• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/lib/zlib_deflate/
1/* +++ trees.c */
2/* trees.c -- output deflated data using Huffman coding
3 * Copyright (C) 1995-1996 Jean-loup Gailly
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34
35/* #include "deflate.h" */
36
37#include <linux/zutil.h>
38#include "defutil.h"
39
40#ifdef DEBUG_ZLIB
41#  include <ctype.h>
42#endif
43
44/* ===========================================================================
45 * Constants
46 */
47
48#define MAX_BL_BITS 7
49/* Bit length codes must not exceed MAX_BL_BITS bits */
50
51#define END_BLOCK 256
52/* end of block literal code */
53
54#define REP_3_6      16
55/* repeat previous bit length 3-6 times (2 bits of repeat count) */
56
57#define REPZ_3_10    17
58/* repeat a zero length 3-10 times  (3 bits of repeat count) */
59
60#define REPZ_11_138  18
61/* repeat a zero length 11-138 times  (7 bits of repeat count) */
62
63static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65
66static const int extra_dbits[D_CODES] /* extra bits for each distance code */
67   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68
69static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71
72static const uch bl_order[BL_CODES]
73   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74/* The lengths of the bit length codes are sent in order of decreasing
75 * probability, to avoid transmitting the lengths for unused bit length codes.
76 */
77
78#define Buf_size (8 * 2*sizeof(char))
79/* Number of bits used within bi_buf. (bi_buf might be implemented on
80 * more than 16 bits on some systems.)
81 */
82
83/* ===========================================================================
84 * Local data. These are initialized only once.
85 */
86
87static ct_data static_ltree[L_CODES+2];
88/* The static literal tree. Since the bit lengths are imposed, there is no
89 * need for the L_CODES extra codes used during heap construction. However
90 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
91 * below).
92 */
93
94static ct_data static_dtree[D_CODES];
95/* The static distance tree. (Actually a trivial tree since all codes use
96 * 5 bits.)
97 */
98
99static uch dist_code[512];
100/* distance codes. The first 256 values correspond to the distances
101 * 3 .. 258, the last 256 values correspond to the top 8 bits of
102 * the 15 bit distances.
103 */
104
105static uch length_code[MAX_MATCH-MIN_MATCH+1];
106/* length code for each normalized match length (0 == MIN_MATCH) */
107
108static int base_length[LENGTH_CODES];
109/* First normalized length for each code (0 = MIN_MATCH) */
110
111static int base_dist[D_CODES];
112/* First normalized distance for each code (0 = distance of 1) */
113
114struct static_tree_desc_s {
115    const ct_data *static_tree;  /* static tree or NULL */
116    const int *extra_bits;       /* extra bits for each code or NULL */
117    int     extra_base;          /* base index for extra_bits */
118    int     elems;               /* max number of elements in the tree */
119    int     max_length;          /* max bit length for the codes */
120};
121
122static static_tree_desc  static_l_desc =
123{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
124
125static static_tree_desc  static_d_desc =
126{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
127
128static static_tree_desc  static_bl_desc =
129{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
130
131/* ===========================================================================
132 * Local (static) routines in this file.
133 */
134
135static void tr_static_init (void);
136static void init_block     (deflate_state *s);
137static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
138static void gen_bitlen     (deflate_state *s, tree_desc *desc);
139static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
140static void build_tree     (deflate_state *s, tree_desc *desc);
141static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
142static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
143static int  build_bl_tree  (deflate_state *s);
144static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
145                           int blcodes);
146static void compress_block (deflate_state *s, ct_data *ltree,
147                           ct_data *dtree);
148static void set_data_type  (deflate_state *s);
149static unsigned bi_reverse (unsigned value, int length);
150static void bi_windup      (deflate_state *s);
151static void bi_flush       (deflate_state *s);
152static void copy_block     (deflate_state *s, char *buf, unsigned len,
153                           int header);
154
155#ifndef DEBUG_ZLIB
156#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157   /* Send a code of the given tree. c and tree must not have side effects */
158
159#else /* DEBUG_ZLIB */
160#  define send_code(s, c, tree) \
161     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162       send_bits(s, tree[c].Code, tree[c].Len); }
163#endif
164
165#define d_code(dist) \
166   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167/* Mapping from a distance to a distance code. dist is the distance - 1 and
168 * must not have side effects. dist_code[256] and dist_code[257] are never
169 * used.
