transport with data pending. If there are idle nfsd
308 * processes, wake 'em up.
309 *
310 */
311void svc_xprt_enqueue(struct svc_xprt *xprt)
312{
313	struct svc_serv	*serv = xprt->xpt_server;
314	struct svc_pool *pool;
315	struct svc_rqst	*rqstp;
316	int cpu;
317
318	if (!(xprt->xpt_flags &
319	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
320		return;
321
322	cpu = get_cpu();
323	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
324	put_cpu();
325
326	spin_lock_bh(&pool->sp_lock);
327
328	if (!list_empty(&pool->sp_threads) &&
329	    !list_empty(&pool->sp_sockets))
330		printk(KERN_ERR
331		       "svc_xprt_enqueue: "
332		       "threads and transports both waiting??\n");
333
334	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
335		/* Don't enqueue dead transports */
336		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
337		goto out_unlock;
338	}
339
340	pool->sp_stats.packets++;
341
342	/* Mark transport as busy. It will remain in this state until
343	 * the provider calls svc_xprt_received. We update XPT_BUSY
344	 * atomically because it also guards against trying to enqueue
345	 * the transport twice.
346	 */
347	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
348		/* Don't enqueue transport while already enqueued */
349		dprintk("svc: transport %p busy, not enqueued\n", xprt);
350		goto out_unlock;
351	}
352	BUG_ON(xprt->xpt_pool != NULL);
353	xprt->xpt_pool = pool;
354
355	/* Handle pending connection */
356	if (test_bit(XPT_CONN, &xprt->xpt_flags))
357		goto process;
358
359	/* Handle close in-progress */
360	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
361		goto process;
362
363	/* Check if we have space to reply to a request */
364	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
365		/* Don't enqueue while not enough space for reply */
366		dprintk("svc: no write space, transport %p  not enqueued\n",
367			xprt);
368		xprt->xpt_pool = NULL;
369		clear_bit(XPT_BUSY, &xprt->xpt_flags);
370		goto out_unlock;
371	}
372
373 process:
374	if (!list_empty(&pool->sp_threads)) {
375		rqstp = list_entry(pool->sp_threads.next,
376				   struct svc_rqst,
377				   rq_list);
378		dprintk("svc: transport %p served by daemon %p\n",
379			xprt, rqstp);
380		svc_thread_dequeue(pool, rqstp);
381		if (rqstp->rq_xprt)
382			printk(KERN_ERR
383				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
384				rqstp, rqstp->rq_xprt);
385		rqstp->rq_xprt = xprt;
386		svc_xprt_get(xprt);
387		rqstp->rq_reserved = serv->sv_max_mesg;
388		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
389		pool->sp_stats.threads_woken++;
390		BUG_ON(xprt->xpt_pool != pool);
391		wake_up(&rqstp->rq_wait);
392	} else {
393		dprintk("svc: transport %p put into queue\n", xprt);
394		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
395		pool->sp_stats.sockets_queued++;
396		BUG_ON(xprt->xpt_pool != pool);
397	}
398
399out_unlock:
400	spin_unlock_bh(&pool->sp_lock);
401}
402EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
403
404/*
405 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
406 */
407static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
408{
409	struct svc_xprt	*xprt;
410
411	if (list_empty(&pool->sp_sockets))
412		return NULL;
413
414	xprt = list_entry(pool->sp_sockets.next,
415			  struct svc_xprt, xpt_ready);
416	list_del_init(&xprt->xpt_ready);
417
418	dprintk("svc: transport %p dequeued, inuse=%d\n",
419		xprt, atomic_read(&xprt->xpt_ref.refcount));
420
421	return xprt;
422}
423
424/*
425 * svc_xprt_received conditionally queues the transport for processing
426 * by another thread. The caller must hold the XPT_BUSY bit and must
427 * not thereafter touch transport data.
428 *
429 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
430 * insufficient) data.
431 */
432void svc_xprt_received(struct svc_xprt *xprt)
433{
434	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
435	xprt->xpt_pool = NULL;
436	/* As soon as we clear busy, the xprt could be closed and
437	 * 'put', so we need a reference to call svc_xprt_enqueue with:
438	 */
439	svc_xprt_get(xprt);
440	clear_bit(XPT_BUSY, &xprt->xpt_flags);
441	svc_xprt_enqueue(xprt);
442	svc_xprt_put(xprt);
443}
444EXPORT_SYMBOL_GPL(svc_xprt_received);
445
446/**
447 * svc_reserve - change the space reserved for the reply to a request.
