• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/kernel/irq/
1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 * linux/kernel/irq/handle.c
4 *
5 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
6 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 *
8 * This file contains the core interrupt handling code.
9 *
10 * Detailed information is available in Documentation/DocBook/genericirq
11 *
12 */
13
14#include <linux/irq.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/module.h>
18#include <linux/random.h>
19#include <linux/interrupt.h>
20#include <linux/kernel_stat.h>
21#include <linux/rculist.h>
22#include <linux/hash.h>
23#include <linux/radix-tree.h>
24#include <trace/events/irq.h>
25
26#if defined(CONFIG_BUZZZ)
27#include <asm/buzzz.h>
28#endif	/*  CONFIG_BUZZZ */
29
30#include "internals.h"
31
32#include <typedefs.h>
33#include <bcmdefs.h>
34
35/*
36 * lockdep: we want to handle all irq_desc locks as a single lock-class:
37 */
38struct lock_class_key irq_desc_lock_class;
39
40/**
41 * handle_bad_irq - handle spurious and unhandled irqs
42 * @irq:       the interrupt number
43 * @desc:      description of the interrupt
44 *
45 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
46 */
47void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
48{
49#if defined(BUZZZ_KEVT_LVL) && (BUZZZ_KEVT_LVL >= 1)
50	buzzz_kevt_log1(BUZZZ_KEVT_ID_IRQ_BAD, irq);
51#endif	/* BUZZZ_KEVT_LVL */
52
53	print_irq_desc(irq, desc);
54	kstat_incr_irqs_this_cpu(irq, desc);
55	ack_bad_irq(irq);
56}
57
58#if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
59static void __init init_irq_default_affinity(void)
60{
61	alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
62	cpumask_setall(irq_default_affinity);
63}
64#else
65static void __init init_irq_default_affinity(void)
66{
67}
68#endif
69
70/*
71 * Linux has a controller-independent interrupt architecture.
72 * Every controller has a 'controller-template', that is used
73 * by the main code to do the right thing. Each driver-visible
74 * interrupt source is transparently wired to the appropriate
75 * controller. Thus drivers need not be aware of the
76 * interrupt-controller.
77 *
78 * The code is designed to be easily extended with new/different
79 * interrupt controllers, without having to do assembly magic or
80 * having to touch the generic code.
81 *
82 * Controller mappings for all interrupt sources:
83 */
84int nr_irqs = NR_IRQS;
85EXPORT_SYMBOL_GPL(nr_irqs);
86
87#ifdef CONFIG_SPARSE_IRQ
88
89static struct irq_desc irq_desc_init = {
90	.irq	    = -1,
91	.status	    = IRQ_DISABLED,
92	.chip	    = &no_irq_chip,
93	.handle_irq = handle_bad_irq,
94	.depth      = 1,
95	.lock       = __RAW_SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
96};
97
98void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr)
99{
100	void *ptr;
101
102	ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs),
103			   GFP_ATOMIC, node);
104
105	/*
106	 * don't overwite if can not get new one
107	 * init_copy_kstat_irqs() could still use old one
108	 */
109	if (ptr) {
110		printk(KERN_DEBUG "  alloc kstat_irqs on node %d\n", node);
111		desc->kstat_irqs = ptr;
112	}
113}
114
115static void init_one_irq_desc(int irq, struct irq_desc *desc, int node)
116{
117	memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
118
119	raw_spin_lock_init(&desc->lock);
120	desc->irq = irq;
121#ifdef CONFIG_SMP
122	desc->node = node;
123#endif
124	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
125	init_kstat_irqs(desc, node, nr_cpu_ids);
126	if (!desc->kstat_irqs) {
127		printk(KERN_ERR "can not alloc kstat_irqs\n");
128		BUG_ON(1);
129	}
130	if (!alloc_desc_masks(desc, node, false)) {
131		printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
132		BUG_ON(1);
133	}
134	init_desc_masks(desc);
135	arch_init_chip_data(desc, node);
136}
137
138/*
139 * Protect the sparse_irqs:
140 */
141DEFINE_RAW_SPINLOCK(sparse_irq_lock);
142
143static RADIX_TREE(irq_desc_tree, GFP_ATOMIC);
144
