1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/ksm.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55#include <linux/module.h>
56#include <linux/memcontrol.h>
57#include <linux/mmu_notifier.h>
58#include <linux/migrate.h>
59#include <linux/hugetlb.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
73void anon_vma_free(struct anon_vma *anon_vma)
74{
75	kmem_cache_free(anon_vma_cachep, anon_vma);
76}
77
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
83void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84{
85	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117	struct anon_vma *anon_vma = vma->anon_vma;
118	struct anon_vma_chain *avc;
119
120	might_sleep();
121	if (unlikely(!anon_vma)) {
122		struct mm_struct *mm = vma->vm_mm;
123		struct anon_vma *allocated;
124
125		avc = anon_vma_chain_alloc();
126		if (!avc)
127			goto out_enomem;
128
129		anon_vma = find_mergeable_anon_vma(vma);
130		allocated = NULL;
131		if (!anon_vma) {
132			anon_vma = anon_vma_alloc();
133			if (unlikely(!anon_vma))
134				goto out_enomem_free_avc;
135			allocated = anon_vma;
136			/*
137			 * This VMA had no anon_vma yet.  This anon_vma is
138			 * the root of any anon_vma tree that might form.
139			 */
140			anon_vma->root = anon_vma;
141		}
142
143		anon_vma_lock(anon_vma);
144		/* page_table_lock to protect against threads */
145		spin_lock(&mm->page_table_lock);
146		if (likely(!vma->anon_vma)) {
147			vma->anon_vma = anon_vma;
148			avc->anon_vma = anon_vma;
149			avc->vma = vma;
150			list_add(&avc->same_vma, &vma->anon_vma_chain);
151			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152			allocated = NULL;
153			avc = NULL;
154		}
155		spin_unlock(&mm->page_table_lock);
156		anon_vma_unlock(anon_vma);
157
158		if (unlikely(allocated))
159			anon_vma_free(allocated);
160		if (unlikely(avc))
161			anon_vma_chain_free(avc);
162	}
163	return 0;
164
165 out_enomem_free_avc:
166	anon_vma_chain_free(avc);
167 out_enomem:
168	return -ENOMEM;
169}
170
171static void anon_vma_chain_link(struct vm_area_struct *vma,
172				struct anon_vma_chain *avc,
173				struct anon_vma *anon_vma)
174{
175	avc->vma = vma;
176	avc->anon_vma = anon_vma;
177	list_add(&avc->same_vma, &vma->anon_vma_chain);
178
179	anon_vma_lock(anon_vma);
180	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181	anon_vma_unlock(anon_vma);
182}
183
184/*
185 * Attach the anon_vmas from src to dst.
186 * Returns 0 on success, -ENOMEM on failure.
187 */
188int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189{
190	struct anon_vma_chain *avc, *pavc;
191
192	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193		avc = anon_vma_chain_alloc();
194		if (!avc)
195			goto enomem_failure;
196		anon_vma_chain_link(dst, avc, pavc->anon_vma);
197	}
198	return 0;
199
200 enomem_failure:
201	unlink_anon_vmas(dst);
202	return -ENOMEM;
203}
204
205/*
206 * Attach vma to its own anon_vma, as well as to the anon_vmas that
207 * the corresponding VMA in the parent process is attached to.
208 * Returns 0 on success, non-zero on failure.
209 */
210int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211{
212	struct anon_vma_chain *avc;
213	struct anon_vma *anon_vma;
214
215	/* Don't bother if the parent process has no anon_vma here. */
216	if (!pvma->anon_vma)
217		return 0;
218
219	/*
220	 * First, attach the new VMA to the parent VMA's anon_vmas,
221	 * so rmap can find non-COWed pages in child processes.
222	 */
223	if (anon_vma_clone(vma, pvma))
224		return -ENOMEM;
225
226	/* Then add our own anon_vma. */
227	anon_vma = anon_vma_alloc();
228	if (!anon_vma)
229		goto out_error;
230	avc = anon_vma_chain_alloc();
231	if (!avc)
232		goto out_error_free_anon_vma;
233
234	/*
235	 * The root anon_vma's spinlock is the lock actually used when we
236	 * lock any of the anon_vmas in this anon_vma tree.
237	 */
238	anon_vma->root = pvma->anon_vma->root;
239	/*
240	 * With KSM refcounts, an anon_vma can stay around longer than the
241	 * process it belongs to.  The root anon_vma needs to be pinned
242	 * until this anon_vma is freed, because the lock lives in the root.
243	 */
244	get_anon_vma(anon_vma->root);
245	/* Mark this anon_vma as the one where our new (COWed) pages go. */
246	vma->anon_vma = anon_vma;
247	anon_vma_chain_link(vma, avc, anon_vma);
248
249	return 0;
250
251 out_error_free_anon_vma:
252	anon_vma_free(anon_vma);
253 out_error:
254	unlink_anon_vmas(vma);
255	return -ENOMEM;
256}
257
258static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259{
260	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261	int empty;
262
263	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264	if (!anon_vma)
265		return;
266
267	anon_vma_lock(anon_vma);
268	list_del(&anon_vma_chain->same_anon_vma);
269
270	/* We must garbage collect the anon_vma if it's empty */
271	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272	anon_vma_unlock(anon_vma);
273
274	if (empty) {
275		/* We no longer need the root anon_vma */
276		if (anon_vma->root != anon_vma)
277			drop_anon_vma(anon_vma->root);
278		anon_vma_free(anon_vma);
279	}
280}
281
282void unlink_anon_vmas(struct vm_area_struct *vma)
283{
284	struct anon_vma_chain *avc, *next;
285
286	/*
287	 * Unlink each anon_vma chained to the VMA.  This list is ordered
288	 * from newest to oldest, ensuring the root anon_vma gets freed last.
