1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2.  See the file COPYING for more details.
7 */
8#include <linux/module.h>
9#include <linux/ctype.h>
10#include <linux/errno.h>
11#include <linux/bitmap.h>
12#include <linux/bitops.h>
13#include <asm/uaccess.h>
14
15/*
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs.  The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
19 * BITS_PER_LONG.
20 *
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'.  The implementation makes
23 * no particular effort to keep them zero.  It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
28 * results.
29 *
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
33 * in output bitmaps.
34 *
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures.  See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
39 */
40
41int __bitmap_empty(const unsigned long *bitmap, int bits)
42{
43	int k, lim = bits/BITS_PER_LONG;
44	for (k = 0; k < lim; ++k)
45		if (bitmap[k])
46			return 0;
47
48	if (bits % BITS_PER_LONG)
49		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50			return 0;
51
52	return 1;
53}
54EXPORT_SYMBOL(__bitmap_empty);
55
56int __bitmap_full(const unsigned long *bitmap, int bits)
57{
58	int k, lim = bits/BITS_PER_LONG;
59	for (k = 0; k < lim; ++k)
60		if (~bitmap[k])
61			return 0;
62
63	if (bits % BITS_PER_LONG)
64		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65			return 0;
66
67	return 1;
68}
69EXPORT_SYMBOL(__bitmap_full);
70
71int __bitmap_equal(const unsigned long *bitmap1,
72		const unsigned long *bitmap2, int bits)
73{
74	int k, lim = bits/BITS_PER_LONG;
75	for (k = 0; k < lim; ++k)
76		if (bitmap1[k] != bitmap2[k])
77			return 0;
78
79	if (bits % BITS_PER_LONG)
80		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81			return 0;
82
83	return 1;
84}
85EXPORT_SYMBOL(__bitmap_equal);
86
87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88{
89	int k, lim = bits/BITS_PER_LONG;
90	for (k = 0; k < lim; ++k)
91		dst[k] = ~src[k];
92
93	if (bits % BITS_PER_LONG)
94		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95}
96EXPORT_SYMBOL(__bitmap_complement);
97
98/**
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 *   @dst : destination bitmap
101 *   @src : source bitmap
102 *   @shift : shift by this many bits
103 *   @bits : bitmap size, in bits
104 *
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction.  Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
108 */
109void __bitmap_shift_right(unsigned long *dst,
110			const unsigned long *src, int shift, int bits)
111{
112	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114	unsigned long mask = (1UL << left) - 1;
115	for (k = 0; off + k < lim; ++k) {
116		unsigned long upper, lower;
117
118		/*
119		 * If shift is not word aligned, take lower rem bits of
120		 * word above and make them the top rem bits of result.
121		 */
122		if (!rem || off + k + 1 >= lim)
123			upper = 0;
124		else {
125			upper = src[off + k + 1];
126			if (off + k + 1 == lim - 1 && left)
127				upper &= mask;
128		}
129		lower = src[off + k];
130		if (left && off + k == lim - 1)
131			lower &= mask;
132		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133		if (left && k == lim - 1)
134			dst[k] &= mask;
135	}
136	if (off)
137		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138}
139EXPORT_SYMBOL(__bitmap_shift_right);
140
141
142/**
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 *   @dst : destination bitmap
145 *   @src : source bitmap
146 *   @shift : shift by this many bits
147 *   @bits : bitmap size, in bits
148 *
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction.  Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
152 */
153
154void __bitmap_shift_left(unsigned long *dst,
155			const unsigned long *src, int shift, int bits)
156{
157	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159	for (k = lim - off - 1; k >= 0; --k) {
160		unsigned long upper, lower;
161
162		/*
163		 * If shift is not word aligned, take upper rem bits of
164		 * word below and make them the bottom rem bits of result.