170 */
171
172/* ===========================================================================
173 * Send a value on a given number of bits.
174 * IN assertion: length <= 16 and value fits in length bits.
175 */
176#ifdef DEBUG_ZLIB
177static void send_bits      (deflate_state *s, int value, int length);
178
179static void send_bits(
180	deflate_state *s,
181	int value,  /* value to send */
182	int length  /* number of bits */
183)
184{
185    Tracevv((stderr," l %2d v %4x ", length, value));
186    Assert(length > 0 && length <= 15, "invalid length");
187    s->bits_sent += (ulg)length;
188
189    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
190     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
191     * unused bits in value.
192     */
193    if (s->bi_valid > (int)Buf_size - length) {
194        s->bi_buf |= (value << s->bi_valid);
195        put_short(s, s->bi_buf);
196        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
197        s->bi_valid += length - Buf_size;
198    } else {
199        s->bi_buf |= value << s->bi_valid;
200        s->bi_valid += length;
201    }
202}
203#else /* !DEBUG_ZLIB */
204
205#define send_bits(s, value, length) \
206{ int len = length;\
207  if (s->bi_valid > (int)Buf_size - len) {\
208    int val = value;\
209    s->bi_buf |= (val << s->bi_valid);\
210    put_short(s, s->bi_buf);\
211    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
212    s->bi_valid += len - Buf_size;\
213  } else {\
214    s->bi_buf |= (value) << s->bi_valid;\
215    s->bi_valid += len;\
216  }\
217}
218#endif /* DEBUG_ZLIB */
219
220/* ===========================================================================
221 * Initialize the various 'constant' tables. In a multi-threaded environment,
222 * this function may be called by two threads concurrently, but this is
223 * harmless since both invocations do exactly the same thing.
224 */
225static void tr_static_init(void)
226{
227    static int static_init_done;
228    int n;        /* iterates over tree elements */
229    int bits;     /* bit counter */
230    int length;   /* length value */
231    int code;     /* code value */
232    int dist;     /* distance index */
233    ush bl_count[MAX_BITS+1];
234    /* number of codes at each bit length for an optimal tree */
235
236    if (static_init_done) return;
237
238    /* Initialize the mapping length (0..255) -> length code (0..28) */
239    length = 0;
240    for (code = 0; code < LENGTH_CODES-1; code++) {
241        base_length[code] = length;
242        for (n = 0; n < (1<<extra_lbits[code]); n++) {
243            length_code[length++] = (uch)code;
244        }
245    }
246    Assert (length == 256, "tr_static_init: length != 256");
247    /* Note that the length 255 (match length 258) can be represented
248     * in two different ways: code 284 + 5 bits or code 285, so we
249     * overwrite length_code[255] to use the best encoding:
250     */
251    length_code[length-1] = (uch)code;
252
253    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
254    dist = 0;
255    for (code = 0 ; code < 16; code++) {
256        base_dist[code] = dist;
257        for (n = 0; n < (1<<extra_dbits[code]); n++) {
258            dist_code[dist++] = (uch)code;
259        }
260    }
261    Assert (dist == 256, "tr_static_init: dist != 256");
262    dist >>= 7; /* from now on, all distances are divided by 128 */
263    for ( ; code < D_CODES; code++) {
264        base_dist[code] = dist << 7;
265        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
266            dist_code[256 + dist++] = (uch)code;
267        }
268    }
269    Assert (dist == 256, "tr_static_init: 256+dist != 512");
270
271    /* Construct the codes of the static literal tree */
272    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
273    n = 0;
274    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
275    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
276    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
277    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
278    /* Codes 286 and 287 do not exist, but we must include them in the
279     * tree construction to get a canonical Huffman tree (longest code
280     * all ones)
281     */
282    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
283
284    /* The static distance tree is trivial: */
285    for (n = 0; n < D_CODES; n++) {
286        static_dtree[n].Len = 5;
287        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
288    }
289    static_init_done = 1;
290}
291
292/* ===========================================================================
293 * Initialize the tree data structures for a new zlib stream.