289	 */
290	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291		anon_vma_unlink(avc);
292		list_del(&avc->same_vma);
293		anon_vma_chain_free(avc);
294	}
295}
296
297static void anon_vma_ctor(void *data)
298{
299	struct anon_vma *anon_vma = data;
300
301	spin_lock_init(&anon_vma->lock);
302	anonvma_external_refcount_init(anon_vma);
303	INIT_LIST_HEAD(&anon_vma->head);
304}
305
306void __init anon_vma_init(void)
307{
308	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
311}
312
313/*
314 * Getting a lock on a stable anon_vma from a page off the LRU is
315 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316 */
317struct anon_vma *page_lock_anon_vma(struct page *page)
318{
319	struct anon_vma *anon_vma, *root_anon_vma;
320	unsigned long anon_mapping;
321
322	rcu_read_lock();
323	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325		goto out;
326	if (!page_mapped(page))
327		goto out;
328
329	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330	root_anon_vma = ACCESS_ONCE(anon_vma->root);
331	spin_lock(&root_anon_vma->lock);
332
333	/*
334	 * If this page is still mapped, then its anon_vma cannot have been
335	 * freed.  But if it has been unmapped, we have no security against
336	 * the anon_vma structure being freed and reused (for another anon_vma:
337	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340	 */
341	if (page_mapped(page))
342		return anon_vma;
343
344	spin_unlock(&root_anon_vma->lock);
345out:
346	rcu_read_unlock();
347	return NULL;
348}
349
350void page_unlock_anon_vma(struct anon_vma *anon_vma)
351{
352	anon_vma_unlock(anon_vma);
353	rcu_read_unlock();
354}
355
356/*
357 * At what user virtual address is page expected in @vma?
358 * Returns virtual address or -EFAULT if page's index/offset is not
359 * within the range mapped the @vma.
360 */
361static inline unsigned long
362vma_address(struct page *page, struct vm_area_struct *vma)
363{
364	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
365	unsigned long address;
366
367	if (unlikely(is_vm_hugetlb_page(vma)))
368		pgoff = page->index << huge_page_order(page_hstate(page));
369	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
370	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
371		/* page should be within @vma mapping range */
372		return -EFAULT;
373	}
374	return address;
375}
376
377/*
378 * At what user virtual address is page expected in vma?
379 * Caller should check the page is actually part of the vma.
380 */
381unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
382{
383	if (PageAnon(page)) {
384		struct anon_vma *page__anon_vma = page_anon_vma(page);
385		/*
386		 * Note: swapoff's unuse_vma() is more efficient with this
387		 * check, and needs it to match anon_vma when KSM is active.
388		 */
389		if (!vma->anon_vma || !page__anon_vma ||
390		    vma->anon_vma->root != page__anon_vma->root)
391			return -EFAULT;
392	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
393		if (!vma->vm_file ||
394		    vma->vm_file->f_mapping != page->mapping)
395			return -EFAULT;
396	} else
397		return -EFAULT;
398	return vma_address(page, vma);
399}
400
401/*
402 * Check that @page is mapped at @address into @mm.
403 *
404 * If @sync is false, page_check_address may perform a racy check to avoid
405 * the page table lock when the pte is not present (helpful when reclaiming
406 * highly shared pages).
407 *
408 * On success returns with pte mapped and locked.
409 */
410pte_t *page_check_address(struct page *page, struct mm_struct *mm,
411			  unsigned long address, spinlock_t **ptlp, int sync)
412{
413	pgd_t *pgd;
414	pud_t *pud;
415	pmd_t *pmd;
416	pte_t *pte;
417	spinlock_t *ptl;
418
419	if (unlikely(PageHuge(page))) {
420		pte = huge_pte_offset(mm, address);
421		ptl = &mm->page_table_lock;
422		goto check;
423	}
424
425	pgd = pgd_offset(mm, address);
426	if (!pgd_present(*pgd))
427		return NULL;
428
429	pud = pud_offset(pgd, address);
430	if (!pud_present(*pud))
431		return NULL;
432
433	pmd = pmd_offset(pud, address);
434	if (!pmd_present(*pmd))
435		return NULL;
436
437	pte = pte_offset_map(pmd, address);
438	/* Make a quick check before getting the lock */
439	if (!sync && !pte_present(*pte)) {
440		pte_unmap(pte);
441		return NULL;
442	}
443
444	ptl = pte_lockptr(mm, pmd);
445check:
446	spin_lock(ptl);
447	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
448		*ptlp = ptl;
449		return pte;
450	}
451	pte_unmap_unlock(pte, ptl);
452	return NULL;
453}
454
455/**
456 * page_mapped_in_vma - check whether a page is really mapped in a VMA
457 * @page: the page to test
458 * @vma: the VMA to test
459 *
460 * Returns 1 if the page is mapped into the page tables of the VMA, 0
461 * if the page is not mapped into the page tables of this VMA.  Only
462 * valid for normal file or anonymous VMAs.
463 */
464int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
465{
466	unsigned long address;
467	pte_t *pte;
468	spinlock_t *ptl;
469
470	address = vma_address(page, vma);
471	if (address == -EFAULT)		/* out of vma range */
472		return 0;
473	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
474	if (!pte)			/* the page is not in this mm */
475		return 0;
476	pte_unmap_unlock(pte, ptl);
477
478	return 1;
479}
480
481/*
482 * Subfunctions of page_referenced: page_referenced_one called
483 * repeatedly from either page_referenced_anon or page_referenced_file.
484 */
485int page_referenced_one(struct page *page, struct vm_area_struct *vma,
486			unsigned long address, unsigned int *mapcount,
487			unsigned long *vm_flags)
488{
489	struct mm_struct *mm = vma->vm_mm;
490	pte_t *pte;
491	spinlock_t *ptl;
492	int referenced = 0;
493
494	pte = page_check_address(page, mm, address, &ptl, 0);
495	if (!pte)
496		goto out;
497
498	/*
499	 * Don't want to elevate referenced for mlocked page that gets this far,
500	 * in order that it progresses to try_to_unmap and is moved to the
501	 * unevictable list.
