1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29#include <linux/mmu_notifier.h>
30#include <linux/perf_event.h>
31
32#include <asm/uaccess.h>
33#include <asm/cacheflush.h>
34#include <asm/tlb.h>
35#include <asm/mmu_context.h>
36
37#include "internal.h"
38
39#ifndef arch_mmap_check
40#define arch_mmap_check(addr, len, flags)	(0)
41#endif
42
43#ifndef arch_rebalance_pgtables
44#define arch_rebalance_pgtables(addr, len)		(addr)
45#endif
46
47static void unmap_region(struct mm_struct *mm,
48		struct vm_area_struct *vma, struct vm_area_struct *prev,
49		unsigned long start, unsigned long end);
50
51/*
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
54 */
55#undef DEBUG_MM_RB
56
57/* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware.  The expected
59 * behavior is in parens:
60 *
61 * map_type	prot
62 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66 *
67 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70 *
71 */
72pgprot_t protection_map[16] = {
73	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75};
76
77pgprot_t vm_get_page_prot(unsigned long vm_flags)
78{
79	return __pgprot(pgprot_val(protection_map[vm_flags &
80				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82}
83EXPORT_SYMBOL(vm_get_page_prot);
84
85int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86int sysctl_overcommit_ratio = 50;	/* default is 50% */
87int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88struct percpu_counter vm_committed_as;
89
90/*
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
94 *
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97 *
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
100 *
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 *
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
105 */
106int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107{
108	unsigned long free, allowed;
109
110	vm_acct_memory(pages);
111
112	/*
113	 * Sometimes we want to use more memory than we have
114	 */
115	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116		return 0;
117
118	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119		unsigned long n;
120
121		free = global_page_state(NR_FILE_PAGES);
122		free += nr_swap_pages;
123
124		/*
125		 * Any slabs which are created with the
126		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127		 * which are reclaimable, under pressure.  The dentry
128		 * cache and most inode caches should fall into this
129		 */
130		free += global_page_state(NR_SLAB_RECLAIMABLE);
131
132		/*
133		 * Leave the last 3% for root
134		 */
135		if (!cap_sys_admin)
136			free -= free / 32;
137
138		if (free > pages)
139			return 0;
140
141		/*
142		 * nr_free_pages() is very expensive on large systems,
143		 * only call if we're about to fail.
144		 */
145		n = nr_free_pages();
146
147		/*
148		 * Leave reserved pages. The pages are not for anonymous pages.
149		 */
150		if (n <= totalreserve_pages)
151			goto error;
152		else
153			n -= totalreserve_pages;
154
155		/*
156		 * Leave the last 3% for root
157		 */
158		if (!cap_sys_admin)
159			n -= n / 32;
160		free += n;
161
162		if (free > pages)
163			return 0;
164
165		goto error;
166	}
167
168	allowed = (totalram_pages - hugetlb_total_pages())
169	       	* sysctl_overcommit_ratio / 100;
170	/*
171	 * Leave the last 3% for root
172	 */
173	if (!cap_sys_admin)
174		allowed -= allowed / 32;
175	allowed += total_swap_pages;
176
177	/* Don't let a single process grow too big:
178	   leave 3% of the size of this process for other processes */
179	if (mm)
180		allowed -= mm->total_vm / 32;
181
182	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183		return 0;
184error:
185	vm_unacct_memory(pages);
186
187	return -ENOMEM;
188}
189
190/*
191 * Requires inode->i_mapping->i_mmap_lock
192 */
193static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194		struct file *file, struct address_space *mapping)
195{
196	if (vma->vm_flags & VM_DENYWRITE)
197		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198	if (vma->vm_flags & VM_SHARED)
199		mapping->i_mmap_writable--;
200
201	flush_dcache_mmap_lock(mapping);
202	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203		list_del_init(&vma->shared.vm_set.list);
204	else
205		vma_prio_tree_remove(vma, &mapping->i_mmap);
206	flush_dcache_mmap_unlock(mapping);
207}
208
209/*
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
212 */
213void unlink_file_vma(struct vm_area_struct *vma)
214{
215	struct file *file = vma->vm_file;
216
217	if (file) {
218		struct address_space *mapping = file->f_mapping;
219		spin_lock(&mapping->i_mmap_lock);
220		__remove_shared_vm_struct(vma, file, mapping);
221		spin_unlock(&mapping->i_mmap_lock);
222	}
223}
224
225/*
226 * Close a vm structure and free it, returning the next.
227 */
228static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229{
230	struct vm_area_struct *next = vma->vm_next;
231
232	might_sleep();
233	if (vma->vm_ops && vma->vm_ops->close)
234		vma->vm_ops->close(vma);
235	if (vma->vm_file) {
236		fput(vma->vm_file);
237		if (vma->vm_flags & VM_EXECUTABLE)
238			removed_exe_file_vma(vma->vm_mm);
239	}
240	mpol_put(vma_policy(vma));
241	kmem_cache_free(vm_area_cachep, vma);
242	return next;
243}
244
245SYSCALL_DEFINE1(brk, unsigned long, brk)
246{
247	unsigned long rlim, retval;
248	unsigned long newbrk, oldbrk;
249	struct mm_struct *mm = current->mm;
250	unsigned long min_brk;
251
252	down_write(&mm->mmap_sem);
253
254#ifdef CONFIG_COMPAT_BRK
255	min_brk = mm->end_code;
256#else
257	min_brk = mm->start_brk;
258#endif
259	if (brk < min_brk)
260		goto out;
261
262	/*
263	 * Check against rlimit here. If this check is done later after the test
264	 * of oldbrk with newbrk then it can escape the test and let the data
265	 * segment grow beyond its set limit the in case where the limit is
266	 * not page aligned -Ram Gupta
267	 */
268	rlim = rlimit(RLIMIT_DATA);
269	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270			(mm->end_data - mm->start_data) > rlim)
271		goto out;
272
273	newbrk = PAGE_ALIGN(brk);
274	oldbrk = PAGE_ALIGN(mm->brk);
275	if (oldbrk == newbrk)
276		goto set_brk;
277
278	/* Always allow shrinking brk. */
279	if (brk <= mm->brk) {
280		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281			goto set_brk;
282		goto out;
283	}
284
285	/* Check against existing mmap mappings. */
286	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287		goto out;
288
289	/* Ok, looks good - let it rip. */
290	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291		goto out;
292set_brk:
293	mm->brk = brk;
294out:
295	retval = mm->brk;
296	up_write(&mm->mmap_sem);
297	return retval;
298}
299
300#ifdef DEBUG_MM_RB
301static int browse_rb(struct rb_root *root)
302{
303	int i = 0, j;
304	struct rb_node *nd, *pn = NULL;
305	unsigned long prev = 0, pend = 0;
306
307	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308		struct vm_area_struct *vma;
309		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310		if (vma->vm_start < prev)
311			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312		if (vma->vm_start < pend)
313			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314		if (vma->vm_start > vma->vm_end)
315			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316		i++;
317		pn = nd;
318		prev = vma->vm_start;
319		pend = vma->vm_end;
320	}
321	j = 0;
322	for (nd = pn; nd; nd = rb_prev(nd)) {
323		j++;
324	}
325	if (i != j)
326		printk("backwards %d, forwards %d\n", j, i), i = 0;
327	return i;
328}
329
330void validate_mm(struct mm_struct *mm)
331{
332	int bug = 0;
333	int i = 0;
334	struct vm_area_struct *tmp = mm->mmap;
335	while (tmp) {
336		tmp = tmp->vm_next;
337		i++;
338	}
339	if (i != mm->map_count)
340		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341	i = browse_rb(&mm->mm_rb);
342	if (i != mm->map_count)
343		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344	BUG_ON(bug);
345}
346#else
347#define validate_mm(mm) do { } while (0)
348#endif
349
350static struct vm_area_struct *
351find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353		struct rb_node ** rb_parent)
354{
355	struct vm_area_struct * vma;
356	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357
358	__rb_link = &mm->mm_rb.rb_node;
359	rb_prev = __rb_parent = NULL;
360	vma = NULL;
361
362	while (*__rb_link) {
363		struct vm_area_struct *vma_tmp;
364
365		__rb_parent = *__rb_link;
366		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367
368		if (vma_tmp->vm_end > addr) {
369			vma = vma_tmp;
370			if (vma_tmp->vm_start <= addr)
371				break;
372			__rb_link = &__rb_parent->rb_left;
373		} else {
374			rb_prev = __rb_parent;
375			__rb_link = &__rb_parent->rb_right;
376		}
377	}
378
379	*pprev = NULL;
380	if (rb_prev)
381		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382	*rb_link = __rb_link;
383	*rb_parent = __rb_parent;
384	return vma;
385}
386
387static inline void
388__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389		struct vm_area_struct *prev, struct rb_node *rb_parent)
390{
391	struct vm_area_struct *next;
392
393	vma->vm_prev = prev;
394	if (prev) {
395		next = prev->vm_next;
396		prev->vm_next = vma;
397	} else {
398		mm->mmap = vma;
399		if (rb_parent)
400			next = rb_entry(rb_parent,
401					struct vm_area_struct, vm_rb);
402		else
403			next = NULL;
404	}
405	vma->vm_next = next;
406	if (next)
407		next->vm_prev = vma;
408}
409
410void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
411		struct rb_node **rb_link, struct rb_node *rb_parent)
412{
413	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
414	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
415}
416
417static void __vma_link_file(struct vm_area_struct *vma)
418{
419	struct file *file;
420
421	file = vma->vm_file;
422	if (file) {
423		struct address_space *mapping = file->f_mapping;
424
425		if (vma->vm_flags & VM_DENYWRITE)
426			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
427		if (vma->vm_flags & VM_SHARED)
428			mapping->i_mmap_writable++;
429
430		flush_dcache_mmap_lock(mapping);
431		if (unlikely(vma->vm_flags & VM_NONLINEAR))
432			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
433		else
434			vma_prio_tree_insert(vma, &mapping->i_mmap);
435		flush_dcache_mmap_unlock(mapping);
436	}
437}
438
439static void
440__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
441	struct vm_area_struct *prev, struct rb_node **rb_link,
442	struct rb_node *rb_parent)
443{
444	__vma_link_list(mm, vma, prev, rb_parent);
445	__vma_link_rb(mm, vma, rb_link, rb_parent);
446}
447
448static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
449			struct vm_area_struct *prev, struct rb_node **rb_link,
450			struct rb_node *rb_parent)
451{
452	struct address_space *mapping = NULL;
453
454	if (vma->vm_file)
455		mapping = vma->vm_file->f_mapping;
456
457	if (mapping) {
458		spin_lock(&mapping->i_mmap_lock);
459		vma->vm_truncate_count = mapping->truncate_count;
460	}
461
462	__vma_link(mm, vma, prev, rb_link, rb_parent);
463	__vma_link_file(vma);
464
465	if (mapping)
466		spin_unlock(&mapping->i_mmap_lock);
467
468	mm->map_count++;
469	validate_mm(mm);
470}
471
472/*
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
476 */
477static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
478{
479	struct vm_area_struct *__vma, *prev;
480	struct rb_node **rb_link, *rb_parent;
481
482	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484	__vma_link(mm, vma, prev, rb_link, rb_parent);
485	mm->map_count++;
486}
487
488static inline void
489__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490		struct vm_area_struct *prev)
491{
492	struct vm_area_struct *next = vma->vm_next;
493
494	prev->vm_next = next;
495	if (next)
496		next->vm_prev = prev;
497	rb_erase(&vma->vm_rb, &mm->mm_rb);
498	if (mm->mmap_cache == vma)
499		mm->mmap_cache = prev;
500}
501
502/*
503 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
504 * is already present in an i_mmap tree without adjusting the tree.