294 */
295void zlib_tr_init(
296	deflate_state *s
297)
298{
299    tr_static_init();
300
301    s->compressed_len = 0L;
302
303    s->l_desc.dyn_tree = s->dyn_ltree;
304    s->l_desc.stat_desc = &static_l_desc;
305
306    s->d_desc.dyn_tree = s->dyn_dtree;
307    s->d_desc.stat_desc = &static_d_desc;
308
309    s->bl_desc.dyn_tree = s->bl_tree;
310    s->bl_desc.stat_desc = &static_bl_desc;
311
312    s->bi_buf = 0;
313    s->bi_valid = 0;
314    s->last_eob_len = 8; /* enough lookahead for inflate */
315#ifdef DEBUG_ZLIB
316    s->bits_sent = 0L;
317#endif
318
319    /* Initialize the first block of the first file: */
320    init_block(s);
321}
322
323/* ===========================================================================
324 * Initialize a new block.
325 */
326static void init_block(
327	deflate_state *s
328)
329{
330    int n; /* iterates over tree elements */
331
332    /* Initialize the trees. */
333    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
334    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
335    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
336
337    s->dyn_ltree[END_BLOCK].Freq = 1;
338    s->opt_len = s->static_len = 0L;
339    s->last_lit = s->matches = 0;
340}
341
342#define SMALLEST 1
343/* Index within the heap array of least frequent node in the Huffman tree */
344
345
346/* ===========================================================================
347 * Remove the smallest element from the heap and recreate the heap with
348 * one less element. Updates heap and heap_len.
349 */
350#define pqremove(s, tree, top) \
351{\
352    top = s->heap[SMALLEST]; \
353    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
354    pqdownheap(s, tree, SMALLEST); \
355}
356
357/* ===========================================================================
358 * Compares to subtrees, using the tree depth as tie breaker when
359 * the subtrees have equal frequency. This minimizes the worst case length.
360 */
361#define smaller(tree, n, m, depth) \
362   (tree[n].Freq < tree[m].Freq || \
363   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
364
365/* ===========================================================================
366 * Restore the heap property by moving down the tree starting at node k,
367 * exchanging a node with the smallest of its two sons if necessary, stopping
368 * when the heap property is re-established (each father smaller than its
369 * two sons).
370 */
371static void pqdownheap(
372	deflate_state *s,
373	ct_data *tree,  /* the tree to restore */
374	int k		/* node to move down */
375)
376{
377    int v = s->heap[k];
378    int j = k << 1;  /* left son of k */
379    while (j <= s->heap_len) {
380        /* Set j to the smallest of the two sons: */
381        if (j < s->heap_len &&
382            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
383            j++;
384        }
385        /* Exit if v is smaller than both sons */
386        if (smaller(tree, v, s->heap[j], s->depth)) break;
387
388        /* Exchange v with the smallest son */
389        s->heap[k] = s->heap[j];  k = j;
390
391        /* And continue down the tree, setting j to the left son of k */
392        j <<= 1;
393    }
394    s->heap[k] = v;
395}
396
397/* ===========================================================================
398 * Compute the optimal bit lengths for a tree and update the total bit length
399 * for the current block.
400 * IN assertion: the fields freq and dad are set, heap[heap_max] and
401 *    above are the tree nodes sorted by increasing frequency.
402 * OUT assertions: the field len is set to the optimal bit length, the
403 *     array bl_count contains the frequencies for each bit length.
404 *     The length opt_len is updated; static_len is also updated if stree is
405 *     not null.
406 */
407static void gen_bitlen(
408	deflate_state *s,
409	tree_desc *desc    /* the tree descriptor */
410)
411{
412    ct_data *tree        = desc->dyn_tree;
413    int max_code         = desc->max_code;
414    const ct_data *stree = desc->stat_desc->static_tree;
415    const int *extra     = desc->stat_desc->extra_bits;
416    int base             = desc->stat_desc->extra_base;
417    int max_length       = desc->stat_desc->max_length;
418    int h;              /* heap index */
419    int n, m;           /* iterate over the tree elements */
420    int bits;           /* bit length */
421    int xbits;          /* extra bits */
422    ush f;              /* frequency */
423    int overflow = 0;   /* number of elements with bit length too large */
424
425    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
426
427    /* In a first pass, compute the optimal bit lengths (which may
428     * overflow in the case of the bit length tree).