502	 */
503	if (vma->vm_flags & VM_LOCKED) {
504		*mapcount = 1;	/* break early from loop */
505		*vm_flags |= VM_LOCKED;
506		goto out_unmap;
507	}
508
509	if (ptep_clear_flush_young_notify(vma, address, pte)) {
510		/*
511		 * Don't treat a reference through a sequentially read
512		 * mapping as such.  If the page has been used in
513		 * another mapping, we will catch it; if this other
514		 * mapping is already gone, the unmap path will have
515		 * set PG_referenced or activated the page.
516		 */
517		if (likely(!VM_SequentialReadHint(vma)))
518			referenced++;
519	}
520
521	/* Pretend the page is referenced if the task has the
522	   swap token and is in the middle of a page fault. */
523	if (mm != current->mm && has_swap_token(mm) &&
524			rwsem_is_locked(&mm->mmap_sem))
525		referenced++;
526
527out_unmap:
528	(*mapcount)--;
529	pte_unmap_unlock(pte, ptl);
530
531	if (referenced)
532		*vm_flags |= vma->vm_flags;
533out:
534	return referenced;
535}
536
537static int page_referenced_anon(struct page *page,
538				struct mem_cgroup *mem_cont,
539				unsigned long *vm_flags)
540{
541	unsigned int mapcount;
542	struct anon_vma *anon_vma;
543	struct anon_vma_chain *avc;
544	int referenced = 0;
545
546	anon_vma = page_lock_anon_vma(page);
547	if (!anon_vma)
548		return referenced;
549
550	mapcount = page_mapcount(page);
551	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
552		struct vm_area_struct *vma = avc->vma;
553		unsigned long address = vma_address(page, vma);
554		if (address == -EFAULT)
555			continue;
556		/*
557		 * If we are reclaiming on behalf of a cgroup, skip
558		 * counting on behalf of references from different
559		 * cgroups
560		 */
561		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
562			continue;
563		referenced += page_referenced_one(page, vma, address,
564						  &mapcount, vm_flags);
565		if (!mapcount)
566			break;
567	}
568
569	page_unlock_anon_vma(anon_vma);
570	return referenced;
571}
572
573/**
574 * page_referenced_file - referenced check for object-based rmap
575 * @page: the page we're checking references on.
576 * @mem_cont: target memory controller
577 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
578 *
579 * For an object-based mapped page, find all the places it is mapped and
580 * check/clear the referenced flag.  This is done by following the page->mapping
581 * pointer, then walking the chain of vmas it holds.  It returns the number
582 * of references it found.
583 *
584 * This function is only called from page_referenced for object-based pages.
585 */
586static int page_referenced_file(struct page *page,
587				struct mem_cgroup *mem_cont,
588				unsigned long *vm_flags)
589{
590	unsigned int mapcount;
591	struct address_space *mapping = page->mapping;
592	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
593	struct vm_area_struct *vma;
594	struct prio_tree_iter iter;
595	int referenced = 0;
596
597	/*
598	 * The caller's checks on page->mapping and !PageAnon have made
599	 * sure that this is a file page: the check for page->mapping
600	 * excludes the case just before it gets set on an anon page.
601	 */
602	BUG_ON(PageAnon(page));
603
604	/*
605	 * The page lock not only makes sure that page->mapping cannot
606	 * suddenly be NULLified by truncation, it makes sure that the
607	 * structure at mapping cannot be freed and reused yet,
608	 * so we can safely take mapping->i_mmap_lock.
609	 */
610	BUG_ON(!PageLocked(page));
611
612	spin_lock(&mapping->i_mmap_lock);
613
614	/*
615	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
616	 * is more likely to be accurate if we note it after spinning.
617	 */
618	mapcount = page_mapcount(page);
619
620	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
621		unsigned long address = vma_address(page, vma);
622		if (address == -EFAULT)
623			continue;
624		/*
625		 * If we are reclaiming on behalf of a cgroup, skip
626		 * counting on behalf of references from different
627		 * cgroups
628		 */
629		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
630			continue;
631		referenced += page_referenced_one(page, vma, address,
632						  &mapcount, vm_flags);
633		if (!mapcount)
634			break;
635	}
636
637	spin_unlock(&mapping->i_mmap_lock);
638	return referenced;
639}
640
641/**
642 * page_referenced - test if the page was referenced
643 * @page: the page to test
644 * @is_locked: caller holds lock on the page
645 * @mem_cont: target memory controller
646 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
647 *
648 * Quick test_and_clear_referenced for all mappings to a page,
649 * returns the number of ptes which referenced the page.