165		 */
166		if (rem && k > 0)
167			lower = src[k - 1];
168		else
169			lower = 0;
170		upper = src[k];
171		if (left && k == lim - 1)
172			upper &= (1UL << left) - 1;
173		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174		if (left && k + off == lim - 1)
175			dst[k + off] &= (1UL << left) - 1;
176	}
177	if (off)
178		memset(dst, 0, off*sizeof(unsigned long));
179}
180EXPORT_SYMBOL(__bitmap_shift_left);
181
182int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183				const unsigned long *bitmap2, int bits)
184{
185	int k;
186	int nr = BITS_TO_LONGS(bits);
187	unsigned long result = 0;
188
189	for (k = 0; k < nr; k++)
190		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191	return result != 0;
192}
193EXPORT_SYMBOL(__bitmap_and);
194
195void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196				const unsigned long *bitmap2, int bits)
197{
198	int k;
199	int nr = BITS_TO_LONGS(bits);
200
201	for (k = 0; k < nr; k++)
202		dst[k] = bitmap1[k] | bitmap2[k];
203}
204EXPORT_SYMBOL(__bitmap_or);
205
206void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207				const unsigned long *bitmap2, int bits)
208{
209	int k;
210	int nr = BITS_TO_LONGS(bits);
211
212	for (k = 0; k < nr; k++)
213		dst[k] = bitmap1[k] ^ bitmap2[k];
214}
215EXPORT_SYMBOL(__bitmap_xor);
216
217int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218				const unsigned long *bitmap2, int bits)
219{
220	int k;
221	int nr = BITS_TO_LONGS(bits);
222	unsigned long result = 0;
223
224	for (k = 0; k < nr; k++)
225		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226	return result != 0;
227}
228EXPORT_SYMBOL(__bitmap_andnot);
229
230int __bitmap_intersects(const unsigned long *bitmap1,
231				const unsigned long *bitmap2, int bits)
232{
233	int k, lim = bits/BITS_PER_LONG;
234	for (k = 0; k < lim; ++k)
235		if (bitmap1[k] & bitmap2[k])
236			return 1;
237
238	if (bits % BITS_PER_LONG)
239		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240			return 1;
241	return 0;
242}
243EXPORT_SYMBOL(__bitmap_intersects);
244
245int __bitmap_subset(const unsigned long *bitmap1,
246				const unsigned long *bitmap2, int bits)
247{
248	int k, lim = bits/BITS_PER_LONG;
249	for (k = 0; k < lim; ++k)
250		if (bitmap1[k] & ~bitmap2[k])
251			return 0;
252
253	if (bits % BITS_PER_LONG)
254		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255			return 0;
256	return 1;
257}
258EXPORT_SYMBOL(__bitmap_subset);
259
260int __bitmap_weight(const unsigned long *bitmap, int bits)
261{
262	int k, w = 0, lim = bits/BITS_PER_LONG;
263
264	for (k = 0; k < lim; k++)
265		w += hweight_long(bitmap[k]);
266
267	if (bits % BITS_PER_LONG)
268		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
269
270	return w;
271}
272EXPORT_SYMBOL(__bitmap_weight);
273
274#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
275
276void bitmap_set(unsigned long *map, int start, int nr)
277{
278	unsigned long *p = map + BIT_WORD(start);
279	const int size = start + nr;
280	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
281	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
282
283	while (nr - bits_to_set >= 0) {
284		*p |= mask_to_set;
285		nr -= bits_to_set;
286		bits_to_set = BITS_PER_LONG;
287		mask_to_set = ~0UL;
288		p++;
289	}
290	if (nr) {
291		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
292		*p |= mask_to_set;
293	}
294}
295EXPORT_SYMBOL(bitmap_set);
296
297void bitmap_clear(unsigned long *map, int start, int nr)
298{
299	unsigned long *p = map + BIT_WORD(start);
300	const int size = start + nr;
301	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
302	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
303
304	while (nr - bits_to_clear >= 0) {
305		*p &= ~mask_to_clear;
306		nr -= bits_to_clear;
307		bits_to_clear = BITS_PER_LONG;
308		mask_to_clear = ~0UL;
309		p++;
310	}
311	if (nr) {
312		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
313		*p &= ~mask_to_clear;
314	}
315}
316EXPORT_SYMBOL(bitmap_clear);
317
318/*
319 * bitmap_find_next_zero_area - find a contiguous aligned zero area
320 * @map: The address to base the search on
321 * @size: The bitmap size in bits
322 * @start: The bitnumber to start searching at
323 * @nr: The number of zeroed bits we're looking for
324 * @align_mask: Alignment mask for zero area
325 *
326 * The @align_mask should be one less than a power of 2; the effect is that
327 * the bit offset of all zero areas this function finds is multiples of that
328 * power of 2. A @align_mask of 0 means no alignment is required.