429     */
430    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
431
432    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
433        n = s->heap[h];
434        bits = tree[tree[n].Dad].Len + 1;
435        if (bits > max_length) bits = max_length, overflow++;
436        tree[n].Len = (ush)bits;
437        /* We overwrite tree[n].Dad which is no longer needed */
438
439        if (n > max_code) continue; /* not a leaf node */
440
441        s->bl_count[bits]++;
442        xbits = 0;
443        if (n >= base) xbits = extra[n-base];
444        f = tree[n].Freq;
445        s->opt_len += (ulg)f * (bits + xbits);
446        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
447    }
448    if (overflow == 0) return;
449
450    Trace((stderr,"\nbit length overflow\n"));
451    /* This happens for example on obj2 and pic of the Calgary corpus */
452
453    /* Find the first bit length which could increase: */
454    do {
455        bits = max_length-1;
456        while (s->bl_count[bits] == 0) bits--;
457        s->bl_count[bits]--;      /* move one leaf down the tree */
458        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
459        s->bl_count[max_length]--;
460        /* The brother of the overflow item also moves one step up,
461         * but this does not affect bl_count[max_length]
462         */
463        overflow -= 2;
464    } while (overflow > 0);
465
466    /* Now recompute all bit lengths, scanning in increasing frequency.
467     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
468     * lengths instead of fixing only the wrong ones. This idea is taken
469     * from 'ar' written by Haruhiko Okumura.)
470     */
471    for (bits = max_length; bits != 0; bits--) {
472        n = s->bl_count[bits];
473        while (n != 0) {
474            m = s->heap[--h];
475            if (m > max_code) continue;
476            if (tree[m].Len != (unsigned) bits) {
477                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
478                s->opt_len += ((long)bits - (long)tree[m].Len)
479                              *(long)tree[m].Freq;
480                tree[m].Len = (ush)bits;
481            }
482            n--;
483        }
484    }
485}
486
487/* ===========================================================================
488 * Generate the codes for a given tree and bit counts (which need not be
489 * optimal).
490 * IN assertion: the array bl_count contains the bit length statistics for
491 * the given tree and the field len is set for all tree elements.
492 * OUT assertion: the field code is set for all tree elements of non
493 *     zero code length.
494 */
495static void gen_codes(
496	ct_data *tree,             /* the tree to decorate */
497	int max_code,              /* largest code with non zero frequency */
498	ush *bl_count             /* number of codes at each bit length */
499)
500{
501    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
502    ush code = 0;              /* running code value */
503    int bits;                  /* bit index */
504    int n;                     /* code index */
505
506    /* The distribution counts are first used to generate the code values
507     * without bit reversal.
508     */
509    for (bits = 1; bits <= MAX_BITS; bits++) {
510        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
511    }
512    /* Check that the bit counts in bl_count are consistent. The last code
513     * must be all ones.
514     */
515    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
516            "inconsistent bit counts");
517    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
518
519    for (n = 0;  n <= max_code; n++) {
520        int len = tree[n].Len;
521        if (len == 0) continue;
522        /* Now reverse the bits */
523        tree[n].Code = bi_reverse(next_code[len]++, len);
524
525        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
526             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
527    }
528}
529
530/* ===========================================================================
531 * Construct one Huffman tree and assigns the code bit strings and lengths.
532 * Update the total bit length for the current block.
533 * IN assertion: the field freq is set for all tree elements.
534 * OUT assertions: the fields len and code are set to the optimal bit length
535 *     and corresponding code. The length opt_len is updated; static_len is
536 *     also updated if stree is not null. The field max_code is set.
537 */
538static void build_tree(
539	deflate_state *s,
540	tree_desc *desc	 /* the tree descriptor */
541)
542{
543    ct_data *tree         = desc->dyn_tree;
544    const ct_data *stree  = desc->stat_desc->static_tree;
545    int elems             = desc->stat_desc->elems;
546    int n, m;          /* iterate over heap elements */
547    int max_code = -1; /* largest code with non zero frequency */
548    int node;          /* new node being created */
549
550    /* Construct the initial heap, with least frequent element in
551     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
552     * heap[0] is not used.
553     */
554    s->heap_len = 0, s->heap_max = HEAP_SIZE;
555
556    for (n = 0; n < elems; n++) {
557        if (tree[n].Freq != 0) {
558            s->heap[++(s->heap_len)] = max_code = n;
559            s->depth[n] = 0;
560        } else {
561            tree[n].Len = 0;
562        }
563    }
564
565    /* The pkzip format requires that at least one distance code exists,
566     * and that at least one bit should be sent even if there is only one
567     * possible code. So to avoid special checks later on we force at least
568     * two codes of non zero frequency.