650 */
651int page_referenced(struct page *page,
652		    int is_locked,
653		    struct mem_cgroup *mem_cont,
654		    unsigned long *vm_flags)
655{
656	int referenced = 0;
657	int we_locked = 0;
658
659	*vm_flags = 0;
660	if (page_mapped(page) && page_rmapping(page)) {
661		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
662			we_locked = trylock_page(page);
663			if (!we_locked) {
664				referenced++;
665				goto out;
666			}
667		}
668		if (unlikely(PageKsm(page)))
669			referenced += page_referenced_ksm(page, mem_cont,
670								vm_flags);
671		else if (PageAnon(page))
672			referenced += page_referenced_anon(page, mem_cont,
673								vm_flags);
674		else if (page->mapping)
675			referenced += page_referenced_file(page, mem_cont,
676								vm_flags);
677		if (we_locked)
678			unlock_page(page);
679	}
680out:
681	if (page_test_and_clear_young(page))
682		referenced++;
683
684	return referenced;
685}
686
687static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
688			    unsigned long address)
689{
690	struct mm_struct *mm = vma->vm_mm;
691	pte_t *pte;
692	spinlock_t *ptl;
693	int ret = 0;
694
695	pte = page_check_address(page, mm, address, &ptl, 1);
696	if (!pte)
697		goto out;
698
699	if (pte_dirty(*pte) || pte_write(*pte)) {
700		pte_t entry;
701
702		flush_cache_page(vma, address, pte_pfn(*pte));
703		entry = ptep_clear_flush_notify(vma, address, pte);
704		entry = pte_wrprotect(entry);
705		entry = pte_mkclean(entry);
706		set_pte_at(mm, address, pte, entry);
707		ret = 1;
708	}
709
710	pte_unmap_unlock(pte, ptl);
711out:
712	return ret;
713}
714
715static int page_mkclean_file(struct address_space *mapping, struct page *page)
716{
717	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
718	struct vm_area_struct *vma;
719	struct prio_tree_iter iter;
720	int ret = 0;
721
722	BUG_ON(PageAnon(page));
723
724	spin_lock(&mapping->i_mmap_lock);
725	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
726		if (vma->vm_flags & VM_SHARED) {
727			unsigned long address = vma_address(page, vma);
728			if (address == -EFAULT)
729				continue;
730			ret += page_mkclean_one(page, vma, address);
731		}
732	}
733	spin_unlock(&mapping->i_mmap_lock);
734	return ret;
735}
736
737int page_mkclean(struct page *page)
738{
739	int ret = 0;
740
741	BUG_ON(!PageLocked(page));
742
743	if (page_mapped(page)) {
744		struct address_space *mapping = page_mapping(page);
745		if (mapping) {
746			ret = page_mkclean_file(mapping, page);
747			if (page_test_dirty(page)) {
748				page_clear_dirty(page);
749				ret = 1;
750			}
751		}
752	}
753
754	return ret;
755}
756EXPORT_SYMBOL_GPL(page_mkclean);
757
758/**
759 * page_move_anon_rmap - move a page to our anon_vma
760 * @page:	the page to move to our anon_vma
761 * @vma:	the vma the page belongs to
762 * @address:	the user virtual address mapped
763 *
764 * When a page belongs exclusively to one process after a COW event,
765 * that page can be moved into the anon_vma that belongs to just that
766 * process, so the rmap code will not search the parent or sibling
767 * processes.
768 */
769void page_move_anon_rmap(struct page *page,
770	struct vm_area_struct *vma, unsigned long address)
771{
772	struct anon_vma *anon_vma = vma->anon_vma;
773
774	VM_BUG_ON(!PageLocked(page));
775	VM_BUG_ON(!anon_vma);
776	VM_BUG_ON(page->index != linear_page_index(vma, address));
777
778	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
779	page->mapping = (struct address_space *) anon_vma;
780}
781
782/**
783 * __page_set_anon_rmap - setup new anonymous rmap
784 * @page:	the page to add the mapping to
785 * @vma:	the vm area in which the mapping is added
786 * @address:	the user virtual address mapped
787 * @exclusive:	the page is exclusively owned by the current process
788 */
789static void __page_set_anon_rmap(struct page *page,
790	struct vm_area_struct *vma, unsigned long address, int exclusive)
791{
792	struct anon_vma *anon_vma = vma->anon_vma;
793
794	BUG_ON(!anon_vma);
795
796	/*
797	 * If the page isn't exclusively mapped into this vma,
798	 * we must use the _oldest_ possible anon_vma for the
799	 * page mapping!
800	 */
801	if (!exclusive) {
802		if (PageAnon(page))
803			return;
804		anon_vma = anon_vma->root;
805	} else {
806		/*
807		 * In this case, swapped-out-but-not-discarded swap-cache
808		 * is remapped. So, no need to update page->mapping here.
809		 * We convice anon_vma poitned by page->mapping is not obsolete
810		 * because vma->anon_vma is necessary to be a family of it.
811		 */
812		if (PageAnon(page))
813			return;
814	}
815
816	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
817	page->mapping = (struct address_space *) anon_vma;
818	page->index = linear_page_index(vma, address);
819}
820
821/**
822 * __page_check_anon_rmap - sanity check anonymous rmap addition
823 * @page:	the page to add the mapping to
824 * @vma:	the vm area in which the mapping is added
825 * @address:	the user virtual address mapped
826 */
827static void __page_check_anon_rmap(struct page *page,
828	struct vm_area_struct *vma, unsigned long address)
829{
830#ifdef CONFIG_DEBUG_VM
831	/*
832	 * The page's anon-rmap details (mapping and index) are guaranteed to
833	 * be set up correctly at this point.
834	 *
835	 * We have exclusion against page_add_anon_rmap because the caller
836	 * always holds the page locked, except if called from page_dup_rmap,
837	 * in which case the page is already known to be setup.
838	 *
839	 * We have exclusion against page_add_new_anon_rmap because those pages
840	 * are initially only visible via the pagetables, and the pte is locked
841	 * over the call to page_add_new_anon_rmap.
842	 */
843	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
844	BUG_ON(page->index != linear_page_index(vma, address));
845#endif
846}
847
848/**
849 * page_add_anon_rmap - add pte mapping to an anonymous page
850 * @page:	the page to add the mapping to
851 * @vma:	the vm area in which the mapping is added
852 * @address:	the user virtual address mapped
853 *
854 * The caller needs to hold the pte lock, and the page must be locked in
855 * the anon_vma case: to serialize mapping,index checking after setting,
856 * and to ensure that PageAnon is not being upgraded racily to PageKsm
857 * (but PageKsm is never downgraded to PageAnon).
858 */
859void page_add_anon_rmap(struct page *page,
860	struct vm_area_struct *vma, unsigned long address)
861{
862	do_page_add_anon_rmap(page, vma, address, 0);
863}
864
865/*
866 * Special version of the above for do_swap_page, which often runs
867 * into pages that are exclusively owned by the current process.
868 * Everybody else should continue to use page_add_anon_rmap above.
869 */
870void do_page_add_anon_rmap(struct page *page,
871	struct vm_area_struct *vma, unsigned long address, int exclusive)
872{
873	int first = atomic_inc_and_test(&page->_mapcount);
874	if (first)
875		__inc_zone_page_state(page, NR_ANON_PAGES);
876	if (unlikely(PageKsm(page)))
877		return;
878
879	VM_BUG_ON(!PageLocked(page));
880	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
881	if (first)
882		__page_set_anon_rmap(page, vma, address, exclusive);
883	else
884		__page_check_anon_rmap(page, vma, address);
885}
886
887/**
888 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
889 * @page:	the page to add the mapping to
890 * @vma:	the vm area in which the mapping is added
891 * @address:	the user virtual address mapped
892 *
893 * Same as page_add_anon_rmap but must only be called on *new* pages.