448 * @rqstp:  The request in question
449 * @space: new max space to reserve
450 *
451 * Each request reserves some space on the output queue of the transport
452 * to make sure the reply fits.  This function reduces that reserved
453 * space to be the amount of space used already, plus @space.
454 *
455 */
456void svc_reserve(struct svc_rqst *rqstp, int space)
457{
458	space += rqstp->rq_res.head[0].iov_len;
459
460	if (space < rqstp->rq_reserved) {
461		struct svc_xprt *xprt = rqstp->rq_xprt;
462		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
463		rqstp->rq_reserved = space;
464
465		svc_xprt_enqueue(xprt);
466	}
467}
468EXPORT_SYMBOL_GPL(svc_reserve);
469
470static void svc_xprt_release(struct svc_rqst *rqstp)
471{
472	struct svc_xprt	*xprt = rqstp->rq_xprt;
473
474	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
475
476	kfree(rqstp->rq_deferred);
477	rqstp->rq_deferred = NULL;
478
479	svc_free_res_pages(rqstp);
480	rqstp->rq_res.page_len = 0;
481	rqstp->rq_res.page_base = 0;
482
483	/* Reset response buffer and release
484	 * the reservation.
485	 * But first, check that enough space was reserved
486	 * for the reply, otherwise we have a bug!
487	 */
488	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
489		printk(KERN_ERR "RPC request reserved %d but used %d\n",
490		       rqstp->rq_reserved,
491		       rqstp->rq_res.len);
492
493	rqstp->rq_res.head[0].iov_len = 0;
494	svc_reserve(rqstp, 0);
495	rqstp->rq_xprt = NULL;
496
497	svc_xprt_put(xprt);
498}
499
500/*
501 * External function to wake up a server waiting for data
502 * This really only makes sense for services like lockd
503 * which have exactly one thread anyway.
504 */
505void svc_wake_up(struct svc_serv *serv)
506{
507	struct svc_rqst	*rqstp;
508	unsigned int i;
509	struct svc_pool *pool;
510
511	for (i = 0; i < serv->sv_nrpools; i++) {
512		pool = &serv->sv_pools[i];
513
514		spin_lock_bh(&pool->sp_lock);
515		if (!list_empty(&pool->sp_threads)) {
516			rqstp = list_entry(pool->sp_threads.next,
517					   struct svc_rqst,
518					   rq_list);
519			dprintk("svc: daemon %p woken up.\n", rqstp);
520			/*
521			svc_thread_dequeue(pool, rqstp);
522			rqstp->rq_xprt = NULL;
523			 */
524			wake_up(&rqstp->rq_wait);
525		}
526		spin_unlock_bh(&pool->sp_lock);
527	}
528}
529EXPORT_SYMBOL_GPL(svc_wake_up);
530
531int svc_port_is_privileged(struct sockaddr *sin)
532{
533	switch (sin->sa_family) {
534	case AF_INET:
535		return ntohs(((struct sockaddr_in *)sin)->sin_port)
536			< PROT_SOCK;
537	case AF_INET6:
538		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
539			< PROT_SOCK;
540	default:
541		return 0;
542	}
543}
544
545/*
546 * Make sure that we don't have too many active connections. If we have,
547 * something must be dropped. It's not clear what will happen if we allow
548 * "too many" connections, but when dealing with network-facing software,
549 * we have to code defensively. Here we do that by imposing hard limits.
550 *
551 * There's no point in trying to do random drop here for DoS
552 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
553 * attacker can easily beat that.
554 *
555 * The only somewhat efficient mechanism would be if drop old
556 * connections from the same IP first. But right now we don't even
557 * record the client IP in svc_sock.
558 *
559 * single-threaded services that expect a lot of clients will probably
560 * need to set sv_maxconn to override the default value which is based
561 * on the number of threads
562 */
563static void svc_check_conn_limits(struct svc_serv *serv)
564{
565	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
566				(serv->sv_nrthreads+3) * 20;
567
568	if (serv->sv_tmpcnt > limit) {
569		struct svc_xprt *xprt = NULL;
570		spin_lock_bh(&serv->sv_lock);
571		if (!list_empty(&serv->sv_tempsocks)) {
572			if (net_ratelimit()) {
573				/* Try to help the admin */
574				printk(KERN_NOTICE "%s: too many open  "
575				       "connections, consider increasing %s\n",
576				       serv->sv_name, serv->sv_maxconn ?