569     */
570    while (s->heap_len < 2) {
571        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
572        tree[node].Freq = 1;
573        s->depth[node] = 0;
574        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
575        /* node is 0 or 1 so it does not have extra bits */
576    }
577    desc->max_code = max_code;
578
579    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
580     * establish sub-heaps of increasing lengths:
581     */
582    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
583
584    /* Construct the Huffman tree by repeatedly combining the least two
585     * frequent nodes.
586     */
587    node = elems;              /* next internal node of the tree */
588    do {
589        pqremove(s, tree, n);  /* n = node of least frequency */
590        m = s->heap[SMALLEST]; /* m = node of next least frequency */
591
592        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
593        s->heap[--(s->heap_max)] = m;
594
595        /* Create a new node father of n and m */
596        tree[node].Freq = tree[n].Freq + tree[m].Freq;
597        s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
598        tree[n].Dad = tree[m].Dad = (ush)node;
599#ifdef DUMP_BL_TREE
600        if (tree == s->bl_tree) {
601            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
602                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
603        }
604#endif
605        /* and insert the new node in the heap */
606        s->heap[SMALLEST] = node++;
607        pqdownheap(s, tree, SMALLEST);
608
609    } while (s->heap_len >= 2);
610
611    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
612
613    /* At this point, the fields freq and dad are set. We can now
614     * generate the bit lengths.
615     */
616    gen_bitlen(s, (tree_desc *)desc);
617
618    /* The field len is now set, we can generate the bit codes */
619    gen_codes ((ct_data *)tree, max_code, s->bl_count);
620}
621
622/* ===========================================================================
623 * Scan a literal or distance tree to determine the frequencies of the codes
624 * in the bit length tree.
625 */
626static void scan_tree(
627	deflate_state *s,
628	ct_data *tree,   /* the tree to be scanned */
629	int max_code     /* and its largest code of non zero frequency */
630)
631{
632    int n;                     /* iterates over all tree elements */
633    int prevlen = -1;          /* last emitted length */
634    int curlen;                /* length of current code */
635    int nextlen = tree[0].Len; /* length of next code */
636    int count = 0;             /* repeat count of the current code */
637    int max_count = 7;         /* max repeat count */
638    int min_count = 4;         /* min repeat count */
639
640    if (nextlen == 0) max_count = 138, min_count = 3;
641    tree[max_code+1].Len = (ush)0xffff; /* guard */
642
643    for (n = 0; n <= max_code; n++) {
644        curlen = nextlen; nextlen = tree[n+1].Len;
645        if (++count < max_count && curlen == nextlen) {
646            continue;
647        } else if (count < min_count) {
648            s->bl_tree[curlen].Freq += count;
649        } else if (curlen != 0) {
650            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
651            s->bl_tree[REP_3_6].Freq++;
652        } else if (count <= 10) {
653            s->bl_tree[REPZ_3_10].Freq++;
654        } else {
655            s->bl_tree[REPZ_11_138].Freq++;
656        }
657        count = 0; prevlen = curlen;
658        if (nextlen == 0) {
659            max_count = 138, min_count = 3;
660        } else if (curlen == nextlen) {
661            max_count = 6, min_count = 3;
662        } else {
663            max_count = 7, min_count = 4;
664        }
665    }
666}
667
668/* ===========================================================================
669 * Send a literal or distance tree in compressed form, using the codes in
670 * bl_tree.