505 * The following helper function should be used when such adjustments
506 * are necessary.  The "insert" vma (if any) is to be inserted
507 * before we drop the necessary locks.
508 */
509int vma_adjust(struct vm_area_struct *vma, unsigned long start,
510	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
511{
512	struct mm_struct *mm = vma->vm_mm;
513	struct vm_area_struct *next = vma->vm_next;
514	struct vm_area_struct *importer = NULL;
515	struct address_space *mapping = NULL;
516	struct prio_tree_root *root = NULL;
517	struct anon_vma *anon_vma = NULL;
518	struct file *file = vma->vm_file;
519	long adjust_next = 0;
520	int remove_next = 0;
521
522	if (next && !insert) {
523		struct vm_area_struct *exporter = NULL;
524
525		if (end >= next->vm_end) {
526			/*
527			 * vma expands, overlapping all the next, and
528			 * perhaps the one after too (mprotect case 6).
529			 */
530again:			remove_next = 1 + (end > next->vm_end);
531			end = next->vm_end;
532			exporter = next;
533			importer = vma;
534		} else if (end > next->vm_start) {
535			/*
536			 * vma expands, overlapping part of the next:
537			 * mprotect case 5 shifting the boundary up.
538			 */
539			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
540			exporter = next;
541			importer = vma;
542		} else if (end < vma->vm_end) {
543			/*
544			 * vma shrinks, and !insert tells it's not
545			 * split_vma inserting another: so it must be
546			 * mprotect case 4 shifting the boundary down.
547			 */
548			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
549			exporter = vma;
550			importer = next;
551		}
552
553		/*
554		 * Easily overlooked: when mprotect shifts the boundary,
555		 * make sure the expanding vma has anon_vma set if the
556		 * shrinking vma had, to cover any anon pages imported.
557		 */
558		if (exporter && exporter->anon_vma && !importer->anon_vma) {
559			if (anon_vma_clone(importer, exporter))
560				return -ENOMEM;
561			importer->anon_vma = exporter->anon_vma;
562		}
563	}
564
565	if (file) {
566		mapping = file->f_mapping;
567		if (!(vma->vm_flags & VM_NONLINEAR))
568			root = &mapping->i_mmap;
569		spin_lock(&mapping->i_mmap_lock);
570		if (importer &&
571		    vma->vm_truncate_count != next->vm_truncate_count) {
572			/*
573			 * unmap_mapping_range might be in progress:
574			 * ensure that the expanding vma is rescanned.
575			 */
576			importer->vm_truncate_count = 0;
577		}
578		if (insert) {
579			insert->vm_truncate_count = vma->vm_truncate_count;
580			/*
581			 * Put into prio_tree now, so instantiated pages
582			 * are visible to arm/parisc __flush_dcache_page
583			 * throughout; but we cannot insert into address
584			 * space until vma start or end is updated.
585			 */
586			__vma_link_file(insert);
587		}
588	}
589
590	/*
591	 * When changing only vma->vm_end, we don't really need anon_vma
592	 * lock. This is a fairly rare case by itself, but the anon_vma
593	 * lock may be shared between many sibling processes.  Skipping
594	 * the lock for brk adjustments makes a difference sometimes.
595	 */
596	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
597		anon_vma = vma->anon_vma;
598		anon_vma_lock(anon_vma);
599	}
600
601	if (root) {
602		flush_dcache_mmap_lock(mapping);
603		vma_prio_tree_remove(vma, root);
604		if (adjust_next)
605			vma_prio_tree_remove(next, root);
606	}
607
608	vma->vm_start = start;
609	vma->vm_end = end;
610	vma->vm_pgoff = pgoff;
611	if (adjust_next) {
612		next->vm_start += adjust_next << PAGE_SHIFT;
613		next->vm_pgoff += adjust_next;
614	}
615
616	if (root) {
617		if (adjust_next)
618			vma_prio_tree_insert(next, root);
619		vma_prio_tree_insert(vma, root);
620		flush_dcache_mmap_unlock(mapping);
621	}
622
623	if (remove_next) {
624		/*
625		 * vma_merge has merged next into vma, and needs
626		 * us to remove next before dropping the locks.
627		 */
628		__vma_unlink(mm, next, vma);
629		if (file)
630			__remove_shared_vm_struct(next, file, mapping);
631	} else if (insert) {
632		/*
633		 * split_vma has split insert from vma, and needs
634		 * us to insert it before dropping the locks
635		 * (it may either follow vma or precede it).
636		 */
637		__insert_vm_struct(mm, insert);
638	}
639
640	if (anon_vma)
641		anon_vma_unlock(anon_vma);
642	if (mapping)
643		spin_unlock(&mapping->i_mmap_lock);
644
645	if (remove_next) {
646		if (file) {
647			fput(file);
648			if (next->vm_flags & VM_EXECUTABLE)
649				removed_exe_file_vma(mm);
650		}
651		if (next->anon_vma)
652			anon_vma_merge(vma, next);
653		mm->map_count--;
654		mpol_put(vma_policy(next));
655		kmem_cache_free(vm_area_cachep, next);
656		/*
657		 * In mprotect's case 6 (see comments on vma_merge),
658		 * we must remove another next too. It would clutter
659		 * up the code too much to do both in one go.
660		 */
661		if (remove_next == 2) {
662			next = vma->vm_next;
663			goto again;
664		}
665	}
666
667	validate_mm(mm);
668
669	return 0;
670}
671
672/*
673 * If the vma has a ->close operation then the driver probably needs to release
674 * per-vma resources, so we don't attempt to merge those.
675 */
676static inline int is_mergeable_vma(struct vm_area_struct *vma,
677			struct file *file, unsigned long vm_flags)
678{
679	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
680	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
681		return 0;
682	if (vma->vm_file != file)
683		return 0;
684	if (vma->vm_ops && vma->vm_ops->close)
685		return 0;
686	return 1;
687}
688
689static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
690					struct anon_vma *anon_vma2)
691{
692	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
693}
694
695/*
696 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
697 * in front of (at a lower virtual address and file offset than) the vma.
698 *
699 * We cannot merge two vmas if they have differently assigned (non-NULL)
700 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
701 *
702 * We don't check here for the merged mmap wrapping around the end of pagecache
703 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
704 * wrap, nor mmaps which cover the final page at index -1UL.
705 */
706static int
707can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
708	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
709{
710	if (is_mergeable_vma(vma, file, vm_flags) &&
711	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
712		if (vma->vm_pgoff == vm_pgoff)
713			return 1;
714	}
715	return 0;
716}
717
718/*
719 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
720 * beyond (at a higher virtual address and file offset than) the vma.
721 *
722 * We cannot merge two vmas if they have differently assigned (non-NULL)
723 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
724 */
725static int
726can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
727	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
728{
729	if (is_mergeable_vma(vma, file, vm_flags) &&
730	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
731		pgoff_t vm_pglen;
732		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
733		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
734			return 1;
735	}
736	return 0;
737}
738
739struct vm_area_struct *vma_merge(struct mm_struct *mm,
740			struct vm_area_struct *prev, unsigned long addr,
741			unsigned long end, unsigned long vm_flags,
742		     	struct anon_vma *anon_vma, struct file *file,
743			pgoff_t pgoff, struct mempolicy *policy)
744{
745	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
746	struct vm_area_struct *area, *next;
747	int err;
748
749	/*
750	 * We later require that vma->vm_flags == vm_flags,
751	 * so this tests vma->vm_flags & VM_SPECIAL, too.
752	 */
753	if (vm_flags & VM_SPECIAL)
754		return NULL;
755
756	if (prev)
757		next = prev->vm_next;
758	else
759		next = mm->mmap;
760	area = next;
761	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
762		next = next->vm_next;
763
764	/*
765	 * Can it merge with the predecessor?
