1/*
2 *  linux/kernel/exit.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53
54#include <asm/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/pgtable.h>
57#include <asm/mmu_context.h>
58
59static void exit_mm(struct task_struct * tsk);
60
61static void __unhash_process(struct task_struct *p, bool group_dead)
62{
63	nr_threads--;
64	detach_pid(p, PIDTYPE_PID);
65	if (group_dead) {
66		detach_pid(p, PIDTYPE_PGID);
67		detach_pid(p, PIDTYPE_SID);
68
69		list_del_rcu(&p->tasks);
70		list_del_init(&p->sibling);
71		__get_cpu_var(process_counts)--;
72	}
73	list_del_rcu(&p->thread_group);
74}
75
76/*
77 * This function expects the tasklist_lock write-locked.
78 */
79static void __exit_signal(struct task_struct *tsk)
80{
81	struct signal_struct *sig = tsk->signal;
82	bool group_dead = thread_group_leader(tsk);
83	struct sighand_struct *sighand;
84	struct tty_struct *uninitialized_var(tty);
85
86	sighand = rcu_dereference_check(tsk->sighand,
87					rcu_read_lock_held() ||
88					lockdep_tasklist_lock_is_held());
89	spin_lock(&sighand->siglock);
90
91	posix_cpu_timers_exit(tsk);
92	if (group_dead) {
93		posix_cpu_timers_exit_group(tsk);
94		tty = sig->tty;
95		sig->tty = NULL;
96	} else {
97		if (unlikely(has_group_leader_pid(tsk)))
98			posix_cpu_timers_exit_group(tsk);
99
100		/*
101		 * If there is any task waiting for the group exit
102		 * then notify it:
103		 */
104		if (sig->notify_count > 0 && !--sig->notify_count)
105			wake_up_process(sig->group_exit_task);
106
107		if (tsk == sig->curr_target)
108			sig->curr_target = next_thread(tsk);
109		/*
110		 * Accumulate here the counters for all threads but the
111		 * group leader as they die, so they can be added into
112		 * the process-wide totals when those are taken.
113		 * The group leader stays around as a zombie as long
114		 * as there are other threads.  When it gets reaped,
115		 * the exit.c code will add its counts into these totals.
116		 * We won't ever get here for the group leader, since it
117		 * will have been the last reference on the signal_struct.
118		 */
119		sig->utime = cputime_add(sig->utime, tsk->utime);
120		sig->stime = cputime_add(sig->stime, tsk->stime);
121		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
122		sig->min_flt += tsk->min_flt;
123		sig->maj_flt += tsk->maj_flt;
124		sig->nvcsw += tsk->nvcsw;
125		sig->nivcsw += tsk->nivcsw;
126		sig->inblock += task_io_get_inblock(tsk);
127		sig->oublock += task_io_get_oublock(tsk);
128		task_io_accounting_add(&sig->ioac, &tsk->ioac);
129		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
130	}
131
132	sig->nr_threads--;
133	__unhash_process(tsk, group_dead);
134
135	/*
136	 * Do this under ->siglock, we can race with another thread
137	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138	 */
139	flush_sigqueue(&tsk->pending);
140	tsk->sighand = NULL;
141	spin_unlock(&sighand->siglock);
142
143	__cleanup_sighand(sighand);
144	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145	if (group_dead) {
146		flush_sigqueue(&sig->shared_pending);
147		tty_kref_put(tty);
148	}
149}
150
151static void delayed_put_task_struct(struct rcu_head *rhp)
152{
153	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
154
155#ifdef CONFIG_PERF_EVENTS
156	WARN_ON_ONCE(tsk->perf_event_ctxp);
157#endif
158	trace_sched_process_free(tsk);
159	put_task_struct(tsk);
160}
161
162
163void release_task(struct task_struct * p)
164{
165	struct task_struct *leader;
166	int zap_leader;
167repeat:
168	tracehook_prepare_release_task(p);
169	/* don't need to get the RCU readlock here - the process is dead and
170	 * can't be modifying its own credentials. But shut RCU-lockdep up */
171	rcu_read_lock();
172	atomic_dec(&__task_cred(p)->user->processes);
173	rcu_read_unlock();
174
175	proc_flush_task(p);
176
177	write_lock_irq(&tasklist_lock);
178	tracehook_finish_release_task(p);
179	__exit_signal(p);
180
181	/*
182	 * If we are the last non-leader member of the thread
183	 * group, and the leader is zombie, then notify the
184	 * group leader's parent process. (if it wants notification.)
185	 */
186	zap_leader = 0;
187	leader = p->group_leader;
188	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189		BUG_ON(task_detached(leader));
190		do_notify_parent(leader, leader->exit_signal);
191		/*
192		 * If we were the last child thread and the leader has
193		 * exited already, and the leader's parent ignores SIGCHLD,
194		 * then we are the one who should release the leader.
195		 *
196		 * do_notify_parent() will have marked it self-reaping in
197		 * that case.
198		 */
199		zap_leader = task_detached(leader);
200
201		/*
202		 * This maintains the invariant that release_task()
203		 * only runs on a task in EXIT_DEAD, just for sanity.
204		 */
205		if (zap_leader)
206			leader->exit_state = EXIT_DEAD;
207	}
208
209	write_unlock_irq(&tasklist_lock);
210	release_thread(p);
211	call_rcu(&p->rcu, delayed_put_task_struct);
212
213	p = leader;
214	if (unlikely(zap_leader))
215		goto repeat;
216}
217
218/*
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221 * without this...