671 */
672static void send_tree(
673	deflate_state *s,
674	ct_data *tree, /* the tree to be scanned */
675	int max_code   /* and its largest code of non zero frequency */
676)
677{
678    int n;                     /* iterates over all tree elements */
679    int prevlen = -1;          /* last emitted length */
680    int curlen;                /* length of current code */
681    int nextlen = tree[0].Len; /* length of next code */
682    int count = 0;             /* repeat count of the current code */
683    int max_count = 7;         /* max repeat count */
684    int min_count = 4;         /* min repeat count */
685
686    /* tree[max_code+1].Len = -1; */  /* guard already set */
687    if (nextlen == 0) max_count = 138, min_count = 3;
688
689    for (n = 0; n <= max_code; n++) {
690        curlen = nextlen; nextlen = tree[n+1].Len;
691        if (++count < max_count && curlen == nextlen) {
692            continue;
693        } else if (count < min_count) {
694            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
695
696        } else if (curlen != 0) {
697            if (curlen != prevlen) {
698                send_code(s, curlen, s->bl_tree); count--;
699            }
700            Assert(count >= 3 && count <= 6, " 3_6?");
701            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
702
703        } else if (count <= 10) {
704            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
705
706        } else {
707            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
708        }
709        count = 0; prevlen = curlen;
710        if (nextlen == 0) {
711            max_count = 138, min_count = 3;
712        } else if (curlen == nextlen) {
713            max_count = 6, min_count = 3;
714        } else {
715            max_count = 7, min_count = 4;
716        }
717    }
718}
719
720/* ===========================================================================
721 * Construct the Huffman tree for the bit lengths and return the index in
722 * bl_order of the last bit length code to send.
723 */
724static int build_bl_tree(
725	deflate_state *s
726)
727{
728    int max_blindex;  /* index of last bit length code of non zero freq */
729
730    /* Determine the bit length frequencies for literal and distance trees */
731    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
732    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
733
734    /* Build the bit length tree: */
735    build_tree(s, (tree_desc *)(&(s->bl_desc)));
736    /* opt_len now includes the length of the tree representations, except
737     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
738     */
739
740    /* Determine the number of bit length codes to send. The pkzip format
741     * requires that at least 4 bit length codes be sent. (appnote.txt says
742     * 3 but the actual value used is 4.)
743     */
744    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
745        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
746    }
747    /* Update opt_len to include the bit length tree and counts */
748    s->opt_len += 3*(max_blindex+1) + 5+5+4;
749    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
750            s->opt_len, s->static_len));
751
752    return max_blindex;
753}
754
755/* ===========================================================================
756 * Send the header for a block using dynamic Huffman trees: the counts, the
757 * lengths of the bit length codes, the literal tree and the distance tree.
758 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
759 */
760static void send_all_trees(
761	deflate_state *s,
762	int lcodes,  /* number of codes for each tree */
763	int dcodes,  /* number of codes for each tree */
764	int blcodes  /* number of codes for each tree */
765)
766{
767    int rank;                    /* index in bl_order */
768
769    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
770    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
771            "too many codes");
772    Tracev((stderr, "\nbl counts: "));
773    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
774    send_bits(s, dcodes-1,   5);
775    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
776    for (rank = 0; rank < blcodes; rank++) {
777        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
778        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
779    }
780    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
781
782    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
783    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
784
785    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
786    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
787}
788
789/* ===========================================================================
790 * Send a stored block
791 */
792void zlib_tr_stored_block(
793	deflate_state *s,
794	char *buf,        /* input block */
795	ulg stored_len,   /* length of input block */
796	int eof           /* true if this is the last block for a file */
797)
798{
799    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
800    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
801    s->compressed_len += (stored_len + 4) << 3;
802
803    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
804}
805
806/* Send just the `stored block' type code without any length bytes or data.
807 */
808void zlib_tr_stored_type_only(
809	deflate_state *s
810)
811{
812    send_bits(s, (STORED_BLOCK << 1), 3);
813    bi_windup(s);
814    s->compressed_len = (s->compressed_len + 3) & ~7L;
815}
816
817
818/* ===========================================================================
819 * Send one empty static block to give enough lookahead for inflate.
820 * This takes 10 bits, of which 7 may remain in the bit buffer.
821 * The current inflate code requires 9 bits of lookahead. If the
822 * last two codes for the previous block (real code plus EOB) were coded
823 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
824 * the last real code. In this case we send two empty static blocks instead
825 * of one. (There are no problems if the previous block is stored or fixed.)
826 * To simplify the code, we assume the worst case of last real code encoded
827 * on one bit only.
828 */
829void zlib_tr_align(
830	deflate_state *s
831)
832{
833    send_bits(s, STATIC_TREES<<1, 3);
834    send_code(s, END_BLOCK, static_ltree);
835    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
836    bi_flush(s);
837    /* Of the 10 bits for the empty block, we have already sent
838     * (10 - bi_valid) bits. The lookahead for the last real code (before
839     * the EOB of the previous block) was thus at least one plus the length
840     * of the EOB plus what we have just sent of the empty static block.