766	 */
767	if (prev && prev->vm_end == addr &&
768  			mpol_equal(vma_policy(prev), policy) &&
769			can_vma_merge_after(prev, vm_flags,
770						anon_vma, file, pgoff)) {
771		/*
772		 * OK, it can.  Can we now merge in the successor as well?
773		 */
774		if (next && end == next->vm_start &&
775				mpol_equal(policy, vma_policy(next)) &&
776				can_vma_merge_before(next, vm_flags,
777					anon_vma, file, pgoff+pglen) &&
778				is_mergeable_anon_vma(prev->anon_vma,
779						      next->anon_vma)) {
780							/* cases 1, 6 */
781			err = vma_adjust(prev, prev->vm_start,
782				next->vm_end, prev->vm_pgoff, NULL);
783		} else					/* cases 2, 5, 7 */
784			err = vma_adjust(prev, prev->vm_start,
785				end, prev->vm_pgoff, NULL);
786		if (err)
787			return NULL;
788		return prev;
789	}
790
791	/*
792	 * Can this new request be merged in front of next?
793	 */
794	if (next && end == next->vm_start &&
795 			mpol_equal(policy, vma_policy(next)) &&
796			can_vma_merge_before(next, vm_flags,
797					anon_vma, file, pgoff+pglen)) {
798		if (prev && addr < prev->vm_end)	/* case 4 */
799			err = vma_adjust(prev, prev->vm_start,
800				addr, prev->vm_pgoff, NULL);
801		else					/* cases 3, 8 */
802			err = vma_adjust(area, addr, next->vm_end,
803				next->vm_pgoff - pglen, NULL);
804		if (err)
805			return NULL;
806		return area;
807	}
808
809	return NULL;
810}
811
812/*
813 * Rough compatbility check to quickly see if it's even worth looking
814 * at sharing an anon_vma.
815 *
816 * They need to have the same vm_file, and the flags can only differ
817 * in things that mprotect may change.
818 *
819 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
820 * we can merge the two vma's. For example, we refuse to merge a vma if
821 * there is a vm_ops->close() function, because that indicates that the
822 * driver is doing some kind of reference counting. But that doesn't
823 * really matter for the anon_vma sharing case.
824 */
825static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
826{
827	return a->vm_end == b->vm_start &&
828		mpol_equal(vma_policy(a), vma_policy(b)) &&
829		a->vm_file == b->vm_file &&
830		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
831		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
832}
833
834/*
835 * Do some basic sanity checking to see if we can re-use the anon_vma
836 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
837 * the same as 'old', the other will be the new one that is trying
838 * to share the anon_vma.
839 *
840 * NOTE! This runs with mm_sem held for reading, so it is possible that
841 * the anon_vma of 'old' is concurrently in the process of being set up
842 * by another page fault trying to merge _that_. But that's ok: if it
843 * is being set up, that automatically means that it will be a singleton
844 * acceptable for merging, so we can do all of this optimistically. But
845 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
846 *
847 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
848 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
849 * is to return an anon_vma that is "complex" due to having gone through
850 * a fork).
851 *
852 * We also make sure that the two vma's are compatible (adjacent,
853 * and with the same memory policies). That's all stable, even with just
854 * a read lock on the mm_sem.
855 */
856static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
857{
858	if (anon_vma_compatible(a, b)) {
859		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
860
861		if (anon_vma && list_is_singular(&old->anon_vma_chain))
862			return anon_vma;
863	}
864	return NULL;
865}
866
867/*
868 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
869 * neighbouring vmas for a suitable anon_vma, before it goes off
870 * to allocate a new anon_vma.  It checks because a repetitive
871 * sequence of mprotects and faults may otherwise lead to distinct
872 * anon_vmas being allocated, preventing vma merge in subsequent
873 * mprotect.
874 */
875struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
876{
877	struct anon_vma *anon_vma;
878	struct vm_area_struct *near;
879
880	near = vma->vm_next;
881	if (!near)
882		goto try_prev;
883
884	anon_vma = reusable_anon_vma(near, vma, near);
885	if (anon_vma)
886		return anon_vma;
887try_prev:
888	/*
889	 * It is potentially slow to have to call find_vma_prev here.
890	 * But it's only on the first write fault on the vma, not
891	 * every time, and we could devise a way to avoid it later
892	 * (e.g. stash info in next's anon_vma_node when assigning
893	 * an anon_vma, or when trying vma_merge).  Another time.
894	 */
895	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
896	if (!near)
897		goto none;
898
899	anon_vma = reusable_anon_vma(near, near, vma);
900	if (anon_vma)
901		return anon_vma;
902none:
903	/*
904	 * There's no absolute need to look only at touching neighbours:
905	 * we could search further afield for "compatible" anon_vmas.
906	 * But it would probably just be a waste of time searching,
907	 * or lead to too many vmas hanging off the same anon_vma.
908	 * We're trying to allow mprotect remerging later on,
909	 * not trying to minimize memory used for anon_vmas.
910	 */
911	return NULL;
912}
913
914#ifdef CONFIG_PROC_FS
915void vm_stat_account(struct mm_struct *mm, unsigned long flags,
916						struct file *file, long pages)
917{
918	const unsigned long stack_flags
919		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
920
921	if (file) {
922		mm->shared_vm += pages;
923		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
924			mm->exec_vm += pages;
925	} else if (flags & stack_flags)
926		mm->stack_vm += pages;
927	if (flags & (VM_RESERVED|VM_IO))
928		mm->reserved_vm += pages;
929}
930#endif /* CONFIG_PROC_FS */
931
932/*
933 * The caller must hold down_write(&current->mm->mmap_sem).
934 */
935
936unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
937			unsigned long len, unsigned long prot,
938			unsigned long flags, unsigned long pgoff)
939{
940	struct mm_struct * mm = current->mm;
941	struct inode *inode;
942	unsigned int vm_flags;
943	int error;
944	unsigned long reqprot = prot;
945
946	/*
947	 * Does the application expect PROT_READ to imply PROT_EXEC?
948	 *
949	 * (the exception is when the underlying filesystem is noexec
950	 *  mounted, in which case we dont add PROT_EXEC.)
951	 */
952	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
953		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
954			prot |= PROT_EXEC;
955
956	if (!len)
957		return -EINVAL;
958
959	if (!(flags & MAP_FIXED))
960		addr = round_hint_to_min(addr);
961
962	/* Careful about overflows.. */
963	len = PAGE_ALIGN(len);
964	if (!len)
965		return -ENOMEM;
966
967	/* offset overflow? */
968	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
969               return -EOVERFLOW;
970
971	/* Too many mappings? */
972	if (mm->map_count > sysctl_max_map_count)
973		return -ENOMEM;
974
975	/* Obtain the address to map to. we verify (or select) it and ensure
976	 * that it represents a valid section of the address space.
977	 */
978	addr = get_unmapped_area(file, addr, len, pgoff, flags);
979	if (addr & ~PAGE_MASK)
980		return addr;
981
982	/* Do simple checking here so the lower-level routines won't have
983	 * to. we assume access permissions have been handled by the open
984	 * of the memory object, so we don't do any here.
985	 */
986	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
987			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
988
989	if (flags & MAP_LOCKED)
990		if (!can_do_mlock())
991			return -EPERM;
992
993	/* mlock MCL_FUTURE? */
994	if (vm_flags & VM_LOCKED) {
995		unsigned long locked, lock_limit;
996		locked = len >> PAGE_SHIFT;
997		locked += mm->locked_vm;
998		lock_limit = rlimit(RLIMIT_MEMLOCK);
999		lock_limit >>= PAGE_SHIFT;
1000		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1001			return -EAGAIN;
1002	}
1003
1004	inode = file ? file->f_path.dentry->d_inode : NULL;
1005
1006	if (file) {
1007		switch (flags & MAP_TYPE) {
1008		case MAP_SHARED:
1009			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1010				return -EACCES;
1011
1012			/*
1013			 * Make sure we don't allow writing to an append-only
1014			 * file..
1015			 */
1016			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1017				return -EACCES;
1018
1019			/*
1020			 * Make sure there are no mandatory locks on the file.
1021			 */
1022			if (locks_verify_locked(inode))
1023				return -EAGAIN;
1024
1025			vm_flags |= VM_SHARED | VM_MAYSHARE;
1026			if (!(file->f_mode & FMODE_WRITE))
1027				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1028
1029			/* fall through */
1030		case MAP_PRIVATE:
1031			if (!(file->f_mode & FMODE_READ))
1032				return -EACCES;
1033			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1034				if (vm_flags & VM_EXEC)
1035					return -EPERM;
1036				vm_flags &= ~VM_MAYEXEC;
1037			}
1038
1039			if (!file->f_op || !file->f_op->mmap)
1040				return -ENODEV;
1041			break;
1042
1043		default:
1044			return -EINVAL;
1045		}
1046	} else {
1047		switch (flags & MAP_TYPE) {
1048		case MAP_SHARED:
1049			/*
1050			 * Ignore pgoff.
1051			 */
1052			pgoff = 0;
1053			vm_flags |= VM_SHARED | VM_MAYSHARE;
1054			break;
1055		case MAP_PRIVATE:
1056			/*
1057			 * Set pgoff according to addr for anon_vma.