577				       "the max number of connections." :
578				       "the number of threads.");
579			}
580			/*
581			 * Always select the oldest connection. It's not fair,
582			 * but so is life
583			 */
584			xprt = list_entry(serv->sv_tempsocks.prev,
585					  struct svc_xprt,
586					  xpt_list);
587			set_bit(XPT_CLOSE, &xprt->xpt_flags);
588			svc_xprt_get(xprt);
589		}
590		spin_unlock_bh(&serv->sv_lock);
591
592		if (xprt) {
593			svc_xprt_enqueue(xprt);
594			svc_xprt_put(xprt);
595		}
596	}
597}
598
599/*
600 * Receive the next request on any transport.  This code is carefully
601 * organised not to touch any cachelines in the shared svc_serv
602 * structure, only cachelines in the local svc_pool.
603 */
604int svc_recv(struct svc_rqst *rqstp, long timeout)
605{
606	struct svc_xprt		*xprt = NULL;
607	struct svc_serv		*serv = rqstp->rq_server;
608	struct svc_pool		*pool = rqstp->rq_pool;
609	int			len, i;
610	int			pages;
611	struct xdr_buf		*arg;
612	DECLARE_WAITQUEUE(wait, current);
613	long			time_left;
614
615	dprintk("svc: server %p waiting for data (to = %ld)\n",
616		rqstp, timeout);
617
618	if (rqstp->rq_xprt)
619		printk(KERN_ERR
620			"svc_recv: service %p, transport not NULL!\n",
621			 rqstp);
622	if (waitqueue_active(&rqstp->rq_wait))
623		printk(KERN_ERR
624			"svc_recv: service %p, wait queue active!\n",
625			 rqstp);
626
627	/* now allocate needed pages.  If we get a failure, sleep briefly */
628	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
629	for (i = 0; i < pages ; i++)
630		while (rqstp->rq_pages[i] == NULL) {
631			struct page *p = alloc_page(GFP_KERNEL);
632			if (!p) {
633				set_current_state(TASK_INTERRUPTIBLE);
634				if (signalled() || kthread_should_stop()) {
635					set_current_state(TASK_RUNNING);
636					return -EINTR;
637				}
638				schedule_timeout(msecs_to_jiffies(500));
639			}
640			rqstp->rq_pages[i] = p;
641		}
642	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
643	BUG_ON(pages >= RPCSVC_MAXPAGES);
644
645	/* Make arg->head point to first page and arg->pages point to rest */
646	arg = &rqstp->rq_arg;
647	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
648	arg->head[0].iov_len = PAGE_SIZE;
649	arg->pages = rqstp->rq_pages + 1;
650	arg->page_base = 0;
651	/* save at least one page for response */
652	arg->page_len = (pages-2)*PAGE_SIZE;
653	arg->len = (pages-1)*PAGE_SIZE;
654	arg->tail[0].iov_len = 0;
655
656	try_to_freeze();
657	cond_resched();
658	if (signalled() || kthread_should_stop())
659		return -EINTR;
660
661	spin_lock_bh(&pool->sp_lock);
662	xprt = svc_xprt_dequeue(pool);
663	if (xprt) {
664		rqstp->rq_xprt = xprt;
665		svc_xprt_get(xprt);
666		rqstp->rq_reserved = serv->sv_max_mesg;
667		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
668	} else {
669		/* No data pending. Go to sleep */
670		svc_thread_enqueue(pool, rqstp);
671
672		/*
673		 * We have to be able to interrupt this wait
674		 * to bring down the daemons ...