841     */
842    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
843        send_bits(s, STATIC_TREES<<1, 3);
844        send_code(s, END_BLOCK, static_ltree);
845        s->compressed_len += 10L;
846        bi_flush(s);
847    }
848    s->last_eob_len = 7;
849}
850
851/* ===========================================================================
852 * Determine the best encoding for the current block: dynamic trees, static
853 * trees or store, and output the encoded block to the zip file. This function
854 * returns the total compressed length for the file so far.
855 */
856ulg zlib_tr_flush_block(
857	deflate_state *s,
858	char *buf,        /* input block, or NULL if too old */
859	ulg stored_len,   /* length of input block */
860	int eof           /* true if this is the last block for a file */
861)
862{
863    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
864    int max_blindex = 0;  /* index of last bit length code of non zero freq */
865
866    /* Build the Huffman trees unless a stored block is forced */
867    if (s->level > 0) {
868
869	 /* Check if the file is ascii or binary */
870	if (s->data_type == Z_UNKNOWN) set_data_type(s);
871
872	/* Construct the literal and distance trees */
873	build_tree(s, (tree_desc *)(&(s->l_desc)));
874	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
875		s->static_len));
876
877	build_tree(s, (tree_desc *)(&(s->d_desc)));
878	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
879		s->static_len));
880	/* At this point, opt_len and static_len are the total bit lengths of
881	 * the compressed block data, excluding the tree representations.
882	 */
883
884	/* Build the bit length tree for the above two trees, and get the index
885	 * in bl_order of the last bit length code to send.
886	 */
887	max_blindex = build_bl_tree(s);
888
889	/* Determine the best encoding. Compute first the block length in bytes*/
890	opt_lenb = (s->opt_len+3+7)>>3;
891	static_lenb = (s->static_len+3+7)>>3;
892
893	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
894		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
895		s->last_lit));
896
897	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
898
899    } else {
900        Assert(buf != (char*)0, "lost buf");
901	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
902    }
903
904    /* If compression failed and this is the first and last block,
905     * and if the .zip file can be seeked (to rewrite the local header),
906     * the whole file is transformed into a stored file:
907     */
908#ifdef STORED_FILE_OK
909#  ifdef FORCE_STORED_FILE
910    if (eof && s->compressed_len == 0L) { /* force stored file */
911#  else
912    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
913#  endif
914        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
915        if (buf == (char*)0) error ("block vanished");
916
917        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
918        s->compressed_len = stored_len << 3;
919        s->method = STORED;
920    } else
921#endif /* STORED_FILE_OK */
922
923#ifdef FORCE_STORED
924    if (buf != (char*)0) { /* force stored block */
925#else
926    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
927                       /* 4: two words for the lengths */
928#endif
929        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
930         * Otherwise we can't have processed more than WSIZE input bytes since
931         * the last block flush, because compression would have been
932         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
933         * transform a block into a stored block.
934         */
935        zlib_tr_stored_block(s, buf, stored_len, eof);
936
937#ifdef FORCE_STATIC
938    } else if (static_lenb >= 0) { /* force static trees */
939#else
940    } else if (static_lenb == opt_lenb) {
941#endif
942        send_bits(s, (STATIC_TREES<<1)+eof, 3);
943        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
944        s->compressed_len += 3 + s->static_len;
945    } else {
946        send_bits(s, (DYN_TREES<<1)+eof, 3);
947        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
948                       max_blindex+1);
949        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
950        s->compressed_len += 3 + s->opt_len;
951    }
952    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
953    init_block(s);
954
955    if (eof) {
956        bi_windup(s);
957        s->compressed_len += 7;  /* align on byte boundary */
958    }
959    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
960           s->compressed_len-7*eof));
961
962    return s->compressed_len >> 3;
963}
964
965/* ===========================================================================
966 * Save the match info and tally the frequency counts. Return true if
967 * the current block must be flushed.