1058			 */
1059			pgoff = addr >> PAGE_SHIFT;
1060			break;
1061		default:
1062			return -EINVAL;
1063		}
1064	}
1065
1066	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1067	if (error)
1068		return error;
1069
1070	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1071}
1072EXPORT_SYMBOL(do_mmap_pgoff);
1073
1074SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1075		unsigned long, prot, unsigned long, flags,
1076		unsigned long, fd, unsigned long, pgoff)
1077{
1078	struct file *file = NULL;
1079	unsigned long retval = -EBADF;
1080
1081	if (!(flags & MAP_ANONYMOUS)) {
1082		if (unlikely(flags & MAP_HUGETLB))
1083			return -EINVAL;
1084		file = fget(fd);
1085		if (!file)
1086			goto out;
1087	} else if (flags & MAP_HUGETLB) {
1088		struct user_struct *user = NULL;
1089		/*
1090		 * VM_NORESERVE is used because the reservations will be
1091		 * taken when vm_ops->mmap() is called
1092		 * A dummy user value is used because we are not locking
1093		 * memory so no accounting is necessary
1094		 */
1095		len = ALIGN(len, huge_page_size(&default_hstate));
1096		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1097						&user, HUGETLB_ANONHUGE_INODE);
1098		if (IS_ERR(file))
1099			return PTR_ERR(file);
1100	}
1101
1102	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1103
1104	down_write(&current->mm->mmap_sem);
1105	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1106	up_write(&current->mm->mmap_sem);
1107
1108	if (file)
1109		fput(file);
1110out:
1111	return retval;
1112}
1113
1114#ifdef __ARCH_WANT_SYS_OLD_MMAP
1115struct mmap_arg_struct {
1116	unsigned long addr;
1117	unsigned long len;
1118	unsigned long prot;
1119	unsigned long flags;
1120	unsigned long fd;
1121	unsigned long offset;
1122};
1123
1124SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1125{
1126	struct mmap_arg_struct a;
1127
1128	if (copy_from_user(&a, arg, sizeof(a)))
1129		return -EFAULT;
1130	if (a.offset & ~PAGE_MASK)
1131		return -EINVAL;
1132
1133	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1134			      a.offset >> PAGE_SHIFT);
1135}
1136#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1137
1138/*
1139 * Some shared mappigns will want the pages marked read-only
1140 * to track write events. If so, we'll downgrade vm_page_prot
1141 * to the private version (using protection_map[] without the
1142 * VM_SHARED bit).
1143 */
1144int vma_wants_writenotify(struct vm_area_struct *vma)
1145{
1146	unsigned int vm_flags = vma->vm_flags;
1147
1148	/* If it was private or non-writable, the write bit is already clear */
1149	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1150		return 0;
1151
1152	/* The backer wishes to know when pages are first written to? */
1153	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1154		return 1;
1155
1156	/* The open routine did something to the protections already? */
1157	if (pgprot_val(vma->vm_page_prot) !=
1158	    pgprot_val(vm_get_page_prot(vm_flags)))
1159		return 0;
1160
1161	/* Specialty mapping? */
1162	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1163		return 0;
1164
1165	/* Can the mapping track the dirty pages? */
1166	return vma->vm_file && vma->vm_file->f_mapping &&
1167		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1168}
1169
1170/*
1171 * We account for memory if it's a private writeable mapping,
1172 * not hugepages and VM_NORESERVE wasn't set.
1173 */
1174static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1175{
1176	/*
1177	 * hugetlb has its own accounting separate from the core VM
1178	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1179	 */
1180	if (file && is_file_hugepages(file))
1181		return 0;
1182
1183	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1184}
1185
1186unsigned long mmap_region(struct file *file, unsigned long addr,
1187			  unsigned long len, unsigned long flags,
1188			  unsigned int vm_flags, unsigned long pgoff)
1189{
1190	struct mm_struct *mm = current->mm;
1191	struct vm_area_struct *vma, *prev;
1192	int correct_wcount = 0;
1193	int error;
1194	struct rb_node **rb_link, *rb_parent;
1195	unsigned long charged = 0;
1196	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1197
1198	/* Clear old maps */
1199	error = -ENOMEM;
1200munmap_back:
1201	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1202	if (vma && vma->vm_start < addr + len) {
1203		if (do_munmap(mm, addr, len))
1204			return -ENOMEM;
1205		goto munmap_back;
1206	}
1207
1208	/* Check against address space limit. */
1209	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1210		return -ENOMEM;
1211
1212	/*
1213	 * Set 'VM_NORESERVE' if we should not account for the
1214	 * memory use of this mapping.
1215	 */
1216	if ((flags & MAP_NORESERVE)) {
1217		/* We honor MAP_NORESERVE if allowed to overcommit */
1218		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1219			vm_flags |= VM_NORESERVE;
1220
1221		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1222		if (file && is_file_hugepages(file))
1223			vm_flags |= VM_NORESERVE;
1224	}
1225
1226	/*
1227	 * Private writable mapping: check memory availability
1228	 */
1229	if (accountable_mapping(file, vm_flags)) {
1230		charged = len >> PAGE_SHIFT;
1231		if (security_vm_enough_memory(charged))
1232			return -ENOMEM;
1233		vm_flags |= VM_ACCOUNT;
1234	}
1235
1236	/*
1237	 * Can we just expand an old mapping?
1238	 */
1239	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1240	if (vma)
1241		goto out;
1242
1243	/*
1244	 * Determine the object being mapped and call the appropriate
1245	 * specific mapper. the address has already been validated, but
1246	 * not unmapped, but the maps are removed from the list.
1247	 */
1248	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1249	if (!vma) {
1250		error = -ENOMEM;
1251		goto unacct_error;
1252	}
1253
1254	vma->vm_mm = mm;
1255	vma->vm_start = addr;
1256	vma->vm_end = addr + len;
1257	vma->vm_flags = vm_flags;
1258	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1259	vma->vm_pgoff = pgoff;
1260	INIT_LIST_HEAD(&vma->anon_vma_chain);
1261
1262	if (file) {
1263		error = -EINVAL;
1264		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1265			goto free_vma;
1266		if (vm_flags & VM_DENYWRITE) {
1267			error = deny_write_access(file);
1268			if (error)
1269				goto free_vma;
1270			correct_wcount = 1;
1271		}
1272		vma->vm_file = file;
1273		get_file(file);
1274		error = file->f_op->mmap(file, vma);
1275		if (error)
1276			goto unmap_and_free_vma;
1277		if (vm_flags & VM_EXECUTABLE)
1278			added_exe_file_vma(mm);
1279
1280		/* Can addr have changed??
1281		 *
1282		 * Answer: Yes, several device drivers can do it in their
1283		 *         f_op->mmap method. -DaveM
1284		 */
1285		addr = vma->vm_start;
1286		pgoff = vma->vm_pgoff;
1287		vm_flags = vma->vm_flags;
1288	} else if (vm_flags & VM_SHARED) {
1289		error = shmem_zero_setup(vma);
1290		if (error)
1291			goto free_vma;
1292	}
1293
1294	if (vma_wants_writenotify(vma)) {
1295		pgprot_t pprot = vma->vm_page_prot;
1296
1297		/* Can vma->vm_page_prot have changed??
1298		 *
1299		 * Answer: Yes, drivers may have changed it in their
1300		 *         f_op->mmap method.
1301		 *
1302		 * Ensures that vmas marked as uncached stay that way.
1303		 */
1304		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1305		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1306			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1307	}
1308
1309	vma_link(mm, vma, prev, rb_link, rb_parent);
1310	file = vma->vm_file;
1311
1312	/* Once vma denies write, undo our temporary denial count */
1313	if (correct_wcount)
1314		atomic_inc(&inode->i_writecount);
1315out:
1316	perf_event_mmap(vma);
1317
1318	mm->total_vm += len >> PAGE_SHIFT;
1319	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1320	if (vm_flags & VM_LOCKED) {
1321		if (!mlock_vma_pages_range(vma, addr, addr + len))
1322			mm->locked_vm += (len >> PAGE_SHIFT);
1323	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1324		make_pages_present(addr, addr + len);
1325	return addr;
1326
1327unmap_and_free_vma:
1328	if (correct_wcount)
1329		atomic_inc(&inode->i_writecount);
1330	vma->vm_file = NULL;
1331	fput(file);
1332
1333	/* Undo any partial mapping done by a device driver. */
1334	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1335	charged = 0;
1336free_vma:
1337	kmem_cache_free(vm_area_cachep, vma);
1338unacct_error:
1339	if (charged)
1340		vm_unacct_memory(charged);
1341	return error;
1342}
1343
1344/* Get an address range which is currently unmapped.
1345 * For shmat() with addr=0.
1346 *
1347 * Ugly calling convention alert:
1348 * Return value with the low bits set means error value,
1349 * ie
1350 *	if (ret & ~PAGE_MASK)
1351 *		error = ret;
1352 *
1353 * This function "knows" that -ENOMEM has the bits set.
1354 */
1355#ifndef HAVE_ARCH_UNMAPPED_AREA
1356unsigned long
1357arch_get_unmapped_area(struct file *filp, unsigned long addr,
1358		unsigned long len, unsigned long pgoff, unsigned long flags)
1359{
1360	struct mm_struct *mm = current->mm;
1361	struct vm_area_struct *vma;
1362	unsigned long start_addr;
1363
1364	if (len > TASK_SIZE)
1365		return -ENOMEM;
1366
1367	if (flags & MAP_FIXED)
1368		return addr;
1369
1370	if (addr) {
1371		addr = PAGE_ALIGN(addr);
1372		vma = find_vma(mm, addr);
1373		if (TASK_SIZE - len >= addr &&
1374		    (!vma || addr + len <= vma->vm_start))
1375			return addr;
1376	}
1377	if (len > mm->cached_hole_size) {
1378	        start_addr = addr = mm->free_area_cache;
1379	} else {
1380	        start_addr = addr = TASK_UNMAPPED_BASE;
1381	        mm->cached_hole_size = 0;
1382	}
1383
1384full_search:
1385	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1386		/* At this point:  (!vma || addr < vma->vm_end). */
1387		if (TASK_SIZE - len < addr) {
1388			/*
1389			 * Start a new search - just in case we missed
1390			 * some holes.