675		 */
676		set_current_state(TASK_INTERRUPTIBLE);
677
678		/*
679		 * checking kthread_should_stop() here allows us to avoid
680		 * locking and signalling when stopping kthreads that call
681		 * svc_recv. If the thread has already been woken up, then
682		 * we can exit here without sleeping. If not, then it
683		 * it'll be woken up quickly during the schedule_timeout
684		 */
685		if (kthread_should_stop()) {
686			set_current_state(TASK_RUNNING);
687			spin_unlock_bh(&pool->sp_lock);
688			return -EINTR;
689		}
690
691		add_wait_queue(&rqstp->rq_wait, &wait);
692		spin_unlock_bh(&pool->sp_lock);
693
694		time_left = schedule_timeout(timeout);
695
696		try_to_freeze();
697
698		spin_lock_bh(&pool->sp_lock);
699		remove_wait_queue(&rqstp->rq_wait, &wait);
700		if (!time_left)
701			pool->sp_stats.threads_timedout++;
702
703		xprt = rqstp->rq_xprt;
704		if (!xprt) {
705			svc_thread_dequeue(pool, rqstp);
706			spin_unlock_bh(&pool->sp_lock);
707			dprintk("svc: server %p, no data yet\n", rqstp);
708			if (signalled() || kthread_should_stop())
709				return -EINTR;
710			else
711				return -EAGAIN;
712		}
713	}
714	spin_unlock_bh(&pool->sp_lock);
715
716	len = 0;
717	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718		dprintk("svc_recv: found XPT_CLOSE\n");
719		svc_delete_xprt(xprt);
720	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
721		struct svc_xprt *newxpt;
722		newxpt = xprt->xpt_ops->xpo_accept(xprt);
723		if (newxpt) {
724			/*
725			 * We know this module_get will succeed because the
726			 * listener holds a reference too
727			 */
728			__module_get(newxpt->xpt_class->xcl_owner);
729			svc_check_conn_limits(xprt->xpt_server);
730			spin_lock_bh(&serv->sv_lock);
731			set_bit(XPT_TEMP, &newxpt->xpt_flags);
732			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
733			serv->sv_tmpcnt++;
734			if (serv->sv_temptimer.function == NULL) {
735				/* setup timer to age temp transports */
736				setup_timer(&serv->sv_temptimer,
737					    svc_age_temp_xprts,
738					    (unsigned long)serv);
739				mod_timer(&serv->sv_temptimer,
740					  jiffies + svc_conn_age_period * HZ);
741			}
742			spin_unlock_bh(&serv->sv_lock);
743			svc_xprt_received(newxpt);
744		}
745		svc_xprt_received(xprt);
746	} else {
747		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
748			rqstp, pool->sp_id, xprt,
749			atomic_read(&xprt->xpt_ref.refcount));
750		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
751		if (rqstp->rq_deferred) {
752			svc_xprt_received(xprt);
753			len = svc_deferred_recv(rqstp);
754		} else {
755			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
756			svc_xprt_received(xprt);
757		}
758		dprintk("svc: got len=%d\n", len);
759	}
760
761	/* No data, incomplete (TCP) read, or accept() */
762	if (len == 0 || len == -EAGAIN) {
763		rqstp->rq_res.len = 0;
764		svc_xprt_release(rqstp);
765		return -EAGAIN;
766	}
767	clear_bit(XPT_OLD, &xprt->xpt_flags);
768
769	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
770	rqstp->rq_chandle.defer = svc_defer;
771
772	if (serv->sv_stats)
773		serv->sv_stats->netcnt++;
774	return len;
775}
776EXPORT_SYMBOL_GPL(svc_recv);
777
778/*
779 * Drop request
780 */
781void svc_drop(struct svc_rqst *rqstp)
782{
783	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
784	svc_xprt_release(rqstp);
785}
786EXPORT_SYMBOL_GPL(svc_drop);
787
788/*
789 * Return reply to client.
790 */
791int svc_send(struct svc_rqst *rqstp)
792{
793	struct svc_xprt	*xprt;
794	int		len;
795	struct xdr_buf	*xb;
796
797	xprt = rqstp->rq_xprt;
798	if (!xprt)
799		return -EFAULT;
800
801	/* release the receive skb before sending the reply */
802	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
803
804	/* calculate over-all length */
805	xb = &rqstp->rq_res;
806	xb->len = xb->head[0].iov_len +
807		xb->page_len +
808		xb->tail[0].iov_len;
809
810	/* Grab mutex to serialize outgoing data. */
811	mutex_lock(&xprt->xpt_mutex);
812	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
813		len = -ENOTCONN;
814	else
815		len = xprt->xpt_ops->xpo_sendto(rqstp);
816	mutex_unlock(&xprt->xpt_mutex);
817	rpc_wake_up(&xprt->xpt_bc_pending);
818	svc_xprt_release(rqstp);
819
820	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
821		return 0;
822	return len;
823}
824
825/*
826 * Timer function to close old temporary transports, using
827 * a mark-and-sweep algorithm.