329 */
330unsigned long bitmap_find_next_zero_area(unsigned long *map,
331					 unsigned long size,
332					 unsigned long start,
333					 unsigned int nr,
334					 unsigned long align_mask)
335{
336	unsigned long index, end, i;
337again:
338	index = find_next_zero_bit(map, size, start);
339
340	/* Align allocation */
341	index = __ALIGN_MASK(index, align_mask);
342
343	end = index + nr;
344	if (end > size)
345		return end;
346	i = find_next_bit(map, end, index);
347	if (i < end) {
348		start = i + 1;
349		goto again;
350	}
351	return index;
352}
353EXPORT_SYMBOL(bitmap_find_next_zero_area);
354
355/*
356 * Bitmap printing & parsing functions: first version by Bill Irwin,
357 * second version by Paul Jackson, third by Joe Korty.
358 */
359
360#define CHUNKSZ				32
361#define nbits_to_hold_value(val)	fls(val)
362#define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
363#define BASEDEC 10		/* fancier cpuset lists input in decimal */
364
365/**
366 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
367 * @buf: byte buffer into which string is placed
368 * @buflen: reserved size of @buf, in bytes
369 * @maskp: pointer to bitmap to convert
370 * @nmaskbits: size of bitmap, in bits
371 *
372 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
373 * comma-separated sets of eight digits per set.
374 */
375int bitmap_scnprintf(char *buf, unsigned int buflen,
376	const unsigned long *maskp, int nmaskbits)
377{
378	int i, word, bit, len = 0;
379	unsigned long val;
380	const char *sep = "";
381	int chunksz;
382	u32 chunkmask;
383
384	chunksz = nmaskbits & (CHUNKSZ - 1);
385	if (chunksz == 0)
386		chunksz = CHUNKSZ;
387
388	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
389	for (; i >= 0; i -= CHUNKSZ) {
390		chunkmask = ((1ULL << chunksz) - 1);
391		word = i / BITS_PER_LONG;
392		bit = i % BITS_PER_LONG;
393		val = (maskp[word] >> bit) & chunkmask;
394		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
395			(chunksz+3)/4, val);
396		chunksz = CHUNKSZ;
397		sep = ",";
398	}
399	return len;
400}
401EXPORT_SYMBOL(bitmap_scnprintf);
402
403/**
404 * __bitmap_parse - convert an ASCII hex string into a bitmap.
405 * @buf: pointer to buffer containing string.
406 * @buflen: buffer size in bytes.  If string is smaller than this
407 *    then it must be terminated with a \0.
408 * @is_user: location of buffer, 0 indicates kernel space
409 * @maskp: pointer to bitmap array that will contain result.
410 * @nmaskbits: size of bitmap, in bits.
411 *
412 * Commas group hex digits into chunks.  Each chunk defines exactly 32
413 * bits of the resultant bitmask.  No chunk may specify a value larger
414 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
415 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
416 * characters and for grouping errors such as "1,,5", ",44", "," and "".
417 * Leading and trailing whitespace accepted, but not embedded whitespace.
418 */
419int __bitmap_parse(const char *buf, unsigned int buflen,
420		int is_user, unsigned long *maskp,
421		int nmaskbits)
422{
423	int c, old_c, totaldigits, ndigits, nchunks, nbits;
424	u32 chunk;
425	const char __user *ubuf = buf;
426
427	bitmap_zero(maskp, nmaskbits);
428
429	nchunks = nbits = totaldigits = c = 0;
430	do {
431		chunk = ndigits = 0;
432
433		/* Get the next chunk of the bitmap */
434		while (buflen) {
435			old_c = c;
436			if (is_user) {
437				if (__get_user(c, ubuf++))
438					return -EFAULT;
439			}
440			else
441				c = *buf++;
442			buflen--;
443			if (isspace(c))
444				continue;
445
446			/*
447			 * If the last character was a space and the current
448			 * character isn't '\0', we've got embedded whitespace.
449			 * This is a no-no, so throw an error.
450			 */
451			if (totaldigits && c && isspace(old_c))
452				return -EINVAL;
453
454			/* A '\0' or a ',' signal the end of the chunk */
455			if (c == '\0' || c == ',')
456				break;
457
458			if (!isxdigit(c))
459				return -EINVAL;
460
461			/*
462			 * Make sure there are at least 4 free bits in 'chunk'.
463			 * If not, this hexdigit will overflow 'chunk', so
464			 * throw an error.