894 * This means the inc-and-test can be bypassed.
895 * Page does not have to be locked.
896 */
897void page_add_new_anon_rmap(struct page *page,
898	struct vm_area_struct *vma, unsigned long address)
899{
900	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
901	SetPageSwapBacked(page);
902	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
903	__inc_zone_page_state(page, NR_ANON_PAGES);
904	__page_set_anon_rmap(page, vma, address, 1);
905	if (page_evictable(page, vma))
906		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
907	else
908		add_page_to_unevictable_list(page);
909}
910
911/**
912 * page_add_file_rmap - add pte mapping to a file page
913 * @page: the page to add the mapping to
914 *
915 * The caller needs to hold the pte lock.
916 */
917void page_add_file_rmap(struct page *page)
918{
919	if (atomic_inc_and_test(&page->_mapcount)) {
920		__inc_zone_page_state(page, NR_FILE_MAPPED);
921		mem_cgroup_update_file_mapped(page, 1);
922	}
923}
924
925/**
926 * page_remove_rmap - take down pte mapping from a page
927 * @page: page to remove mapping from
928 *
929 * The caller needs to hold the pte lock.
930 */
931void page_remove_rmap(struct page *page)
932{
933	/* page still mapped by someone else? */
934	if (!atomic_add_negative(-1, &page->_mapcount))
935		return;
936
937	/*
938	 * Now that the last pte has gone, s390 must transfer dirty
939	 * flag from storage key to struct page.  We can usually skip
940	 * this if the page is anon, so about to be freed; but perhaps
941	 * not if it's in swapcache - there might be another pte slot
942	 * containing the swap entry, but page not yet written to swap.
943	 */
944	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
945		page_clear_dirty(page);
946		set_page_dirty(page);
947	}
948	/*
949	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
950	 * and not charged by memcg for now.
951	 */
952	if (unlikely(PageHuge(page)))
953		return;
954	if (PageAnon(page)) {
955		mem_cgroup_uncharge_page(page);
956		__dec_zone_page_state(page, NR_ANON_PAGES);
957	} else {
958		__dec_zone_page_state(page, NR_FILE_MAPPED);
959		mem_cgroup_update_file_mapped(page, -1);
960	}
961	/*
962	 * It would be tidy to reset the PageAnon mapping here,
963	 * but that might overwrite a racing page_add_anon_rmap
964	 * which increments mapcount after us but sets mapping
965	 * before us: so leave the reset to free_hot_cold_page,
966	 * and remember that it's only reliable while mapped.
967	 * Leaving it set also helps swapoff to reinstate ptes
968	 * faster for those pages still in swapcache.
969	 */
970}
971
972/*
973 * Subfunctions of try_to_unmap: try_to_unmap_one called
974 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
975 */
976int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
977		     unsigned long address, enum ttu_flags flags)
978{
979	struct mm_struct *mm = vma->vm_mm;
980	pte_t *pte;
981	pte_t pteval;
982	spinlock_t *ptl;
983	int ret = SWAP_AGAIN;
984
985	pte = page_check_address(page, mm, address, &ptl, 0);
986	if (!pte)
987		goto out;
988
989	/*
990	 * If the page is mlock()d, we cannot swap it out.
991	 * If it's recently referenced (perhaps page_referenced
992	 * skipped over this mm) then we should reactivate it.
993	 */
994	if (!(flags & TTU_IGNORE_MLOCK)) {
995		if (vma->vm_flags & VM_LOCKED)
996			goto out_mlock;
997
998		if (TTU_ACTION(flags) == TTU_MUNLOCK)
999			goto out_unmap;
1000	}
1001	if (!(flags & TTU_IGNORE_ACCESS)) {
1002		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1003			ret = SWAP_FAIL;
1004			goto out_unmap;
1005		}
1006  	}
1007
1008	/* Nuke the page table entry. */
1009	flush_cache_page(vma, address, page_to_pfn(page));
1010	pteval = ptep_clear_flush_notify(vma, address, pte);
1011
1012	/* Move the dirty bit to the physical page now the pte is gone. */
1013	if (pte_dirty(pteval))
1014		set_page_dirty(page);
1015
1016	/* Update high watermark before we lower rss */
1017	update_hiwater_rss(mm);
1018
1019	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1020		if (PageAnon(page))
1021			dec_mm_counter(mm, MM_ANONPAGES);
1022		else
1023			dec_mm_counter(mm, MM_FILEPAGES);
1024		set_pte_at(mm, address, pte,
1025				swp_entry_to_pte(make_hwpoison_entry(page)));
1026	} else if (PageAnon(page)) {
1027		swp_entry_t entry = { .val = page_private(page) };
1028
1029		if (PageSwapCache(page)) {
1030			/*
1031			 * Store the swap location in the pte.
1032			 * See handle_pte_fault() ...
1033			 */
1034			if (swap_duplicate(entry) < 0) {
1035				set_pte_at(mm, address, pte, pteval);
1036				ret = SWAP_FAIL;
1037				goto out_unmap;
1038			}
1039			if (list_empty(&mm->mmlist)) {
1040				spin_lock(&mmlist_lock);
1041				if (list_empty(&mm->mmlist))
1042					list_add(&mm->mmlist, &init_mm.mmlist);
1043				spin_unlock(&mmlist_lock);
1044			}
1045			dec_mm_counter(mm, MM_ANONPAGES);
1046			inc_mm_counter(mm, MM_SWAPENTS);
1047		} else if (PAGE_MIGRATION) {
1048			/*
1049			 * Store the pfn of the page in a special migration
1050			 * pte. do_swap_page() will wait until the migration
1051			 * pte is removed and then restart fault handling.