1391			 */
1392			if (start_addr != TASK_UNMAPPED_BASE) {
1393				addr = TASK_UNMAPPED_BASE;
1394			        start_addr = addr;
1395				mm->cached_hole_size = 0;
1396				goto full_search;
1397			}
1398			return -ENOMEM;
1399		}
1400		if (!vma || addr + len <= vma->vm_start) {
1401			/*
1402			 * Remember the place where we stopped the search:
1403			 */
1404			mm->free_area_cache = addr + len;
1405			return addr;
1406		}
1407		if (addr + mm->cached_hole_size < vma->vm_start)
1408		        mm->cached_hole_size = vma->vm_start - addr;
1409		addr = vma->vm_end;
1410	}
1411}
1412#endif
1413
1414void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1415{
1416	/*
1417	 * Is this a new hole at the lowest possible address?
1418	 */
1419	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1420		mm->free_area_cache = addr;
1421		mm->cached_hole_size = ~0UL;
1422	}
1423}
1424
1425/*
1426 * This mmap-allocator allocates new areas top-down from below the
1427 * stack's low limit (the base):
1428 */
1429#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1430unsigned long
1431arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1432			  const unsigned long len, const unsigned long pgoff,
1433			  const unsigned long flags)
1434{
1435	struct vm_area_struct *vma;
1436	struct mm_struct *mm = current->mm;
1437	unsigned long addr = addr0;
1438
1439	/* requested length too big for entire address space */
1440	if (len > TASK_SIZE)
1441		return -ENOMEM;
1442
1443	if (flags & MAP_FIXED)
1444		return addr;
1445
1446	/* requesting a specific address */
1447	if (addr) {
1448		addr = PAGE_ALIGN(addr);
1449		vma = find_vma(mm, addr);
1450		if (TASK_SIZE - len >= addr &&
1451				(!vma || addr + len <= vma->vm_start))
1452			return addr;
1453	}
1454
1455	/* check if free_area_cache is useful for us */
1456	if (len <= mm->cached_hole_size) {
1457 	        mm->cached_hole_size = 0;
1458 		mm->free_area_cache = mm->mmap_base;
1459 	}
1460
1461	/* either no address requested or can't fit in requested address hole */
1462	addr = mm->free_area_cache;
1463
1464	/* make sure it can fit in the remaining address space */
1465	if (addr > len) {
1466		vma = find_vma(mm, addr-len);
1467		if (!vma || addr <= vma->vm_start)
1468			/* remember the address as a hint for next time */
1469			return (mm->free_area_cache = addr-len);
1470	}
1471
1472	if (mm->mmap_base < len)
1473		goto bottomup;
1474
1475	addr = mm->mmap_base-len;
1476
1477	do {
1478		/*
1479		 * Lookup failure means no vma is above this address,
1480		 * else if new region fits below vma->vm_start,
1481		 * return with success:
1482		 */
1483		vma = find_vma(mm, addr);
1484		if (!vma || addr+len <= vma->vm_start)
1485			/* remember the address as a hint for next time */
1486			return (mm->free_area_cache = addr);
1487
1488 		/* remember the largest hole we saw so far */
1489 		if (addr + mm->cached_hole_size < vma->vm_start)
1490 		        mm->cached_hole_size = vma->vm_start - addr;
1491
1492		/* try just below the current vma->vm_start */
1493		addr = vma->vm_start-len;
1494	} while (len < vma->vm_start);
1495
1496bottomup:
1497	/*
1498	 * A failed mmap() very likely causes application failure,
1499	 * so fall back to the bottom-up function here. This scenario
1500	 * can happen with large stack limits and large mmap()
1501	 * allocations.
1502	 */
1503	mm->cached_hole_size = ~0UL;
1504  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1505	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1506	/*
1507	 * Restore the topdown base:
1508	 */
1509	mm->free_area_cache = mm->mmap_base;
1510	mm->cached_hole_size = ~0UL;
1511
1512	return addr;
1513}
1514#endif
1515
1516void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1517{
1518	/*
1519	 * Is this a new hole at the highest possible address?
1520	 */
1521	if (addr > mm->free_area_cache)
1522		mm->free_area_cache = addr;
1523
1524	/* dont allow allocations above current base */
1525	if (mm->free_area_cache > mm->mmap_base)
1526		mm->free_area_cache = mm->mmap_base;
1527}
1528
1529unsigned long
1530get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1531		unsigned long pgoff, unsigned long flags)
1532{
1533	unsigned long (*get_area)(struct file *, unsigned long,
1534				  unsigned long, unsigned long, unsigned long);
1535
1536	unsigned long error = arch_mmap_check(addr, len, flags);
1537	if (error)
1538		return error;
1539
1540	/* Careful about overflows.. */
1541	if (len > TASK_SIZE)
1542		return -ENOMEM;
1543
1544	get_area = current->mm->get_unmapped_area;
1545	if (file && file->f_op && file->f_op->get_unmapped_area)
1546		get_area = file->f_op->get_unmapped_area;
1547	addr = get_area(file, addr, len, pgoff, flags);
1548	if (IS_ERR_VALUE(addr))
1549		return addr;
1550
1551	if (addr > TASK_SIZE - len)
1552		return -ENOMEM;
1553	if (addr & ~PAGE_MASK)
1554		return -EINVAL;
1555
1556	return arch_rebalance_pgtables(addr, len);
1557}
1558
1559EXPORT_SYMBOL(get_unmapped_area);
1560
1561/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1562struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1563{
1564	struct vm_area_struct *vma = NULL;
1565
1566	if (mm) {
1567		/* Check the cache first. */
1568		/* (Cache hit rate is typically around 35%.) */
1569		vma = mm->mmap_cache;
1570		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1571			struct rb_node * rb_node;
1572
1573			rb_node = mm->mm_rb.rb_node;
1574			vma = NULL;
1575
1576			while (rb_node) {
1577				struct vm_area_struct * vma_tmp;
1578
1579				vma_tmp = rb_entry(rb_node,
1580						struct vm_area_struct, vm_rb);
1581
1582				if (vma_tmp->vm_end > addr) {
1583					vma = vma_tmp;
1584					if (vma_tmp->vm_start <= addr)
1585						break;
1586					rb_node = rb_node->rb_left;
1587				} else
1588					rb_node = rb_node->rb_right;
1589			}
1590			if (vma)
1591				mm->mmap_cache = vma;
1592		}
1593	}
1594	return vma;
1595}
1596
1597EXPORT_SYMBOL(find_vma);
1598
1599/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1600struct vm_area_struct *
1601find_vma_prev(struct mm_struct *mm, unsigned long addr,
1602			struct vm_area_struct **pprev)
1603{
1604	struct vm_area_struct *vma = NULL, *prev = NULL;
1605	struct rb_node *rb_node;
1606	if (!mm)
1607		goto out;
1608
1609	/* Guard against addr being lower than the first VMA */
1610	vma = mm->mmap;
1611
1612	/* Go through the RB tree quickly. */
1613	rb_node = mm->mm_rb.rb_node;
1614
1615	while (rb_node) {
1616		struct vm_area_struct *vma_tmp;
1617		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1618
1619		if (addr < vma_tmp->vm_end) {
1620			rb_node = rb_node->rb_left;
1621		} else {
1622			prev = vma_tmp;
1623			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1624				break;
1625			rb_node = rb_node->rb_right;
1626		}
1627	}
1628
1629out:
1630	*pprev = prev;
1631	return prev ? prev->vm_next : vma;
1632}
1633
1634/*
1635 * Verify that the stack growth is acceptable and
1636 * update accounting. This is shared with both the
1637 * grow-up and grow-down cases.
1638 */
1639static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1640{
1641	struct mm_struct *mm = vma->vm_mm;
1642	struct rlimit *rlim = current->signal->rlim;
1643	unsigned long new_start;
1644
1645	/* address space limit tests */
1646	if (!may_expand_vm(mm, grow))
1647		return -ENOMEM;
1648
1649	/* Stack limit test */
1650	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1651		return -ENOMEM;
1652
1653	/* mlock limit tests */
1654	if (vma->vm_flags & VM_LOCKED) {
1655		unsigned long locked;
1656		unsigned long limit;
1657		locked = mm->locked_vm + grow;
1658		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1659		limit >>= PAGE_SHIFT;
1660		if (locked > limit && !capable(CAP_IPC_LOCK))
1661			return -ENOMEM;
1662	}
1663
1664	/* Check to ensure the stack will not grow into a hugetlb-only region */
1665	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1666			vma->vm_end - size;
1667	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1668		return -EFAULT;
1669
1670	/*
1671	 * Overcommit..  This must be the final test, as it will
1672	 * update security statistics.
1673	 */
1674	if (security_vm_enough_memory_mm(mm, grow))
1675		return -ENOMEM;
1676
1677	/* Ok, everything looks good - let it rip */
1678	mm->total_vm += grow;
1679	if (vma->vm_flags & VM_LOCKED)
1680		mm->locked_vm += grow;
1681	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1682	return 0;
1683}
1684
1685#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1686/*
1687 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1688 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1689 */
1690int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1691{
1692	int error;
1693
1694	if (!(vma->vm_flags & VM_GROWSUP))
1695		return -EFAULT;
1696
1697	/*
1698	 * We must make sure the anon_vma is allocated
1699	 * so that the anon_vma locking is not a noop.