465			 */
466			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
467				return -EOVERFLOW;
468
469			chunk = (chunk << 4) | unhex(c);
470			ndigits++; totaldigits++;
471		}
472		if (ndigits == 0)
473			return -EINVAL;
474		if (nchunks == 0 && chunk == 0)
475			continue;
476
477		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
478		*maskp |= chunk;
479		nchunks++;
480		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
481		if (nbits > nmaskbits)
482			return -EOVERFLOW;
483	} while (buflen && c == ',');
484
485	return 0;
486}
487EXPORT_SYMBOL(__bitmap_parse);
488
489/**
490 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
491 *
492 * @ubuf: pointer to user buffer containing string.
493 * @ulen: buffer size in bytes.  If string is smaller than this
494 *    then it must be terminated with a \0.
495 * @maskp: pointer to bitmap array that will contain result.
496 * @nmaskbits: size of bitmap, in bits.
497 *
498 * Wrapper for __bitmap_parse(), providing it with user buffer.
499 *
500 * We cannot have this as an inline function in bitmap.h because it needs
501 * linux/uaccess.h to get the access_ok() declaration and this causes
502 * cyclic dependencies.
503 */
504int bitmap_parse_user(const char __user *ubuf,
505			unsigned int ulen, unsigned long *maskp,
506			int nmaskbits)
507{
508	if (!access_ok(VERIFY_READ, ubuf, ulen))
509		return -EFAULT;
510	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
511}
512EXPORT_SYMBOL(bitmap_parse_user);
513
514/*
515 * bscnl_emit(buf, buflen, rbot, rtop, bp)
516 *
517 * Helper routine for bitmap_scnlistprintf().  Write decimal number
518 * or range to buf, suppressing output past buf+buflen, with optional
519 * comma-prefix.  Return len of what would be written to buf, if it
520 * all fit.
521 */
522static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
523{
524	if (len > 0)
525		len += scnprintf(buf + len, buflen - len, ",");
526	if (rbot == rtop)
527		len += scnprintf(buf + len, buflen - len, "%d", rbot);
528	else
529		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
530	return len;
531}
532
533/**
534 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
535 * @buf: byte buffer into which string is placed
536 * @buflen: reserved size of @buf, in bytes
537 * @maskp: pointer to bitmap to convert
538 * @nmaskbits: size of bitmap, in bits
539 *
540 * Output format is a comma-separated list of decimal numbers and
541 * ranges.  Consecutively set bits are shown as two hyphen-separated
542 * decimal numbers, the smallest and largest bit numbers set in
543 * the range.  Output format is compatible with the format
544 * accepted as input by bitmap_parselist().
545 *
546 * The return value is the number of characters which would be
547 * generated for the given input, excluding the trailing '\0', as
548 * per ISO C99.
549 */
550int bitmap_scnlistprintf(char *buf, unsigned int buflen,
551	const unsigned long *maskp, int nmaskbits)
552{
553	int len = 0;
554	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
555	int cur, rbot, rtop;
556
557	if (buflen == 0)
558		return 0;
559	buf[0] = 0;
560
561	rbot = cur = find_first_bit(maskp, nmaskbits);
562	while (cur < nmaskbits) {
563		rtop = cur;
564		cur = find_next_bit(maskp, nmaskbits, cur+1);
565		if (cur >= nmaskbits || cur > rtop + 1) {
566			len = bscnl_emit(buf, buflen, rbot, rtop, len);
567			rbot = cur;
568		}
569	}
570	return len;
571}
572EXPORT_SYMBOL(bitmap_scnlistprintf);
573
574/**
575 * bitmap_parselist - convert list format ASCII string to bitmap
576 * @bp: read nul-terminated user string from this buffer
577 * @maskp: write resulting mask here
578 * @nmaskbits: number of bits in mask to be written
579 *
580 * Input format is a comma-separated list of decimal numbers and
581 * ranges.  Consecutively set bits are shown as two hyphen-separated
582 * decimal numbers, the smallest and largest bit numbers set in
583 * the range.
584 *
585 * Returns 0 on success, -errno on invalid input strings.