1052			 */
1053			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1054			entry = make_migration_entry(page, pte_write(pteval));
1055		}
1056		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1057		BUG_ON(pte_file(*pte));
1058	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1059		/* Establish migration entry for a file page */
1060		swp_entry_t entry;
1061		entry = make_migration_entry(page, pte_write(pteval));
1062		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1063	} else
1064		dec_mm_counter(mm, MM_FILEPAGES);
1065
1066	page_remove_rmap(page);
1067	page_cache_release(page);
1068
1069out_unmap:
1070	pte_unmap_unlock(pte, ptl);
1071out:
1072	return ret;
1073
1074out_mlock:
1075	pte_unmap_unlock(pte, ptl);
1076
1077
1078	/*
1079	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1080	 * unstable result and race. Plus, We can't wait here because
1081	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1082	 * if trylock failed, the page remain in evictable lru and later
1083	 * vmscan could retry to move the page to unevictable lru if the
1084	 * page is actually mlocked.
1085	 */
1086	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1087		if (vma->vm_flags & VM_LOCKED) {
1088			mlock_vma_page(page);
1089			ret = SWAP_MLOCK;
1090		}
1091		up_read(&vma->vm_mm->mmap_sem);
1092	}
1093	return ret;
1094}
1095
1096/*
1097 * objrmap doesn't work for nonlinear VMAs because the assumption that
1098 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1099 * Consequently, given a particular page and its ->index, we cannot locate the
1100 * ptes which are mapping that page without an exhaustive linear search.
1101 *
1102 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1103 * maps the file to which the target page belongs.  The ->vm_private_data field
1104 * holds the current cursor into that scan.  Successive searches will circulate
1105 * around the vma's virtual address space.
1106 *
1107 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1108 * more scanning pressure is placed against them as well.   Eventually pages
1109 * will become fully unmapped and are eligible for eviction.
1110 *
1111 * For very sparsely populated VMAs this is a little inefficient - chances are
1112 * there there won't be many ptes located within the scan cluster.  In this case
1113 * maybe we could scan further - to the end of the pte page, perhaps.
1114 *
1115 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1116 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1117 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1118 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1119 */
1120#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1121#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1122
1123static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1124		struct vm_area_struct *vma, struct page *check_page)
1125{
1126	struct mm_struct *mm = vma->vm_mm;
1127	pgd_t *pgd;
1128	pud_t *pud;
1129	pmd_t *pmd;
1130	pte_t *pte;
1131	pte_t pteval;
1132	spinlock_t *ptl;
1133	struct page *page;
1134	unsigned long address;
1135	unsigned long end;
1136	int ret = SWAP_AGAIN;
1137	int locked_vma = 0;
1138
1139	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1140	end = address + CLUSTER_SIZE;
1141	if (address < vma->vm_start)
1142		address = vma->vm_start;
1143	if (end > vma->vm_end)
1144		end = vma->vm_end;
1145
1146	pgd = pgd_offset(mm, address);
1147	if (!pgd_present(*pgd))
1148		return ret;
1149
1150	pud = pud_offset(pgd, address);
1151	if (!pud_present(*pud))
1152		return ret;
1153
1154	pmd = pmd_offset(pud, address);
1155	if (!pmd_present(*pmd))
1156		return ret;
1157
1158	/*
1159	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1160	 * keep the sem while scanning the cluster for mlocking pages.
1161	 */
1162	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1163		locked_vma = (vma->vm_flags & VM_LOCKED);
1164		if (!locked_vma)
1165			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1166	}
1167
1168	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1169
1170	/* Update high watermark before we lower rss */
1171	update_hiwater_rss(mm);
1172
1173	for (; address < end; pte++, address += PAGE_SIZE) {
1174		if (!pte_present(*pte))
1175			continue;
1176		page = vm_normal_page(vma, address, *pte);
1177		BUG_ON(!page || PageAnon(page));
1178
1179		if (locked_vma) {
1180			mlock_vma_page(page);   /* no-op if already mlocked */
1181			if (page == check_page)
1182				ret = SWAP_MLOCK;
1183			continue;	/* don't unmap */
1184		}
1185
1186		if (ptep_clear_flush_young_notify(vma, address, pte))
1187			continue;
1188
1189		/* Nuke the page table entry. */
1190		flush_cache_page(vma, address, pte_pfn(*pte));
1191		pteval = ptep_clear_flush_notify(vma, address, pte);
1192
1193		/* If nonlinear, store the file page offset in the pte. */
1194		if (page->index != linear_page_index(vma, address))
1195			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1196
1197		/* Move the dirty bit to the physical page now the pte is gone. */
1198		if (pte_dirty(pteval))
1199			set_page_dirty(page);
1200
1201		page_remove_rmap(page);
1202		page_cache_release(page);
1203		dec_mm_counter(mm, MM_FILEPAGES);
1204		(*mapcount)--;
1205	}
1206	pte_unmap_unlock(pte - 1, ptl);
1207	if (locked_vma)
1208		up_read(&vma->vm_mm->mmap_sem);
1209	return ret;
1210}
1211
1212static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1213{
1214	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1215
1216	if (!maybe_stack)
1217		return false;
1218
1219	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1220						VM_STACK_INCOMPLETE_SETUP)
1221		return true;
1222
1223	return false;
1224}
1225
1226/**
1227 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1228 * rmap method
1229 * @page: the page to unmap/unlock
1230 * @flags: action and flags
1231 *
1232 * Find all the mappings of a page using the mapping pointer and the vma chains
1233 * contained in the anon_vma struct it points to.
1234 *
1235 * This function is only called from try_to_unmap/try_to_munlock for
1236 * anonymous pages.
1237 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1238 * where the page was found will be held for write.  So, we won't recheck
1239 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1240 * 'LOCKED.
1241 */
1242static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1243{
1244	struct anon_vma *anon_vma;
1245	struct anon_vma_chain *avc;
1246	int ret = SWAP_AGAIN;
1247
1248	anon_vma = page_lock_anon_vma(page);
1249	if (!anon_vma)
1250		return ret;
1251
1252	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1253		struct vm_area_struct *vma = avc->vma;
1254		unsigned long address;
1255
1256		/*
1257		 * During exec, a temporary VMA is setup and later moved.