828 */
829static void svc_age_temp_xprts(unsigned long closure)
830{
831	struct svc_serv *serv = (struct svc_serv *)closure;
832	struct svc_xprt *xprt;
833	struct list_head *le, *next;
834	LIST_HEAD(to_be_aged);
835
836	dprintk("svc_age_temp_xprts\n");
837
838	if (!spin_trylock_bh(&serv->sv_lock)) {
839		/* busy, try again 1 sec later */
840		dprintk("svc_age_temp_xprts: busy\n");
841		mod_timer(&serv->sv_temptimer, jiffies + HZ);
842		return;
843	}
844
845	list_for_each_safe(le, next, &serv->sv_tempsocks) {
846		xprt = list_entry(le, struct svc_xprt, xpt_list);
847
848		/* First time through, just mark it OLD. Second time
849		 * through, close it. */
850		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
851			continue;
852		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
853		    test_bit(XPT_BUSY, &xprt->xpt_flags))
854			continue;
855		svc_xprt_get(xprt);
856		list_move(le, &to_be_aged);
857		set_bit(XPT_CLOSE, &xprt->xpt_flags);
858		set_bit(XPT_DETACHED, &xprt->xpt_flags);
859	}
860	spin_unlock_bh(&serv->sv_lock);
861
862	while (!list_empty(&to_be_aged)) {
863		le = to_be_aged.next;
864		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
865		list_del_init(le);
866		xprt = list_entry(le, struct svc_xprt, xpt_list);
867
868		dprintk("queuing xprt %p for closing\n", xprt);
869
870		/* a thread will dequeue and close it soon */
871		svc_xprt_enqueue(xprt);
872		svc_xprt_put(xprt);
873	}
874
875	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
876}
877
878/*
879 * Remove a dead transport
880 */
881void svc_delete_xprt(struct svc_xprt *xprt)
882{
883	struct svc_serv	*serv = xprt->xpt_server;
884	struct svc_deferred_req *dr;
885
886	/* Only do this once */
887	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
888		return;
889
890	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
891	xprt->xpt_ops->xpo_detach(xprt);
892
893	spin_lock_bh(&serv->sv_lock);
894	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
895		list_del_init(&xprt->xpt_list);
896	/*
897	 * We used to delete the transport from whichever list
898	 * it's sk_xprt.xpt_ready node was on, but we don't actually
899	 * need to.  This is because the only time we're called
900	 * while still attached to a queue, the queue itself
901	 * is about to be destroyed (in svc_destroy).
902	 */
903	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
904		serv->sv_tmpcnt--;
905	spin_unlock_bh(&serv->sv_lock);
906
907	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
908		kfree(dr);
909
910	svc_xprt_put(xprt);
911}
912
913void svc_close_xprt(struct svc_xprt *xprt)
914{
915	set_bit(XPT_CLOSE, &xprt->xpt_flags);
916	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
917		/* someone else will have to effect the close */
918		return;
919
920	svc_xprt_get(xprt);
921	svc_delete_xprt(xprt);
922	clear_bit(XPT_BUSY, &xprt->xpt_flags);
923	svc_xprt_put(xprt);
924}
925EXPORT_SYMBOL_GPL(svc_close_xprt);
926
927void svc_close_all(struct list_head *xprt_list)
928{
929	struct svc_xprt *xprt;
930	struct svc_xprt *tmp;
931
932	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
933		set_bit(XPT_CLOSE, &xprt->xpt_flags);
934		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
935			/* Waiting to be processed, but no threads left,
936			 * So just remove it from the waiting list
937			 */
938			list_del_init(&xprt->xpt_ready);
939			clear_bit(XPT_BUSY, &xprt->xpt_flags);
940		}
941		svc_close_xprt(xprt);
942	}
943}
944
945/*
946 * Handle defer and revisit of requests
947 */
948
949static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
950{
951	struct svc_deferred_req *dr =
952		container_of(dreq, struct svc_deferred_req, handle);
953	struct svc_xprt *xprt = dr->xprt;
954
955	spin_lock(&xprt->xpt_lock);
956	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
957	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
958		spin_unlock(&xprt->xpt_lock);
959		dprintk("revisit canceled\n");
960		svc_xprt_put(xprt);
961		kfree(dr);
962		return;
963	}
964	dprintk("revisit queued\n");
965	dr->xprt = NULL;
966	list_add(&dr->handle.recent, &xprt->xpt_deferred);
967	spin_unlock(&xprt->xpt_lock);
968	svc_xprt_enqueue(xprt);
969	svc_xprt_put(xprt);
970}
971
972/*
973 * Save the request off for later processing. The request buffer looks
974 * like this:
975 *
976 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
977 *
978 * This code can only handle requests that consist of an xprt-header
979 * and rpc-header.