586 * Error values:
587 *    %-EINVAL: second number in range smaller than first
588 *    %-EINVAL: invalid character in string
589 *    %-ERANGE: bit number specified too large for mask
590 */
591int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
592{
593	unsigned a, b;
594
595	bitmap_zero(maskp, nmaskbits);
596	do {
597		if (!isdigit(*bp))
598			return -EINVAL;
599		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
600		if (*bp == '-') {
601			bp++;
602			if (!isdigit(*bp))
603				return -EINVAL;
604			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
605		}
606		if (!(a <= b))
607			return -EINVAL;
608		if (b >= nmaskbits)
609			return -ERANGE;
610		while (a <= b) {
611			set_bit(a, maskp);
612			a++;
613		}
614		if (*bp == ',')
615			bp++;
616	} while (*bp != '\0' && *bp != '\n');
617	return 0;
618}
619EXPORT_SYMBOL(bitmap_parselist);
620
621/**
622 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
623 *	@buf: pointer to a bitmap
624 *	@pos: a bit position in @buf (0 <= @pos < @bits)
625 *	@bits: number of valid bit positions in @buf
626 *
627 * Map the bit at position @pos in @buf (of length @bits) to the
628 * ordinal of which set bit it is.  If it is not set or if @pos
629 * is not a valid bit position, map to -1.
630 *
631 * If for example, just bits 4 through 7 are set in @buf, then @pos
632 * values 4 through 7 will get mapped to 0 through 3, respectively,
633 * and other @pos values will get mapped to 0.  When @pos value 7
634 * gets mapped to (returns) @ord value 3 in this example, that means
635 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
636 *
637 * The bit positions 0 through @bits are valid positions in @buf.
638 */
639static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
640{
641	int i, ord;
642
643	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
644		return -1;
645
646	i = find_first_bit(buf, bits);
647	ord = 0;
648	while (i < pos) {
649		i = find_next_bit(buf, bits, i + 1);
650	     	ord++;
651	}
652	BUG_ON(i != pos);
653
654	return ord;
655}
656
657/**
658 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
659 *	@buf: pointer to bitmap
660 *	@ord: ordinal bit position (n-th set bit, n >= 0)
661 *	@bits: number of valid bit positions in @buf
662 *
663 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
664 * Value of @ord should be in range 0 <= @ord < weight(buf), else
665 * results are undefined.
666 *
667 * If for example, just bits 4 through 7 are set in @buf, then @ord
668 * values 0 through 3 will get mapped to 4 through 7, respectively,
669 * and all other @ord values return undefined values.  When @ord value 3
670 * gets mapped to (returns) @pos value 7 in this example, that means
671 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
672 *
673 * The bit positions 0 through @bits are valid positions in @buf.
674 */
675static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
676{
677	int pos = 0;
678
679	if (ord >= 0 && ord < bits) {
680		int i;
681
682		for (i = find_first_bit(buf, bits);
683		     i < bits && ord > 0;
684		     i = find_next_bit(buf, bits, i + 1))
685	     		ord--;
686		if (i < bits && ord == 0)
687			pos = i;
688	}
689
690	return pos;
691}
692
693/**
694 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
695 *	@dst: remapped result
696 *	@src: subset to be remapped
697 *	@old: defines domain of map
698 *	@new: defines range of map
699 *	@bits: number of bits in each of these bitmaps
700 *
701 * Let @old and @new define a mapping of bit positions, such that
702 * whatever position is held by the n-th set bit in @old is mapped
703 * to the n-th set bit in @new.  In the more general case, allowing
704 * for the possibility that the weight 'w' of @new is less than the
705 * weight of @old, map the position of the n-th set bit in @old to
706 * the position of the m-th set bit in @new, where m == n % w.
707 *
708 * If either of the @old and @new bitmaps are empty, or if @src and
709 * @dst point to the same location, then this routine copies @src
710 * to @dst.
711 *
712 * The positions of unset bits in @old are mapped to themselves
713 * (the identify map).
714 *
715 * Apply the above specified mapping to @src, placing the result in
716 * @dst, clearing any bits previously set in @dst.
717 *
718 * For example, lets say that @old has bits 4 through 7 set, and
719 * @new has bits 12 through 15 set.  This defines the mapping of bit
720 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
721 * bit positions unchanged.  So if say @src comes into this routine
722 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
723 * 13 and 15 set.