1258		 * The VMA is moved under the anon_vma lock but not the
1259		 * page tables leading to a race where migration cannot
1260		 * find the migration ptes. Rather than increasing the
1261		 * locking requirements of exec(), migration skips
1262		 * temporary VMAs until after exec() completes.
1263		 */
1264		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1265				is_vma_temporary_stack(vma))
1266			continue;
1267
1268		address = vma_address(page, vma);
1269		if (address == -EFAULT)
1270			continue;
1271		ret = try_to_unmap_one(page, vma, address, flags);
1272		if (ret != SWAP_AGAIN || !page_mapped(page))
1273			break;
1274	}
1275
1276	page_unlock_anon_vma(anon_vma);
1277	return ret;
1278}
1279
1280/**
1281 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1282 * @page: the page to unmap/unlock
1283 * @flags: action and flags
1284 *
1285 * Find all the mappings of a page using the mapping pointer and the vma chains
1286 * contained in the address_space struct it points to.
1287 *
1288 * This function is only called from try_to_unmap/try_to_munlock for
1289 * object-based pages.
1290 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1291 * where the page was found will be held for write.  So, we won't recheck
1292 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1293 * 'LOCKED.
1294 */
1295static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1296{
1297	struct address_space *mapping = page->mapping;
1298	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1299	struct vm_area_struct *vma;
1300	struct prio_tree_iter iter;
1301	int ret = SWAP_AGAIN;
1302	unsigned long cursor;
1303	unsigned long max_nl_cursor = 0;
1304	unsigned long max_nl_size = 0;
1305	unsigned int mapcount;
1306
1307	spin_lock(&mapping->i_mmap_lock);
1308	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1309		unsigned long address = vma_address(page, vma);
1310		if (address == -EFAULT)
1311			continue;
1312		ret = try_to_unmap_one(page, vma, address, flags);
1313		if (ret != SWAP_AGAIN || !page_mapped(page))
1314			goto out;
1315	}
1316
1317	if (list_empty(&mapping->i_mmap_nonlinear))
1318		goto out;
1319
1320	/*
1321	 * We don't bother to try to find the munlocked page in nonlinears.
1322	 * It's costly. Instead, later, page reclaim logic may call
1323	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1324	 */
1325	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1326		goto out;
1327
1328	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1329						shared.vm_set.list) {
1330		cursor = (unsigned long) vma->vm_private_data;
1331		if (cursor > max_nl_cursor)
1332			max_nl_cursor = cursor;
1333		cursor = vma->vm_end - vma->vm_start;
1334		if (cursor > max_nl_size)
1335			max_nl_size = cursor;
1336	}
1337
1338	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1339		ret = SWAP_FAIL;
1340		goto out;
1341	}
1342
1343	/*
1344	 * We don't try to search for this page in the nonlinear vmas,
1345	 * and page_referenced wouldn't have found it anyway.  Instead
1346	 * just walk the nonlinear vmas trying to age and unmap some.
1347	 * The mapcount of the page we came in with is irrelevant,
1348	 * but even so use it as a guide to how hard we should try?
1349	 */
1350	mapcount = page_mapcount(page);
1351	if (!mapcount)
1352		goto out;
1353	cond_resched_lock(&mapping->i_mmap_lock);
1354
1355	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1356	if (max_nl_cursor == 0)
1357		max_nl_cursor = CLUSTER_SIZE;
1358
1359	do {
1360		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1361						shared.vm_set.list) {
1362			cursor = (unsigned long) vma->vm_private_data;
1363			while ( cursor < max_nl_cursor &&
1364				cursor < vma->vm_end - vma->vm_start) {
1365				if (try_to_unmap_cluster(cursor, &mapcount,
1366						vma, page) == SWAP_MLOCK)
1367					ret = SWAP_MLOCK;
1368				cursor += CLUSTER_SIZE;
1369				vma->vm_private_data = (void *) cursor;
1370				if ((int)mapcount <= 0)
1371					goto out;
1372			}
1373			vma->vm_private_data = (void *) max_nl_cursor;
1374		}
1375		cond_resched_lock(&mapping->i_mmap_lock);
1376		max_nl_cursor += CLUSTER_SIZE;
1377	} while (max_nl_cursor <= max_nl_size);
1378
1379	/*
1380	 * Don't loop forever (perhaps all the remaining pages are
1381	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1382	 * vmas, now forgetting on which ones it had fallen behind.
1383	 */
1384	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1385		vma->vm_private_data = NULL;
1386out:
1387	spin_unlock(&mapping->i_mmap_lock);
1388	return ret;
1389}
1390
1391/**
1392 * try_to_unmap - try to remove all page table mappings to a page
1393 * @page: the page to get unmapped
1394 * @flags: action and flags
1395 *
1396 * Tries to remove all the page table entries which are mapping this
1397 * page, used in the pageout path.  Caller must hold the page lock.
1398 * Return values are:
1399 *
1400 * SWAP_SUCCESS	- we succeeded in removing all mappings
1401 * SWAP_AGAIN	- we missed a mapping, try again later
1402 * SWAP_FAIL	- the page is unswappable
1403 * SWAP_MLOCK	- page is mlocked.
1404 */
1405int try_to_unmap(struct page *page, enum ttu_flags flags)
1406{
1407	int ret;
1408
1409	BUG_ON(!PageLocked(page));
1410
1411	if (unlikely(PageKsm(page)))
1412		ret = try_to_unmap_ksm(page, flags);
1413	else if (PageAnon(page))
1414		ret = try_to_unmap_anon(page, flags);
1415	else
1416		ret = try_to_unmap_file(page, flags);
1417	if (ret != SWAP_MLOCK && !page_mapped(page))
1418		ret = SWAP_SUCCESS;
1419	return ret;
1420}
1421
1422/**
1423 * try_to_munlock - try to munlock a page
1424 * @page: the page to be munlocked
1425 *
1426 * Called from munlock code.  Checks all of the VMAs mapping the page
1427 * to make sure nobody else has this page mlocked. The page will be
1428 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1429 *
1430 * Return values are:
1431 *
1432 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1433 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1434 * SWAP_FAIL	- page cannot be located at present
1435 * SWAP_MLOCK	- page is now mlocked.