968 */
969int zlib_tr_tally(
970	deflate_state *s,
971	unsigned dist,  /* distance of matched string */
972	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
973)
974{
975    s->d_buf[s->last_lit] = (ush)dist;
976    s->l_buf[s->last_lit++] = (uch)lc;
977    if (dist == 0) {
978        /* lc is the unmatched char */
979        s->dyn_ltree[lc].Freq++;
980    } else {
981        s->matches++;
982        /* Here, lc is the match length - MIN_MATCH */
983        dist--;             /* dist = match distance - 1 */
984        Assert((ush)dist < (ush)MAX_DIST(s) &&
985               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
986               (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
987
988        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
989        s->dyn_dtree[d_code(dist)].Freq++;
990    }
991
992    /* Try to guess if it is profitable to stop the current block here */
993    if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
994        /* Compute an upper bound for the compressed length */
995        ulg out_length = (ulg)s->last_lit*8L;
996        ulg in_length = (ulg)((long)s->strstart - s->block_start);
997        int dcode;
998        for (dcode = 0; dcode < D_CODES; dcode++) {
999            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1000                (5L+extra_dbits[dcode]);
1001        }
1002        out_length >>= 3;
1003        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1004               s->last_lit, in_length, out_length,
1005               100L - out_length*100L/in_length));
1006        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1007    }
1008    return (s->last_lit == s->lit_bufsize-1);
1009    /* We avoid equality with lit_bufsize because of wraparound at 64K
1010     * on 16 bit machines and because stored blocks are restricted to
1011     * 64K-1 bytes.
1012     */
1013}
1014
1015/* ===========================================================================
1016 * Send the block data compressed using the given Huffman trees
1017 */
1018static void compress_block(
1019	deflate_state *s,
1020	ct_data *ltree, /* literal tree */
1021	ct_data *dtree  /* distance tree */
1022)
1023{
1024    unsigned dist;      /* distance of matched string */
1025    int lc;             /* match length or unmatched char (if dist == 0) */
1026    unsigned lx = 0;    /* running index in l_buf */
1027    unsigned code;      /* the code to send */
1028    int extra;          /* number of extra bits to send */
1029
1030    if (s->last_lit != 0) do {
1031        dist = s->d_buf[lx];
1032        lc = s->l_buf[lx++];
1033        if (dist == 0) {
1034            send_code(s, lc, ltree); /* send a literal byte */
1035            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1036        } else {
1037            /* Here, lc is the match length - MIN_MATCH */
1038            code = length_code[lc];
1039            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1040            extra = extra_lbits[code];
1041            if (extra != 0) {
1042                lc -= base_length[code];
1043                send_bits(s, lc, extra);       /* send the extra length bits */
1044            }
1045            dist--; /* dist is now the match distance - 1 */
1046            code = d_code(dist);
1047            Assert (code < D_CODES, "bad d_code");
1048
1049            send_code(s, code, dtree);       /* send the distance code */
1050            extra = extra_dbits[code];
1051            if (extra != 0) {
1052                dist -= base_dist[code];
1053                send_bits(s, dist, extra);   /* send the extra distance bits */
1054            }
1055        } /* literal or match pair ? */
1056
1057        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1058        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1059
1060    } while (lx < s->last_lit);
1061
1062    send_code(s, END_BLOCK, ltree);
1063    s->last_eob_len = ltree[END_BLOCK].Len;
1064}
1065
1066/* ===========================================================================
1067 * Set the data type to ASCII or BINARY, using a crude approximation:
1068 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1071 */
1072static void set_data_type(
1073	deflate_state *s
1074)
1075{
1076    int n = 0;
1077    unsigned ascii_freq = 0;
1078    unsigned bin_freq = 0;
1079    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1080    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1081    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1082    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1083}
1084
1085/* ===========================================================================
1086 * Copy a stored block, storing first the length and its
1087 * one's complement if requested.
1088 */
1089static void copy_block(
1090	deflate_state *s,
1091	char    *buf,     /* the input data */
1092	unsigned len,     /* its length */
1093	int      header   /* true if block header must be written */
1094)
1095{
1096    bi_windup(s);        /* align on byte boundary */
1097    s->last_eob_len = 8; /* enough lookahead for inflate */
1098
1099    if (header) {
1100        put_short(s, (ush)len);
1101        put_short(s, (ush)~len);
1102#ifdef DEBUG_ZLIB
1103        s->bits_sent += 2*16;
1104#endif
1105    }
1106#ifdef DEBUG_ZLIB
1107    s->bits_sent += (ulg)len<<3;
1108#endif
1109    /* bundle up the put_byte(s, *buf++) calls */
1110    memcpy(&s->pending_buf[s->pending], buf, len);
1111    s->pending += len;
1112}
1113