724 */
725void bitmap_remap(unsigned long *dst, const unsigned long *src,
726		const unsigned long *old, const unsigned long *new,
727		int bits)
728{
729	int oldbit, w;
730
731	if (dst == src)		/* following doesn't handle inplace remaps */
732		return;
733	bitmap_zero(dst, bits);
734
735	w = bitmap_weight(new, bits);
736	for_each_set_bit(oldbit, src, bits) {
737	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
738
739		if (n < 0 || w == 0)
740			set_bit(oldbit, dst);	/* identity map */
741		else
742			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
743	}
744}
745EXPORT_SYMBOL(bitmap_remap);
746
747/**
748 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
749 *	@oldbit: bit position to be mapped
750 *	@old: defines domain of map
751 *	@new: defines range of map
752 *	@bits: number of bits in each of these bitmaps
753 *
754 * Let @old and @new define a mapping of bit positions, such that
755 * whatever position is held by the n-th set bit in @old is mapped
756 * to the n-th set bit in @new.  In the more general case, allowing
757 * for the possibility that the weight 'w' of @new is less than the
758 * weight of @old, map the position of the n-th set bit in @old to
759 * the position of the m-th set bit in @new, where m == n % w.
760 *
761 * The positions of unset bits in @old are mapped to themselves
762 * (the identify map).
763 *
764 * Apply the above specified mapping to bit position @oldbit, returning
765 * the new bit position.
766 *
767 * For example, lets say that @old has bits 4 through 7 set, and
768 * @new has bits 12 through 15 set.  This defines the mapping of bit
769 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
770 * bit positions unchanged.  So if say @oldbit is 5, then this routine
771 * returns 13.
772 */
773int bitmap_bitremap(int oldbit, const unsigned long *old,
774				const unsigned long *new, int bits)
775{
776	int w = bitmap_weight(new, bits);
777	int n = bitmap_pos_to_ord(old, oldbit, bits);
778	if (n < 0 || w == 0)
779		return oldbit;
780	else
781		return bitmap_ord_to_pos(new, n % w, bits);
782}
783EXPORT_SYMBOL(bitmap_bitremap);
784
785/**
786 * bitmap_onto - translate one bitmap relative to another
787 *	@dst: resulting translated bitmap
788 * 	@orig: original untranslated bitmap
789 * 	@relmap: bitmap relative to which translated
790 *	@bits: number of bits in each of these bitmaps
791 *
792 * Set the n-th bit of @dst iff there exists some m such that the
793 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
794 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
795 * (If you understood the previous sentence the first time your
796 * read it, you're overqualified for your current job.)
797 *
798 * In other words, @orig is mapped onto (surjectively) @dst,
799 * using the the map { <n, m> | the n-th bit of @relmap is the
800 * m-th set bit of @relmap }.
801 *
802 * Any set bits in @orig above bit number W, where W is the
803 * weight of (number of set bits in) @relmap are mapped nowhere.
804 * In particular, if for all bits m set in @orig, m >= W, then
805 * @dst will end up empty.  In situations where the possibility
806 * of such an empty result is not desired, one way to avoid it is
807 * to use the bitmap_fold() operator, below, to first fold the
808 * @orig bitmap over itself so that all its set bits x are in the
809 * range 0 <= x < W.  The bitmap_fold() operator does this by
810 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
811 *
812 * Example [1] for bitmap_onto():
813 *  Let's say @relmap has bits 30-39 set, and @orig has bits
814 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
815 *  @dst will have bits 31, 33, 35, 37 and 39 set.
816 *
817 *  When bit 0 is set in @orig, it means turn on the bit in
818 *  @dst corresponding to whatever is the first bit (if any)
819 *  that is turned on in @relmap.  Since bit 0 was off in the
820 *  above example, we leave off that bit (bit 30) in @dst.
821 *
822 *  When bit 1 is set in @orig (as in the above example), it
823 *  means turn on the bit in @dst corresponding to whatever
824 *  is the second bit that is turned on in @relmap.  The second
825 *  bit in @relmap that was turned on in the above example was
826 *  bit 31, so we turned on bit 31 in @dst.
827 *
828 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
829 *  because they were the 4th, 6th, 8th and 10th set bits
830 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
831 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
832 *
833 *  When bit 11 is set in @orig, it means turn on the bit in
834 *  @dst corresponding to whatever is the twelth bit that is
835 *  turned on in @relmap.  In the above example, there were
836 *  only ten bits turned on in @relmap (30..39), so that bit
837 *  11 was set in @orig had no affect on @dst.
838 *
839 * Example [2] for bitmap_fold() + bitmap_onto():
840 *  Let's say @relmap has these ten bits set:
841 *		40 41 42 43 45 48 53 61 74 95
842 *  (for the curious, that's 40 plus the first ten terms of the
843 *  Fibonacci sequence.)