980 */
981static struct cache_deferred_req *svc_defer(struct cache_req *req)
982{
983	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
984	struct svc_deferred_req *dr;
985
986	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
987		return NULL;
988	if (rqstp->rq_deferred) {
989		dr = rqstp->rq_deferred;
990		rqstp->rq_deferred = NULL;
991	} else {
992		size_t skip;
993		size_t size;
994		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
995		dr = kmalloc(size, GFP_KERNEL);
996		if (dr == NULL)
997			return NULL;
998
999		dr->handle.owner = rqstp->rq_server;
1000		dr->prot = rqstp->rq_prot;
1001		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1002		dr->addrlen = rqstp->rq_addrlen;
1003		dr->daddr = rqstp->rq_daddr;
1004		dr->argslen = rqstp->rq_arg.len >> 2;
1005		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1006
1007		/* back up head to the start of the buffer and copy */
1008		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1009		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1010		       dr->argslen << 2);
1011	}
1012	svc_xprt_get(rqstp->rq_xprt);
1013	dr->xprt = rqstp->rq_xprt;
1014
1015	dr->handle.revisit = svc_revisit;
1016	return &dr->handle;
1017}
1018
1019/*
1020 * recv data from a deferred request into an active one
1021 */
1022static int svc_deferred_recv(struct svc_rqst *rqstp)
1023{
1024	struct svc_deferred_req *dr = rqstp->rq_deferred;
1025
1026	/* setup iov_base past transport header */
1027	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1028	/* The iov_len does not include the transport header bytes */
1029	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1030	rqstp->rq_arg.page_len = 0;
1031	/* The rq_arg.len includes the transport header bytes */
1032	rqstp->rq_arg.len     = dr->argslen<<2;
1033	rqstp->rq_prot        = dr->prot;
1034	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1035	rqstp->rq_addrlen     = dr->addrlen;
1036	/* Save off transport header len in case we get deferred again */
1037	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1038	rqstp->rq_daddr       = dr->daddr;
1039	rqstp->rq_respages    = rqstp->rq_pages;
1040	return (dr->argslen<<2) - dr->xprt_hlen;
1041}
1042
1043
1044static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1045{
1046	struct svc_deferred_req *dr = NULL;
1047
1048	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1049		return NULL;
1050	spin_lock(&xprt->xpt_lock);
1051	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1052	if (!list_empty(&xprt->xpt_deferred)) {
1053		dr = list_entry(xprt->xpt_deferred.next,
1054				struct svc_deferred_req,
1055				handle.recent);
1056		list_del_init(&dr->handle.recent);
1057		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1058	}
1059	spin_unlock(&xprt->xpt_lock);
1060	return dr;
1061}
1062
1063/**
1064 * svc_find_xprt - find an RPC transport instance
1065 * @serv: pointer to svc_serv to search
1066 * @xcl_name: C string containing transport's class name
1067 * @af: Address family of transport's local address
1068 * @port: transport's IP port number
1069 *
1070 * Return the transport instance pointer for the endpoint accepting
1071 * connections/peer traffic from the specified transport class,
1072 * address family and port.
1073 *
1074 * Specifying 0 for the address family or port is effectively a
1075 * wild-card, and will result in matching the first transport in the
1076 * service's list that has a matching class name.