145static void set_irq_desc(unsigned int irq, struct irq_desc *desc)
146{
147	radix_tree_insert(&irq_desc_tree, irq, desc);
148}
149
150struct irq_desc *irq_to_desc(unsigned int irq)
151{
152	return radix_tree_lookup(&irq_desc_tree, irq);
153}
154
155void replace_irq_desc(unsigned int irq, struct irq_desc *desc)
156{
157	void **ptr;
158
159	ptr = radix_tree_lookup_slot(&irq_desc_tree, irq);
160	if (ptr)
161		radix_tree_replace_slot(ptr, desc);
162}
163
164static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
165	[0 ... NR_IRQS_LEGACY-1] = {
166		.irq	    = -1,
167		.status	    = IRQ_DISABLED,
168		.chip	    = &no_irq_chip,
169		.handle_irq = handle_bad_irq,
170		.depth	    = 1,
171		.lock	    = __RAW_SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
172	}
173};
174
175static unsigned int *kstat_irqs_legacy;
176
177int __init early_irq_init(void)
178{
179	struct irq_desc *desc;
180	int legacy_count;
181	int node;
182	int i;
183
184	init_irq_default_affinity();
185
186	 /* initialize nr_irqs based on nr_cpu_ids */
187	arch_probe_nr_irqs();
188	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
189
190	desc = irq_desc_legacy;
191	legacy_count = ARRAY_SIZE(irq_desc_legacy);
192	node = first_online_node;
193
194	/* allocate based on nr_cpu_ids */
195	kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids *
196					  sizeof(int), GFP_NOWAIT, node);
197
198	for (i = 0; i < legacy_count; i++) {
199		desc[i].irq = i;
200#ifdef CONFIG_SMP
201		desc[i].node = node;
202#endif
203		desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
204		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
205		alloc_desc_masks(&desc[i], node, true);
206		init_desc_masks(&desc[i]);
207		set_irq_desc(i, &desc[i]);
208	}
209
210	return arch_early_irq_init();
211}
212
213struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node)
214{
215	struct irq_desc *desc;
216	unsigned long flags;
217
218	if (irq >= nr_irqs) {
219		WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
220			irq, nr_irqs);
221		return NULL;
222	}
223
224	desc = irq_to_desc(irq);
225	if (desc)
226		return desc;
227
228	raw_spin_lock_irqsave(&sparse_irq_lock, flags);
229
230	/* We have to check it to avoid races with another CPU */
231	desc = irq_to_desc(irq);
232	if (desc)
233		goto out_unlock;
234
235	desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
236
237	printk(KERN_DEBUG "  alloc irq_desc for %d on node %d\n", irq, node);
238	if (!desc) {
239		printk(KERN_ERR "can not alloc irq_desc\n");
240		BUG_ON(1);
241	}
242	init_one_irq_desc(irq, desc, node);
243
244	set_irq_desc(irq, desc);
245
246out_unlock:
247	raw_spin_unlock_irqrestore(&sparse_irq_lock, flags);
248
249	return desc;
250}
251
252#else /* !CONFIG_SPARSE_IRQ */
253
254struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
255	[0 ... NR_IRQS-1] = {
256		.status = IRQ_DISABLED,
257		.chip = &no_irq_chip,
258		.handle_irq = handle_bad_irq,
259		.depth = 1,
260		.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
261	}
262};
263
264static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
265int __init early_irq_init(void)
266{
267	struct irq_desc *desc;
268	int count;
269	int i;
270
271	init_irq_default_affinity();
272
273	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
274
275	desc = irq_desc;
276	count = ARRAY_SIZE(irq_desc);
277
278	for (i = 0; i < count; i++) {
279		desc[i].irq = i;
280		alloc_desc_masks(&desc[i], 0, true);
281		init_desc_masks(&desc[i]);
282		desc[i].kstat_irqs = kstat_irqs_all[i];
283	}
284	return arch_early_irq_init();
285}
286
287struct irq_desc *irq_to_desc(unsigned int irq)
288{
289	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
290}
291
292struct irq_desc *irq_to_desc_alloc_node(unsigned int irq, int node)
293{
294	return irq_to_desc(irq);
295}
296#endif /* !CONFIG_SPARSE_IRQ */
297
298void clear_kstat_irqs(struct irq_desc *desc)
299{
300	memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
301}
302
303/*
304 * What should we do if we get a hw irq event on an illegal vector?