844 *
845 *  Further lets say we use the following code, invoking
846 *  bitmap_fold() then bitmap_onto, as suggested above to
847 *  avoid the possitility of an empty @dst result:
848 *
849 *	unsigned long *tmp;	// a temporary bitmap's bits
850 *
851 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
852 *	bitmap_onto(dst, tmp, relmap, bits);
853 *
854 *  Then this table shows what various values of @dst would be, for
855 *  various @orig's.  I list the zero-based positions of each set bit.
856 *  The tmp column shows the intermediate result, as computed by
857 *  using bitmap_fold() to fold the @orig bitmap modulo ten
858 *  (the weight of @relmap).
859 *
860 *      @orig           tmp            @dst
861 *      0                0             40
862 *      1                1             41
863 *      9                9             95
864 *      10               0             40 (*)
865 *      1 3 5 7          1 3 5 7       41 43 48 61
866 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
867 *      0 9 18 27        0 9 8 7       40 61 74 95
868 *      0 10 20 30       0             40
869 *      0 11 22 33       0 1 2 3       40 41 42 43
870 *      0 12 24 36       0 2 4 6       40 42 45 53
871 *      78 102 211       1 2 8         41 42 74 (*)
872 *
873 * (*) For these marked lines, if we hadn't first done bitmap_fold()
874 *     into tmp, then the @dst result would have been empty.
875 *
876 * If either of @orig or @relmap is empty (no set bits), then @dst
877 * will be returned empty.
878 *
879 * If (as explained above) the only set bits in @orig are in positions
880 * m where m >= W, (where W is the weight of @relmap) then @dst will
881 * once again be returned empty.
882 *
883 * All bits in @dst not set by the above rule are cleared.
884 */
885void bitmap_onto(unsigned long *dst, const unsigned long *orig,
886			const unsigned long *relmap, int bits)
887{
888	int n, m;       	/* same meaning as in above comment */
889
890	if (dst == orig)	/* following doesn't handle inplace mappings */
891		return;
892	bitmap_zero(dst, bits);
893
894	/*
895	 * The following code is a more efficient, but less
896	 * obvious, equivalent to the loop:
897	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
898	 *		n = bitmap_ord_to_pos(orig, m, bits);
899	 *		if (test_bit(m, orig))
900	 *			set_bit(n, dst);
901	 *	}
902	 */
903
904	m = 0;
905	for_each_set_bit(n, relmap, bits) {
906		/* m == bitmap_pos_to_ord(relmap, n, bits) */
907		if (test_bit(m, orig))
908			set_bit(n, dst);
909		m++;
910	}
911}
912EXPORT_SYMBOL(bitmap_onto);
913
914/**
915 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
916 *	@dst: resulting smaller bitmap
917 *	@orig: original larger bitmap
918 *	@sz: specified size
919 *	@bits: number of bits in each of these bitmaps
920 *
921 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
922 * Clear all other bits in @dst.  See further the comment and
923 * Example [2] for bitmap_onto() for why and how to use this.
924 */
925void bitmap_fold(unsigned long *dst, const unsigned long *orig,
926			int sz, int bits)
927{
928	int oldbit;
929
930	if (dst == orig)	/* following doesn't handle inplace mappings */
931		return;
932	bitmap_zero(dst, bits);
933
934	for_each_set_bit(oldbit, orig, bits)
935		set_bit(oldbit % sz, dst);
936}
937EXPORT_SYMBOL(bitmap_fold);
938
939/*
940 * Common code for bitmap_*_region() routines.
941 *	bitmap: array of unsigned longs corresponding to the bitmap
942 *	pos: the beginning of the region
943 *	order: region size (log base 2 of number of bits)
944 *	reg_op: operation(s) to perform on that region of bitmap
945 *
946 * Can set, verify and/or release a region of bits in a bitmap,
947 * depending on which combination of REG_OP_* flag bits is set.
948 *
949 * A region of a bitmap is a sequence of bits in the bitmap, of
950 * some size '1 << order' (a power of two), aligned to that same
951 * '1 << order' power of two.
952 *
953 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
954 * Returns 0 in all other cases and reg_ops.