1077 */
1078struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1079			       const sa_family_t af, const unsigned short port)
1080{
1081	struct svc_xprt *xprt;
1082	struct svc_xprt *found = NULL;
1083
1084	/* Sanity check the args */
1085	if (serv == NULL || xcl_name == NULL)
1086		return found;
1087
1088	spin_lock_bh(&serv->sv_lock);
1089	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1090		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1091			continue;
1092		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1093			continue;
1094		if (port != 0 && port != svc_xprt_local_port(xprt))
1095			continue;
1096		found = xprt;
1097		svc_xprt_get(xprt);
1098		break;
1099	}
1100	spin_unlock_bh(&serv->sv_lock);
1101	return found;
1102}
1103EXPORT_SYMBOL_GPL(svc_find_xprt);
1104
1105static int svc_one_xprt_name(const struct svc_xprt *xprt,
1106			     char *pos, int remaining)
1107{
1108	int len;
1109
1110	len = snprintf(pos, remaining, "%s %u\n",
1111			xprt->xpt_class->xcl_name,
1112			svc_xprt_local_port(xprt));
1113	if (len >= remaining)
1114		return -ENAMETOOLONG;
1115	return len;
1116}
1117
1118/**
1119 * svc_xprt_names - format a buffer with a list of transport names
1120 * @serv: pointer to an RPC service
1121 * @buf: pointer to a buffer to be filled in
1122 * @buflen: length of buffer to be filled in
1123 *
1124 * Fills in @buf with a string containing a list of transport names,
1125 * each name terminated with '\n'.
1126 *
1127 * Returns positive length of the filled-in string on success; otherwise
1128 * a negative errno value is returned if an error occurs.
1129 */
1130int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1131{
1132	struct svc_xprt *xprt;
1133	int len, totlen;
1134	char *pos;
1135
1136	/* Sanity check args */
1137	if (!serv)
1138		return 0;
1139
1140	spin_lock_bh(&serv->sv_lock);
1141
1142	pos = buf;
1143	totlen = 0;
1144	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1145		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1146		if (len < 0) {
1147			*buf = '\0';
1148			totlen = len;
1149		}
1150		if (len <= 0)
1151			break;
1152
1153		pos += len;
1154		totlen += len;
1155	}
1156
1157	spin_unlock_bh(&serv->sv_lock);
1158	return totlen;
1159}
1160EXPORT_SYMBOL_GPL(svc_xprt_names);
1161
1162
1163/*----------------------------------------------------------------------------*/
1164
1165static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1166{
1167	unsigned int pidx = (unsigned int)*pos;
1168	struct svc_serv *serv = m->private;
1169
1170	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1171
1172	if (!pidx)
1173		return SEQ_START_TOKEN;
1174	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1175}
1176
1177static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1178{
1179	struct svc_pool *pool = p;
1180	struct svc_serv *serv = m->private;
1181
1182	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1183
1184	if (p == SEQ_START_TOKEN) {
1185		pool = &serv->sv_pools[0];
1186	} else {
1187		unsigned int pidx = (pool - &serv->sv_pools[0]);
1188		if (pidx < serv->sv_nrpools-1)
1189			pool = &serv->sv_pools[pidx+1];
1190		else
1191			pool = NULL;
1192	}
1193	++*pos;
1194	return pool;
1195}
1196
1197static void svc_pool_stats_stop(struct seq_file *m, void *p)
1198{
1199}
1200
1201static int svc_pool_stats_show(struct seq_file *m, void *p)
1202{
1203	struct svc_pool *pool = p;
1204
1205	if (p == SEQ_START_TOKEN) {
1206		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1207		return 0;
1208	}
1209
1210	seq_printf(m, "%u %lu %lu %lu %lu\n",
1211		pool->sp_id,
1212		pool->sp_stats.packets,
1213		pool->sp_stats.sockets_queued,
1214		pool->sp_stats.threads_woken,
1215		pool->sp_stats.threads_timedout);
1216
1217	return 0;
1218}
1219
1220static const struct seq_operations svc_pool_stats_seq_ops = {
1221	.start	= svc_pool_stats_start,
1222	.next	= svc_pool_stats_next,
1223	.stop	= svc_pool_stats_stop,
1224	.show	= svc_pool_stats_show,
1225};
1226
1227int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1228{
1229	int err;
1230
1231	err = seq_open(file, &svc_pool_stats_seq_ops);
1232	if (!err)
1233		((struct seq_file *) file->private_data)->private = serv;
1234	return err;
1235}
1236EXPORT_SYMBOL(svc_pool_stats_open);
1237
1238/*----------------------------------------------------------------------------*/
1239