305 * Each architecture has to answer this themself.
306 */
307static void ack_bad(unsigned int irq)
308{
309	struct irq_desc *desc = irq_to_desc(irq);
310
311#if defined(BUZZZ_KEVT_LVL) && (BUZZZ_KEVT_LVL >= 1)
312	buzzz_kevt_log1(BUZZZ_KEVT_ID_IRQ_ACK_BAD, irq);
313#endif	/* BUZZZ_KEVT_LVL */
314
315	print_irq_desc(irq, desc);
316	ack_bad_irq(irq);
317}
318
319/*
320 * NOP functions
321 */
322static void noop(unsigned int irq)
323{
324}
325
326static unsigned int noop_ret(unsigned int irq)
327{
328	return 0;
329}
330
331/*
332 * Generic no controller implementation
333 */
334struct irq_chip no_irq_chip = {
335	.name		= "none",
336	.startup	= noop_ret,
337	.shutdown	= noop,
338	.enable		= noop,
339	.disable	= noop,
340	.ack		= ack_bad,
341	.end		= noop,
342};
343
344/*
345 * Generic dummy implementation which can be used for
346 * real dumb interrupt sources
347 */
348struct irq_chip dummy_irq_chip = {
349	.name		= "dummy",
350	.startup	= noop_ret,
351	.shutdown	= noop,
352	.enable		= noop,
353	.disable	= noop,
354	.ack		= noop,
355	.mask		= noop,
356	.unmask		= noop,
357	.end		= noop,
358};
359
360/*
361 * Special, empty irq handler:
362 */
363irqreturn_t no_action(int cpl, void *dev_id)
364{
365	return IRQ_NONE;
366}
367
368static void warn_no_thread(unsigned int irq, struct irqaction *action)
369{
370	if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
371		return;
372
373	printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
374	       "but no thread function available.", irq, action->name);
375}
376
377/**
378 * handle_IRQ_event - irq action chain handler
379 * @irq:	the interrupt number
380 * @action:	the interrupt action chain for this irq
381 *
382 * Handles the action chain of an irq event
383 */
384irqreturn_t BCMFASTPATH handle_IRQ_event(unsigned int irq, struct irqaction *action)
385{
386	irqreturn_t ret, retval = IRQ_NONE;
387	unsigned int status = 0;
388
389	do {
390		trace_irq_handler_entry(irq, action);
391
392#if defined(BUZZZ_KEVT_LVL) && (BUZZZ_KEVT_LVL >= 1)
393		buzzz_kevt_log2(BUZZZ_KEVT_ID_IRQ_ENTRY, irq, (int)(action->handler));
394#endif	/* BUZZZ_KEVT_LVL */
395
396		ret = action->handler(irq, action->dev_id);
397
398#if defined(BUZZZ_KEVT_LVL) && (BUZZZ_KEVT_LVL >= 1)
399		buzzz_kevt_log2(BUZZZ_KEVT_ID_IRQ_EXIT, irq, (int)(action->handler));
400#endif	/* BUZZZ_KEVT_LVL */
401
402		trace_irq_handler_exit(irq, action, ret);
403
404		switch (ret) {
405		case IRQ_WAKE_THREAD:
406			/*
407			 * Set result to handled so the spurious check
408			 * does not trigger.
409			 */
410			ret = IRQ_HANDLED;
411
412			/*
413			 * Catch drivers which return WAKE_THREAD but
414			 * did not set up a thread function
415			 */
416			if (unlikely(!action->thread_fn)) {
417				warn_no_thread(irq, action);
418				break;
419			}
420
421			/*
422			 * Wake up the handler thread for this
423			 * action. In case the thread crashed and was
424			 * killed we just pretend that we handled the
425			 * interrupt. The hardirq handler above has
426			 * disabled the device interrupt, so no irq
427			 * storm is lurking.