1700	 */
1701	if (unlikely(anon_vma_prepare(vma)))
1702		return -ENOMEM;
1703	vma_lock_anon_vma(vma);
1704
1705	/*
1706	 * vma->vm_start/vm_end cannot change under us because the caller
1707	 * is required to hold the mmap_sem in read mode.  We need the
1708	 * anon_vma lock to serialize against concurrent expand_stacks.
1709	 * Also guard against wrapping around to address 0.
1710	 */
1711	if (address < PAGE_ALIGN(address+4))
1712		address = PAGE_ALIGN(address+4);
1713	else {
1714		vma_unlock_anon_vma(vma);
1715		return -ENOMEM;
1716	}
1717	error = 0;
1718
1719	/* Somebody else might have raced and expanded it already */
1720	if (address > vma->vm_end) {
1721		unsigned long size, grow;
1722
1723		size = address - vma->vm_start;
1724		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1725
1726		error = acct_stack_growth(vma, size, grow);
1727		if (!error) {
1728			vma->vm_end = address;
1729			perf_event_mmap(vma);
1730		}
1731	}
1732	vma_unlock_anon_vma(vma);
1733	return error;
1734}
1735#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1736
1737/*
1738 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1739 */
1740static int expand_downwards(struct vm_area_struct *vma,
1741				   unsigned long address)
1742{
1743	int error;
1744
1745	/*
1746	 * We must make sure the anon_vma is allocated
1747	 * so that the anon_vma locking is not a noop.
1748	 */
1749	if (unlikely(anon_vma_prepare(vma)))
1750		return -ENOMEM;
1751
1752	address &= PAGE_MASK;
1753	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1754	if (error)
1755		return error;
1756
1757	vma_lock_anon_vma(vma);
1758
1759	/*
1760	 * vma->vm_start/vm_end cannot change under us because the caller
1761	 * is required to hold the mmap_sem in read mode.  We need the
1762	 * anon_vma lock to serialize against concurrent expand_stacks.
1763	 */
1764
1765	/* Somebody else might have raced and expanded it already */
1766	if (address < vma->vm_start) {
1767		unsigned long size, grow;
1768
1769		size = vma->vm_end - address;
1770		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1771
1772		error = acct_stack_growth(vma, size, grow);
1773		if (!error) {
1774			vma->vm_start = address;
1775			vma->vm_pgoff -= grow;
1776			perf_event_mmap(vma);
1777		}
1778	}
1779	vma_unlock_anon_vma(vma);
1780	return error;
1781}
1782
1783int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1784{
1785	return expand_downwards(vma, address);
1786}
1787
1788#ifdef CONFIG_STACK_GROWSUP
1789int expand_stack(struct vm_area_struct *vma, unsigned long address)
1790{
1791	return expand_upwards(vma, address);
1792}
1793
1794struct vm_area_struct *
1795find_extend_vma(struct mm_struct *mm, unsigned long addr)
1796{
1797	struct vm_area_struct *vma, *prev;
1798
1799	addr &= PAGE_MASK;
1800	vma = find_vma_prev(mm, addr, &prev);
1801	if (vma && (vma->vm_start <= addr))
1802		return vma;
1803	if (!prev || expand_stack(prev, addr))
1804		return NULL;
1805	if (prev->vm_flags & VM_LOCKED) {
1806		mlock_vma_pages_range(prev, addr, prev->vm_end);
1807	}
1808	return prev;
1809}
1810#else
1811int expand_stack(struct vm_area_struct *vma, unsigned long address)
1812{
1813	return expand_downwards(vma, address);
1814}
1815
1816struct vm_area_struct *
1817find_extend_vma(struct mm_struct * mm, unsigned long addr)
1818{
1819	struct vm_area_struct * vma;
1820	unsigned long start;
1821
1822	addr &= PAGE_MASK;
1823	vma = find_vma(mm,addr);
1824	if (!vma)
1825		return NULL;
1826	if (vma->vm_start <= addr)
1827		return vma;
1828	if (!(vma->vm_flags & VM_GROWSDOWN))
1829		return NULL;
1830	start = vma->vm_start;
1831	if (expand_stack(vma, addr))
1832		return NULL;
1833	if (vma->vm_flags & VM_LOCKED) {
1834		mlock_vma_pages_range(vma, addr, start);
1835	}
1836	return vma;
1837}
1838#endif
1839
1840/*
1841 * Ok - we have the memory areas we should free on the vma list,
1842 * so release them, and do the vma updates.
1843 *
1844 * Called with the mm semaphore held.
1845 */
1846static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1847{
1848	/* Update high watermark before we lower total_vm */
1849	update_hiwater_vm(mm);
1850	do {
1851		long nrpages = vma_pages(vma);
1852
1853		mm->total_vm -= nrpages;
1854		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1855		vma = remove_vma(vma);
1856	} while (vma);
1857	validate_mm(mm);
1858}
1859
1860/*
1861 * Get rid of page table information in the indicated region.
1862 *
1863 * Called with the mm semaphore held.
1864 */
1865static void unmap_region(struct mm_struct *mm,
1866		struct vm_area_struct *vma, struct vm_area_struct *prev,
1867		unsigned long start, unsigned long end)
1868{
1869	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1870	struct mmu_gather *tlb;
1871	unsigned long nr_accounted = 0;
1872
1873	lru_add_drain();
1874	tlb = tlb_gather_mmu(mm, 0);
1875	update_hiwater_rss(mm);
1876	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1877	vm_unacct_memory(nr_accounted);
1878	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1879				 next? next->vm_start: 0);
1880	tlb_finish_mmu(tlb, start, end);
1881}
1882
1883/*
1884 * Create a list of vma's touched by the unmap, removing them from the mm's
1885 * vma list as we go..
1886 */
1887static void
1888detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1889	struct vm_area_struct *prev, unsigned long end)
1890{
1891	struct vm_area_struct **insertion_point;
1892	struct vm_area_struct *tail_vma = NULL;
1893	unsigned long addr;
1894
1895	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1896	vma->vm_prev = NULL;
1897	do {
1898		rb_erase(&vma->vm_rb, &mm->mm_rb);
1899		mm->map_count--;
1900		tail_vma = vma;
1901		vma = vma->vm_next;
1902	} while (vma && vma->vm_start < end);
1903	*insertion_point = vma;
1904	if (vma)
1905		vma->vm_prev = prev;
1906	tail_vma->vm_next = NULL;
1907	if (mm->unmap_area == arch_unmap_area)
1908		addr = prev ? prev->vm_end : mm->mmap_base;
1909	else
1910		addr = vma ?  vma->vm_start : mm->mmap_base;
1911	mm->unmap_area(mm, addr);
1912	mm->mmap_cache = NULL;		/* Kill the cache. */
1913}
1914
1915/*
1916 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1917 * munmap path where it doesn't make sense to fail.
1918 */
1919static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1920	      unsigned long addr, int new_below)
1921{
1922	struct mempolicy *pol;
1923	struct vm_area_struct *new;
1924	int err = -ENOMEM;
1925
1926	if (is_vm_hugetlb_page(vma) && (addr &
1927					~(huge_page_mask(hstate_vma(vma)))))
1928		return -EINVAL;
1929
1930	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1931	if (!new)
1932		goto out_err;
1933
1934	/* most fields are the same, copy all, and then fixup */
1935	*new = *vma;
1936
1937	INIT_LIST_HEAD(&new->anon_vma_chain);
1938
1939	if (new_below)
1940		new->vm_end = addr;
1941	else {
1942		new->vm_start = addr;
1943		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1944	}
1945
1946	pol = mpol_dup(vma_policy(vma));
1947	if (IS_ERR(pol)) {
1948		err = PTR_ERR(pol);
1949		goto out_free_vma;
1950	}
1951	vma_set_policy(new, pol);
1952
1953	if (anon_vma_clone(new, vma))
1954		goto out_free_mpol;
1955
1956	if (new->vm_file) {
1957		get_file(new->vm_file);
1958		if (vma->vm_flags & VM_EXECUTABLE)
1959			added_exe_file_vma(mm);
1960	}
1961
1962	if (new->vm_ops && new->vm_ops->open)
1963		new->vm_ops->open(new);
1964
1965	if (new_below)
1966		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1967			((addr - new->vm_start) >> PAGE_SHIFT), new);
1968	else
1969		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1970
1971	/* Success. */
1972	if (!err)
1973		return 0;
1974
1975	/* Clean everything up if vma_adjust failed. */
1976	if (new->vm_ops && new->vm_ops->close)
1977		new->vm_ops->close(new);
1978	if (new->vm_file) {
1979		if (vma->vm_flags & VM_EXECUTABLE)
1980			removed_exe_file_vma(mm);
1981		fput(new->vm_file);
1982	}
1983	unlink_anon_vmas(new);
1984 out_free_mpol:
1985	mpol_put(pol);
1986 out_free_vma:
1987	kmem_cache_free(vm_area_cachep, new);
1988 out_err:
1989	return err;
1990}
1991
1992/*
1993 * Split a vma into two pieces at address 'addr', a new vma is allocated
1994 * either for the first part or the tail.
1995 */
1996int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1997	      unsigned long addr, int new_below)
1998{
1999	if (mm->map_count >= sysctl_max_map_count)
2000		return -ENOMEM;
2001
2002	return __split_vma(mm, vma, addr, new_below);
2003}
2004
2005/* Munmap is split into 2 main parts -- this part which finds
2006 * what needs doing, and the areas themselves, which do the
2007 * work.  This now handles partial unmappings.