1436 */
1437int try_to_munlock(struct page *page)
1438{
1439	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1440
1441	if (unlikely(PageKsm(page)))
1442		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1443	else if (PageAnon(page))
1444		return try_to_unmap_anon(page, TTU_MUNLOCK);
1445	else
1446		return try_to_unmap_file(page, TTU_MUNLOCK);
1447}
1448
1449#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1450/*
1451 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1452 * if necessary.  Be careful to do all the tests under the lock.  Once
1453 * we know we are the last user, nobody else can get a reference and we
1454 * can do the freeing without the lock.
1455 */
1456void drop_anon_vma(struct anon_vma *anon_vma)
1457{
1458	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1459	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1460		struct anon_vma *root = anon_vma->root;
1461		int empty = list_empty(&anon_vma->head);
1462		int last_root_user = 0;
1463		int root_empty = 0;
1464
1465		/*
1466		 * The refcount on a non-root anon_vma got dropped.  Drop
1467		 * the refcount on the root and check if we need to free it.
1468		 */
1469		if (empty && anon_vma != root) {
1470			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1471			last_root_user = atomic_dec_and_test(&root->external_refcount);
1472			root_empty = list_empty(&root->head);
1473		}
1474		anon_vma_unlock(anon_vma);
1475
1476		if (empty) {
1477			anon_vma_free(anon_vma);
1478			if (root_empty && last_root_user)
1479				anon_vma_free(root);
1480		}
1481	}
1482}
1483#endif
1484
1485#ifdef CONFIG_MIGRATION
1486/*
1487 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1488 * Called by migrate.c to remove migration ptes, but might be used more later.
1489 */
1490static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1491		struct vm_area_struct *, unsigned long, void *), void *arg)
1492{
1493	struct anon_vma *anon_vma;
1494	struct anon_vma_chain *avc;
1495	int ret = SWAP_AGAIN;
1496
1497	/*
1498	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1499	 * because that depends on page_mapped(); but not all its usages
1500	 * are holding mmap_sem. Users without mmap_sem are required to
1501	 * take a reference count to prevent the anon_vma disappearing
1502	 */
1503	anon_vma = page_anon_vma(page);
1504	if (!anon_vma)
1505		return ret;
1506	anon_vma_lock(anon_vma);
1507	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1508		struct vm_area_struct *vma = avc->vma;
1509		unsigned long address = vma_address(page, vma);
1510		if (address == -EFAULT)
1511			continue;
1512		ret = rmap_one(page, vma, address, arg);
1513		if (ret != SWAP_AGAIN)
1514			break;
1515	}
1516	anon_vma_unlock(anon_vma);
1517	return ret;
1518}
1519
1520static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1521		struct vm_area_struct *, unsigned long, void *), void *arg)
1522{
1523	struct address_space *mapping = page->mapping;
1524	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1525	struct vm_area_struct *vma;
1526	struct prio_tree_iter iter;
1527	int ret = SWAP_AGAIN;
1528
1529	if (!mapping)
1530		return ret;
1531	spin_lock(&mapping->i_mmap_lock);
1532	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1533		unsigned long address = vma_address(page, vma);
1534		if (address == -EFAULT)
1535			continue;
1536		ret = rmap_one(page, vma, address, arg);
1537		if (ret != SWAP_AGAIN)
1538			break;
1539	}
1540	/*
1541	 * No nonlinear handling: being always shared, nonlinear vmas
1542	 * never contain migration ptes.  Decide what to do about this
1543	 * limitation to linear when we need rmap_walk() on nonlinear.
1544	 */
1545	spin_unlock(&mapping->i_mmap_lock);
1546	return ret;
1547}
1548
1549int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1550		struct vm_area_struct *, unsigned long, void *), void *arg)
1551{
1552	VM_BUG_ON(!PageLocked(page));
1553
1554	if (unlikely(PageKsm(page)))
1555		return rmap_walk_ksm(page, rmap_one, arg);
1556	else if (PageAnon(page))
1557		return rmap_walk_anon(page, rmap_one, arg);
1558	else
1559		return rmap_walk_file(page, rmap_one, arg);
1560}
1561#endif /* CONFIG_MIGRATION */
1562
1563#ifdef CONFIG_HUGETLB_PAGE
1564/*
1565 * The following three functions are for anonymous (private mapped) hugepages.
1566 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1567 * and no lru code, because we handle hugepages differently from common pages.
1568 */
1569static void __hugepage_set_anon_rmap(struct page *page,
1570	struct vm_area_struct *vma, unsigned long address, int exclusive)
1571{
1572	struct anon_vma *anon_vma = vma->anon_vma;
1573
1574	BUG_ON(!anon_vma);
1575
1576	if (PageAnon(page))
1577		return;
1578	if (!exclusive)
1579		anon_vma = anon_vma->root;
1580
1581	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1582	page->mapping = (struct address_space *) anon_vma;
1583	page->index = linear_page_index(vma, address);
1584}
1585
1586void hugepage_add_anon_rmap(struct page *page,
1587			    struct vm_area_struct *vma, unsigned long address)
1588{
1589	struct anon_vma *anon_vma = vma->anon_vma;
1590	int first;
1591
1592	BUG_ON(!PageLocked(page));
1593	BUG_ON(!anon_vma);
1594	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1595	first = atomic_inc_and_test(&page->_mapcount);
1596	if (first)
1597		__hugepage_set_anon_rmap(page, vma, address, 0);
1598}
1599
1600void hugepage_add_new_anon_rmap(struct page *page,
1601			struct vm_area_struct *vma, unsigned long address)
1602{
1603	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1604	atomic_set(&page->_mapcount, 0);
1605	__hugepage_set_anon_rmap(page, vma, address, 1);
1606}
1607#endif /* CONFIG_HUGETLB_PAGE */
1608