428			 */
429			if (likely(!test_bit(IRQTF_DIED,
430					     &action->thread_flags))) {
431				set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
432				wake_up_process(action->thread);
433			}
434
435			/* Fall through to add to randomness */
436		case IRQ_HANDLED:
437			status |= action->flags;
438			break;
439
440		default:
441			break;
442		}
443
444		retval |= ret;
445		action = action->next;
446	} while (action);
447
448	if (status & IRQF_SAMPLE_RANDOM)
449		add_interrupt_randomness(irq);
450	local_irq_disable();
451
452	return retval;
453}
454
455#ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
456
457#ifdef CONFIG_ENABLE_WARN_DEPRECATED
458# warning __do_IRQ is deprecated. Please convert to proper flow handlers
459#endif
460
461/**
462 * __do_IRQ - original all in one highlevel IRQ handler
463 * @irq:	the interrupt number
464 *
465 * __do_IRQ handles all normal device IRQ's (the special
466 * SMP cross-CPU interrupts have their own specific
467 * handlers).
468 *
469 * This is the original x86 implementation which is used for every
470 * interrupt type.
471 */
472unsigned int BCMFASTPATH __do_IRQ(unsigned int irq)
473{
474	struct irq_desc *desc = irq_to_desc(irq);
475	struct irqaction *action;
476	unsigned int status;
477
478	kstat_incr_irqs_this_cpu(irq, desc);
479
480	if (CHECK_IRQ_PER_CPU(desc->status)) {
481		irqreturn_t action_ret;
482
483		/*
484		 * No locking required for CPU-local interrupts:
485		 */
486		if (desc->chip->ack)
487			desc->chip->ack(irq);
488		if (likely(!(desc->status & IRQ_DISABLED))) {
489			action_ret = handle_IRQ_event(irq, desc->action);
490			if (!noirqdebug)
491				note_interrupt(irq, desc, action_ret);
492		}
493		desc->chip->end(irq);
494		return 1;
495	}
496
497	raw_spin_lock(&desc->lock);
498	if (desc->chip->ack)
499		desc->chip->ack(irq);
500	/*
501	 * REPLAY is when Linux resends an IRQ that was dropped earlier
502	 * WAITING is used by probe to mark irqs that are being tested
503	 */
504	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
505	status |= IRQ_PENDING; /* we _want_ to handle it */
506
507	/*
508	 * If the IRQ is disabled for whatever reason, we cannot
509	 * use the action we have.
510	 */
511	action = NULL;
512	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
513		action = desc->action;
514		status &= ~IRQ_PENDING; /* we commit to handling */
515		status |= IRQ_INPROGRESS; /* we are handling it */
516	}
517	desc->status = status;
518
519	/*
520	 * If there is no IRQ handler or it was disabled, exit early.
521	 * Since we set PENDING, if another processor is handling
522	 * a different instance of this same irq, the other processor
523	 * will take care of it.
524	 */
525	if (unlikely(!action))
526		goto out;
527
528	/*
529	 * Edge triggered interrupts need to remember
530	 * pending events.
531	 * This applies to any hw interrupts that allow a second
532	 * instance of the same irq to arrive while we are in do_IRQ
533	 * or in the handler. But the code here only handles the _second_
534	 * instance of the irq, not the third or fourth. So it is mostly
535	 * useful for irq hardware that does not mask cleanly in an
536	 * SMP environment.
537	 */
538	for (;;) {
539		irqreturn_t action_ret;
540
541		raw_spin_unlock(&desc->lock);
542
543		action_ret = handle_IRQ_event(irq, action);
544		if (!noirqdebug)
545			note_interrupt(irq, desc, action_ret);
546
547		raw_spin_lock(&desc->lock);
548		if (likely(!(desc->status & IRQ_PENDING)))
549			break;
550		desc->status &= ~IRQ_PENDING;
551	}
552	desc->status &= ~IRQ_INPROGRESS;
553
554out:
555	/*
556	 * The ->end() handler has to deal with interrupts which got
557	 * disabled while the handler was running.
558	 */
559	desc->chip->end(irq);
560	raw_spin_unlock(&desc->lock);
561
562	return 1;
563}
564#endif
565
566void early_init_irq_lock_class(void)
567{
568	struct irq_desc *desc;
569	int i;
570
571	for_each_irq_desc(i, desc) {
572		lockdep_set_class(&desc->lock, &irq_desc_lock_class);
573	}
574}
575
576unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
577{
578	struct irq_desc *desc = irq_to_desc(irq);
579	return desc ? desc->kstat_irqs[cpu] : 0;
580}
581EXPORT_SYMBOL(kstat_irqs_cpu);
582