2008 * Jeremy Fitzhardinge <jeremy@goop.org>
2009 */
2010int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2011{
2012	unsigned long end;
2013	struct vm_area_struct *vma, *prev, *last;
2014
2015	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2016		return -EINVAL;
2017
2018	if ((len = PAGE_ALIGN(len)) == 0)
2019		return -EINVAL;
2020
2021	/* Find the first overlapping VMA */
2022	vma = find_vma_prev(mm, start, &prev);
2023	if (!vma)
2024		return 0;
2025	/* we have  start < vma->vm_end  */
2026
2027	/* if it doesn't overlap, we have nothing.. */
2028	end = start + len;
2029	if (vma->vm_start >= end)
2030		return 0;
2031
2032	/*
2033	 * If we need to split any vma, do it now to save pain later.
2034	 *
2035	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2036	 * unmapped vm_area_struct will remain in use: so lower split_vma
2037	 * places tmp vma above, and higher split_vma places tmp vma below.
2038	 */
2039	if (start > vma->vm_start) {
2040		int error;
2041
2042		/*
2043		 * Make sure that map_count on return from munmap() will
2044		 * not exceed its limit; but let map_count go just above
2045		 * its limit temporarily, to help free resources as expected.
2046		 */
2047		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2048			return -ENOMEM;
2049
2050		error = __split_vma(mm, vma, start, 0);
2051		if (error)
2052			return error;
2053		prev = vma;
2054	}
2055
2056	/* Does it split the last one? */
2057	last = find_vma(mm, end);
2058	if (last && end > last->vm_start) {
2059		int error = __split_vma(mm, last, end, 1);
2060		if (error)
2061			return error;
2062	}
2063	vma = prev? prev->vm_next: mm->mmap;
2064
2065	/*
2066	 * unlock any mlock()ed ranges before detaching vmas
2067	 */
2068	if (mm->locked_vm) {
2069		struct vm_area_struct *tmp = vma;
2070		while (tmp && tmp->vm_start < end) {
2071			if (tmp->vm_flags & VM_LOCKED) {
2072				mm->locked_vm -= vma_pages(tmp);
2073				munlock_vma_pages_all(tmp);
2074			}
2075			tmp = tmp->vm_next;
2076		}
2077	}
2078
2079	/*
2080	 * Remove the vma's, and unmap the actual pages
2081	 */
2082	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2083	unmap_region(mm, vma, prev, start, end);
2084
2085	/* Fix up all other VM information */
2086	remove_vma_list(mm, vma);
2087
2088	return 0;
2089}
2090
2091EXPORT_SYMBOL(do_munmap);
2092
2093SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2094{
2095	int ret;
2096	struct mm_struct *mm = current->mm;
2097
2098	profile_munmap(addr);
2099
2100	down_write(&mm->mmap_sem);
2101	ret = do_munmap(mm, addr, len);
2102	up_write(&mm->mmap_sem);
2103	return ret;
2104}
2105
2106static inline void verify_mm_writelocked(struct mm_struct *mm)
2107{
2108#ifdef CONFIG_DEBUG_VM
2109	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2110		WARN_ON(1);
2111		up_read(&mm->mmap_sem);
2112	}
2113#endif
2114}
2115
2116/*
2117 *  this is really a simplified "do_mmap".  it only handles
2118 *  anonymous maps.  eventually we may be able to do some
2119 *  brk-specific accounting here.
2120 */
2121unsigned long do_brk(unsigned long addr, unsigned long len)
2122{
2123	struct mm_struct * mm = current->mm;
2124	struct vm_area_struct * vma, * prev;
2125	unsigned long flags;
2126	struct rb_node ** rb_link, * rb_parent;
2127	pgoff_t pgoff = addr >> PAGE_SHIFT;
2128	int error;
2129
2130	len = PAGE_ALIGN(len);
2131	if (!len)
2132		return addr;
2133
2134	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2135	if (error)
2136		return error;
2137
2138	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2139
2140	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2141	if (error & ~PAGE_MASK)
2142		return error;
2143
2144	/*
2145	 * mlock MCL_FUTURE?
2146	 */
2147	if (mm->def_flags & VM_LOCKED) {
2148		unsigned long locked, lock_limit;
2149		locked = len >> PAGE_SHIFT;
2150		locked += mm->locked_vm;
2151		lock_limit = rlimit(RLIMIT_MEMLOCK);
2152		lock_limit >>= PAGE_SHIFT;
2153		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2154			return -EAGAIN;
2155	}
2156
2157	/*
2158	 * mm->mmap_sem is required to protect against another thread
2159	 * changing the mappings in case we sleep.
2160	 */
2161	verify_mm_writelocked(mm);
2162
2163	/*
2164	 * Clear old maps.  this also does some error checking for us
2165	 */
2166 munmap_back:
2167	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2168	if (vma && vma->vm_start < addr + len) {
2169		if (do_munmap(mm, addr, len))
2170			return -ENOMEM;
2171		goto munmap_back;
2172	}
2173
2174	/* Check against address space limits *after* clearing old maps... */
2175	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2176		return -ENOMEM;
2177
2178	if (mm->map_count > sysctl_max_map_count)
2179		return -ENOMEM;
2180
2181	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2182		return -ENOMEM;
2183
2184	/* Can we just expand an old private anonymous mapping? */
2185	vma = vma_merge(mm, prev, addr, addr + len, flags,
2186					NULL, NULL, pgoff, NULL);
2187	if (vma)
2188		goto out;
2189
2190	/*
2191	 * create a vma struct for an anonymous mapping
2192	 */
2193	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2194	if (!vma) {
2195		vm_unacct_memory(len >> PAGE_SHIFT);
2196		return -ENOMEM;
2197	}
2198
2199	INIT_LIST_HEAD(&vma->anon_vma_chain);
2200	vma->vm_mm = mm;
2201	vma->vm_start = addr;
2202	vma->vm_end = addr + len;
2203	vma->vm_pgoff = pgoff;
2204	vma->vm_flags = flags;
2205	vma->vm_page_prot = vm_get_page_prot(flags);
2206	vma_link(mm, vma, prev, rb_link, rb_parent);
2207out:
2208	perf_event_mmap(vma);
2209	mm->total_vm += len >> PAGE_SHIFT;
2210	if (flags & VM_LOCKED) {
2211		if (!mlock_vma_pages_range(vma, addr, addr + len))
2212			mm->locked_vm += (len >> PAGE_SHIFT);
2213	}
2214	return addr;
2215}
2216
2217EXPORT_SYMBOL(do_brk);
2218
2219/* Release all mmaps. */
2220void exit_mmap(struct mm_struct *mm)
2221{
2222	struct mmu_gather *tlb;
2223	struct vm_area_struct *vma;
2224	unsigned long nr_accounted = 0;
2225	unsigned long end;
2226
2227	/* mm's last user has gone, and its about to be pulled down */
2228	mmu_notifier_release(mm);
2229
2230	if (mm->locked_vm) {
2231		vma = mm->mmap;
2232		while (vma) {
2233			if (vma->vm_flags & VM_LOCKED)
2234				munlock_vma_pages_all(vma);
2235			vma = vma->vm_next;
2236		}
2237	}
2238
2239	arch_exit_mmap(mm);
2240
2241	vma = mm->mmap;
2242	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2243		return;
2244
2245	lru_add_drain();
2246	flush_cache_mm(mm);
2247	tlb = tlb_gather_mmu(mm, 1);
2248	/* update_hiwater_rss(mm) here? but nobody should be looking */
2249	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2250	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2251	vm_unacct_memory(nr_accounted);
2252
2253	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2254	tlb_finish_mmu(tlb, 0, end);
2255
2256	/*
2257	 * Walk the list again, actually closing and freeing it,
2258	 * with preemption enabled, without holding any MM locks.
2259	 */
2260	while (vma)
2261		vma = remove_vma(vma);
2262
2263	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2264}
2265
2266/* Insert vm structure into process list sorted by address
2267 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2268 * then i_mmap_lock is taken here.
2269 */
2270int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2271{
2272	struct vm_area_struct * __vma, * prev;
2273	struct rb_node ** rb_link, * rb_parent;
2274
2275	/*
2276	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2277	 * until its first write fault, when page's anon_vma and index
2278	 * are set.  But now set the vm_pgoff it will almost certainly
2279	 * end up with (unless mremap moves it elsewhere before that
2280	 * first wfault), so /proc/pid/maps tells a consistent story.
2281	 *
2282	 * By setting it to reflect the virtual start address of the
2283	 * vma, merges and splits can happen in a seamless way, just
2284	 * using the existing file pgoff checks and manipulations.
2285	 * Similarly in do_mmap_pgoff and in do_brk.
2286	 */
2287	if (!vma->vm_file) {
2288		BUG_ON(vma->anon_vma);
2289		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2290	}
2291	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2292	if (__vma && __vma->vm_start < vma->vm_end)
2293		return -ENOMEM;
2294	if ((vma->vm_flags & VM_ACCOUNT) &&
2295	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2296		return -ENOMEM;
2297	vma_link(mm, vma, prev, rb_link, rb_parent);
2298	return 0;
2299}
2300
2301/*
2302 * Copy the vma structure to a new location in the same mm,
2303 * prior to moving page table entries, to effect an mremap move.
2304 */
2305struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2306	unsigned long addr, unsigned long len, pgoff_t pgoff)
2307{
2308	struct vm_area_struct *vma = *vmap;
2309	unsigned long vma_start = vma->vm_start;
2310	struct mm_struct *mm = vma->vm_mm;
2311	struct vm_area_struct *new_vma, *prev;
2312	struct rb_node **rb_link, *rb_parent;
2313	struct mempolicy *pol;
2314
2315	/*
2316	 * If anonymous vma has not yet been faulted, update new pgoff
2317	 * to match new location, to increase its chance of merging.