955 */
956
957enum {
958	REG_OP_ISFREE,		/* true if region is all zero bits */
959	REG_OP_ALLOC,		/* set all bits in region */
960	REG_OP_RELEASE,		/* clear all bits in region */
961};
962
963static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
964{
965	int nbits_reg;		/* number of bits in region */
966	int index;		/* index first long of region in bitmap */
967	int offset;		/* bit offset region in bitmap[index] */
968	int nlongs_reg;		/* num longs spanned by region in bitmap */
969	int nbitsinlong;	/* num bits of region in each spanned long */
970	unsigned long mask;	/* bitmask for one long of region */
971	int i;			/* scans bitmap by longs */
972	int ret = 0;		/* return value */
973
974	/*
975	 * Either nlongs_reg == 1 (for small orders that fit in one long)
976	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
977	 */
978	nbits_reg = 1 << order;
979	index = pos / BITS_PER_LONG;
980	offset = pos - (index * BITS_PER_LONG);
981	nlongs_reg = BITS_TO_LONGS(nbits_reg);
982	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
983
984	/*
985	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
986	 * overflows if nbitsinlong == BITS_PER_LONG.
987	 */
988	mask = (1UL << (nbitsinlong - 1));
989	mask += mask - 1;
990	mask <<= offset;
991
992	switch (reg_op) {
993	case REG_OP_ISFREE:
994		for (i = 0; i < nlongs_reg; i++) {
995			if (bitmap[index + i] & mask)
996				goto done;
997		}
998		ret = 1;	/* all bits in region free (zero) */
999		break;
1000
1001	case REG_OP_ALLOC:
1002		for (i = 0; i < nlongs_reg; i++)
1003			bitmap[index + i] |= mask;
1004		break;
1005
1006	case REG_OP_RELEASE:
1007		for (i = 0; i < nlongs_reg; i++)
1008			bitmap[index + i] &= ~mask;
1009		break;
1010	}
1011done:
1012	return ret;
1013}
1014
1015/**
1016 * bitmap_find_free_region - find a contiguous aligned mem region
1017 *	@bitmap: array of unsigned longs corresponding to the bitmap
1018 *	@bits: number of bits in the bitmap
1019 *	@order: region size (log base 2 of number of bits) to find
1020 *
1021 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1022 * allocate them (set them to one).  Only consider regions of length
1023 * a power (@order) of two, aligned to that power of two, which
1024 * makes the search algorithm much faster.
1025 *
1026 * Return the bit offset in bitmap of the allocated region,
1027 * or -errno on failure.
1028 */
1029int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1030{
1031	int pos, end;		/* scans bitmap by regions of size order */
1032
1033	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1034		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1035			continue;
1036		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1037		return pos;
1038	}
1039	return -ENOMEM;
1040}
1041EXPORT_SYMBOL(bitmap_find_free_region);
1042
1043/**
1044 * bitmap_release_region - release allocated bitmap region
1045 *	@bitmap: array of unsigned longs corresponding to the bitmap
1046 *	@pos: beginning of bit region to release
1047 *	@order: region size (log base 2 of number of bits) to release
1048 *
1049 * This is the complement to __bitmap_find_free_region() and releases
1050 * the found region (by clearing it in the bitmap).
1051 *
1052 * No return value.
1053 */
1054void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1055{
1056	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1057}
1058EXPORT_SYMBOL(bitmap_release_region);
1059
1060/**
1061 * bitmap_allocate_region - allocate bitmap region
1062 *	@bitmap: array of unsigned longs corresponding to the bitmap
1063 *	@pos: beginning of bit region to allocate
1064 *	@order: region size (log base 2 of number of bits) to allocate
1065 *
1066 * Allocate (set bits in) a specified region of a bitmap.
1067 *
1068 * Return 0 on success, or %-EBUSY if specified region wasn't
1069 * free (not all bits were zero).
1070 */
1071int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1072{
1073	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1074		return -EBUSY;
1075	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1076	return 0;
1077}
1078EXPORT_SYMBOL(bitmap_allocate_region);
1079
1080/**
1081 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1082 * @dst:   destination buffer
1083 * @src:   bitmap to copy
1084 * @nbits: number of bits in the bitmap
1085 *
1086 * Require nbits % BITS_PER_LONG == 0.
1087 */
1088void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1089{
1090	unsigned long *d = dst;
1091	int i;
1092
1093	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1094		if (BITS_PER_LONG == 64)
1095			d[i] = cpu_to_le64(src[i]);
1096		else
1097			d[i] = cpu_to_le32(src[i]);
1098	}
1099}
1100EXPORT_SYMBOL(bitmap_copy_le);
1101