2318	 */
2319	if (!vma->vm_file && !vma->anon_vma)
2320		pgoff = addr >> PAGE_SHIFT;
2321
2322	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2323	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2324			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2325	if (new_vma) {
2326		/*
2327		 * Source vma may have been merged into new_vma
2328		 */
2329		if (vma_start >= new_vma->vm_start &&
2330		    vma_start < new_vma->vm_end)
2331			*vmap = new_vma;
2332	} else {
2333		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2334		if (new_vma) {
2335			*new_vma = *vma;
2336			pol = mpol_dup(vma_policy(vma));
2337			if (IS_ERR(pol))
2338				goto out_free_vma;
2339			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2340			if (anon_vma_clone(new_vma, vma))
2341				goto out_free_mempol;
2342			vma_set_policy(new_vma, pol);
2343			new_vma->vm_start = addr;
2344			new_vma->vm_end = addr + len;
2345			new_vma->vm_pgoff = pgoff;
2346			if (new_vma->vm_file) {
2347				get_file(new_vma->vm_file);
2348				if (vma->vm_flags & VM_EXECUTABLE)
2349					added_exe_file_vma(mm);
2350			}
2351			if (new_vma->vm_ops && new_vma->vm_ops->open)
2352				new_vma->vm_ops->open(new_vma);
2353			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2354		}
2355	}
2356	return new_vma;
2357
2358 out_free_mempol:
2359	mpol_put(pol);
2360 out_free_vma:
2361	kmem_cache_free(vm_area_cachep, new_vma);
2362	return NULL;
2363}
2364
2365/*
2366 * Return true if the calling process may expand its vm space by the passed
2367 * number of pages
2368 */
2369int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2370{
2371	unsigned long cur = mm->total_vm;	/* pages */
2372	unsigned long lim;
2373
2374	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2375
2376	if (cur + npages > lim)
2377		return 0;
2378	return 1;
2379}
2380
2381
2382static int special_mapping_fault(struct vm_area_struct *vma,
2383				struct vm_fault *vmf)
2384{
2385	pgoff_t pgoff;
2386	struct page **pages;
2387
2388	/*
2389	 * special mappings have no vm_file, and in that case, the mm
2390	 * uses vm_pgoff internally. So we have to subtract it from here.
2391	 * We are allowed to do this because we are the mm; do not copy
2392	 * this code into drivers!
2393	 */
2394	pgoff = vmf->pgoff - vma->vm_pgoff;
2395
2396	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2397		pgoff--;
2398
2399	if (*pages) {
2400		struct page *page = *pages;
2401		get_page(page);
2402		vmf->page = page;
2403		return 0;
2404	}
2405
2406	return VM_FAULT_SIGBUS;
2407}
2408
2409/*
2410 * Having a close hook prevents vma merging regardless of flags.
2411 */
2412static void special_mapping_close(struct vm_area_struct *vma)
2413{
2414}
2415
2416static const struct vm_operations_struct special_mapping_vmops = {
2417	.close = special_mapping_close,
2418	.fault = special_mapping_fault,
2419};
2420
2421/*
2422 * Called with mm->mmap_sem held for writing.
2423 * Insert a new vma covering the given region, with the given flags.
2424 * Its pages are supplied by the given array of struct page *.
2425 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2426 * The region past the last page supplied will always produce SIGBUS.
2427 * The array pointer and the pages it points to are assumed to stay alive
2428 * for as long as this mapping might exist.
2429 */
2430int install_special_mapping(struct mm_struct *mm,
2431			    unsigned long addr, unsigned long len,
2432			    unsigned long vm_flags, struct page **pages)
2433{
2434	int ret;
2435	struct vm_area_struct *vma;
2436
2437	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2438	if (unlikely(vma == NULL))
2439		return -ENOMEM;
2440
2441	INIT_LIST_HEAD(&vma->anon_vma_chain);
2442	vma->vm_mm = mm;
2443	vma->vm_start = addr;
2444	vma->vm_end = addr + len;
2445
2446	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2447	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2448
2449	vma->vm_ops = &special_mapping_vmops;
2450	vma->vm_private_data = pages;
2451
2452	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2453	if (ret)
2454		goto out;
2455
2456	ret = insert_vm_struct(mm, vma);
2457	if (ret)
2458		goto out;
2459
2460	mm->total_vm += len >> PAGE_SHIFT;
2461
2462	perf_event_mmap(vma);
2463
2464	return 0;
2465
2466out:
2467	kmem_cache_free(vm_area_cachep, vma);
2468	return ret;
2469}
2470
2471static DEFINE_MUTEX(mm_all_locks_mutex);
2472
2473static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2474{
2475	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2476		/*
2477		 * The LSB of head.next can't change from under us
2478		 * because we hold the mm_all_locks_mutex.
2479		 */
2480		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2481		/*
2482		 * We can safely modify head.next after taking the
2483		 * anon_vma->root->lock. If some other vma in this mm shares
2484		 * the same anon_vma we won't take it again.
2485		 *
2486		 * No need of atomic instructions here, head.next
2487		 * can't change from under us thanks to the
2488		 * anon_vma->root->lock.
2489		 */
2490		if (__test_and_set_bit(0, (unsigned long *)
2491				       &anon_vma->root->head.next))
2492			BUG();
2493	}
2494}
2495
2496static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2497{
2498	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2499		/*
2500		 * AS_MM_ALL_LOCKS can't change from under us because
2501		 * we hold the mm_all_locks_mutex.
2502		 *
2503		 * Operations on ->flags have to be atomic because
2504		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2505		 * mm_all_locks_mutex, there may be other cpus
2506		 * changing other bitflags in parallel to us.
2507		 */
2508		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2509			BUG();
2510		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2511	}
2512}
2513
2514/*
2515 * This operation locks against the VM for all pte/vma/mm related
2516 * operations that could ever happen on a certain mm. This includes
2517 * vmtruncate, try_to_unmap, and all page faults.
2518 *
2519 * The caller must take the mmap_sem in write mode before calling
2520 * mm_take_all_locks(). The caller isn't allowed to release the
2521 * mmap_sem until mm_drop_all_locks() returns.
2522 *
2523 * mmap_sem in write mode is required in order to block all operations
2524 * that could modify pagetables and free pages without need of
2525 * altering the vma layout (for example populate_range() with
2526 * nonlinear vmas). It's also needed in write mode to avoid new
2527 * anon_vmas to be associated with existing vmas.
2528 *
2529 * A single task can't take more than one mm_take_all_locks() in a row
2530 * or it would deadlock.
2531 *
2532 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2533 * mapping->flags avoid to take the same lock twice, if more than one
2534 * vma in this mm is backed by the same anon_vma or address_space.
2535 *
2536 * We can take all the locks in random order because the VM code
2537 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2538 * takes more than one of them in a row. Secondly we're protected
2539 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2540 *
2541 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2542 * that may have to take thousand of locks.
2543 *
2544 * mm_take_all_locks() can fail if it's interrupted by signals.
2545 */
2546int mm_take_all_locks(struct mm_struct *mm)
2547{
2548	struct vm_area_struct *vma;
2549	struct anon_vma_chain *avc;
2550	int ret = -EINTR;
2551
2552	BUG_ON(down_read_trylock(&mm->mmap_sem));
2553
2554	mutex_lock(&mm_all_locks_mutex);
2555
2556	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2557		if (signal_pending(current))
2558			goto out_unlock;
2559		if (vma->vm_file && vma->vm_file->f_mapping)
2560			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2561	}
2562
2563	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2564		if (signal_pending(current))
2565			goto out_unlock;
2566		if (vma->anon_vma)
2567			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2568				vm_lock_anon_vma(mm, avc->anon_vma);
2569	}
2570
2571	ret = 0;
2572
2573out_unlock:
2574	if (ret)
2575		mm_drop_all_locks(mm);
2576
2577	return ret;
2578}
2579
2580static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2581{
2582	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2583		/*
2584		 * The LSB of head.next can't change to 0 from under
2585		 * us because we hold the mm_all_locks_mutex.
2586		 *
2587		 * We must however clear the bitflag before unlocking
2588		 * the vma so the users using the anon_vma->head will
2589		 * never see our bitflag.
2590		 *
2591		 * No need of atomic instructions here, head.next
2592		 * can't change from under us until we release the
2593		 * anon_vma->root->lock.
2594		 */
2595		if (!__test_and_clear_bit(0, (unsigned long *)
2596					  &anon_vma->root->head.next))
2597			BUG();
2598		anon_vma_unlock(anon_vma);
2599	}
2600}
2601
2602static void vm_unlock_mapping(struct address_space *mapping)
2603{
2604	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2605		/*
2606		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2607		 * because we hold the mm_all_locks_mutex.
2608		 */
2609		spin_unlock(&mapping->i_mmap_lock);
2610		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2611					&mapping->flags))
2612			BUG();
2613	}
2614}
2615
2616/*
2617 * The mmap_sem cannot be released by the caller until
2618 * mm_drop_all_locks() returns.
2619 */
2620void mm_drop_all_locks(struct mm_struct *mm)
2621{
2622	struct vm_area_struct *vma;
2623	struct anon_vma_chain *avc;
2624
2625	BUG_ON(down_read_trylock(&mm->mmap_sem));
2626	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2627
2628	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2629		if (vma->anon_vma)
2630			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2631				vm_unlock_anon_vma(avc->anon_vma);
2632		if (vma->vm_file && vma->vm_file->f_mapping)
2633			vm_unlock_mapping(vma->vm_file->f_mapping);
2634	}
2635
2636	mutex_unlock(&mm_all_locks_mutex);
2637}
2638
2639/*
2640 * initialise the VMA slab
2641 */
2642void __init mmap_init(void)
2643{
2644	int ret;
2645
2646	ret = percpu_counter_init(&vm_committed_as, 0);
2647	VM_BUG_ON(ret);
2648}
2649