222 *
223 * The caller must hold rcu lock or the tasklist lock.
224 */
225struct pid *session_of_pgrp(struct pid *pgrp)
226{
227	struct task_struct *p;
228	struct pid *sid = NULL;
229
230	p = pid_task(pgrp, PIDTYPE_PGID);
231	if (p == NULL)
232		p = pid_task(pgrp, PIDTYPE_PID);
233	if (p != NULL)
234		sid = task_session(p);
235
236	return sid;
237}
238
239/*
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
242 * by terminal-generated stop signals.  Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
244 *
245 * "I ask you, have you ever known what it is to be an orphan?"
246 */
247static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248{
249	struct task_struct *p;
250
251	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252		if ((p == ignored_task) ||
253		    (p->exit_state && thread_group_empty(p)) ||
254		    is_global_init(p->real_parent))
255			continue;
256
257		if (task_pgrp(p->real_parent) != pgrp &&
258		    task_session(p->real_parent) == task_session(p))
259			return 0;
260	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262	return 1;
263}
264
265int is_current_pgrp_orphaned(void)
266{
267	int retval;
268
269	read_lock(&tasklist_lock);
270	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271	read_unlock(&tasklist_lock);
272
273	return retval;
274}
275
276static int has_stopped_jobs(struct pid *pgrp)
277{
278	int retval = 0;
279	struct task_struct *p;
280
281	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282		if (!task_is_stopped(p))
283			continue;
284		retval = 1;
285		break;
286	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287	return retval;
288}
289
290/*
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294 */
295static void
296kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297{
298	struct pid *pgrp = task_pgrp(tsk);
299	struct task_struct *ignored_task = tsk;
300
301	if (!parent)
302		 /* exit: our father is in a different pgrp than
303		  * we are and we were the only connection outside.
304		  */
305		parent = tsk->real_parent;
306	else
307		/* reparent: our child is in a different pgrp than
308		 * we are, and it was the only connection outside.
309		 */
310		ignored_task = NULL;
311
312	if (task_pgrp(parent) != pgrp &&
313	    task_session(parent) == task_session(tsk) &&
314	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
315	    has_stopped_jobs(pgrp)) {
316		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318	}
319}
320
321/**
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323 *
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
327 *
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
330 *
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332 */
333static void reparent_to_kthreadd(void)
334{
335	write_lock_irq(&tasklist_lock);
336
337	ptrace_unlink(current);
338	/* Reparent to init */
339	current->real_parent = current->parent = kthreadd_task;
340	list_move_tail(&current->sibling, &current->real_parent->children);
341
342	/* Set the exit signal to SIGCHLD so we signal init on exit */
343	current->exit_signal = SIGCHLD;
344
345	if (task_nice(current) < 0)
346		set_user_nice(current, 0);
347	/* cpus_allowed? */
348	/* rt_priority? */
349	/* signals? */
350	memcpy(current->signal->rlim, init_task.signal->rlim,
351	       sizeof(current->signal->rlim));
352
353	atomic_inc(&init_cred.usage);
354	commit_creds(&init_cred);
355	write_unlock_irq(&tasklist_lock);
356}
357
358void __set_special_pids(struct pid *pid)
359{
360	struct task_struct *curr = current->group_leader;
361
362	if (task_session(curr) != pid)
363		change_pid(curr, PIDTYPE_SID, pid);
364
365	if (task_pgrp(curr) != pid)
366		change_pid(curr, PIDTYPE_PGID, pid);
367}
368
369static void set_special_pids(struct pid *pid)
370{
371	write_lock_irq(&tasklist_lock);
372	__set_special_pids(pid);
373	write_unlock_irq(&tasklist_lock);
374}
375
376/*
377 * Let kernel threads use this to say that they allow a certain signal.
378 * Must not be used if kthread was cloned with CLONE_SIGHAND.
379 */
380int allow_signal(int sig)
381{
382	if (!valid_signal(sig) || sig < 1)
383		return -EINVAL;
384
385	spin_lock_irq(&current->sighand->siglock);
386	/* This is only needed for daemonize()'ed kthreads */
387	sigdelset(&current->blocked, sig);
388	/*
389	 * Kernel threads handle their own signals. Let the signal code
390	 * know it'll be handled, so that they don't get converted to
391	 * SIGKILL or just silently dropped.
392	 */
393	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394	recalc_sigpending();
395	spin_unlock_irq(&current->sighand->siglock);
396	return 0;
397}
398
399EXPORT_SYMBOL(allow_signal);
400
401int disallow_signal(int sig)
402{
403	if (!valid_signal(sig) || sig < 1)
404		return -EINVAL;
405
406	spin_lock_irq(&current->sighand->siglock);
407	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408	recalc_sigpending();
409	spin_unlock_irq(&current->sighand->siglock);
410	return 0;
411}
412
413EXPORT_SYMBOL(disallow_signal);
414
415/*
416 *	Put all the gunge required to become a kernel thread without
417 *	attached user resources in one place where it belongs.
418 */
419
420void daemonize(const char *name, ...)
421{
422	va_list args;
423	sigset_t blocked;
424
425	va_start(args, name);
426	vsnprintf(current->comm, sizeof(current->comm), name, args);
427	va_end(args);
428
429	/*
430	 * If we were started as result of loading a module, close all of the
431	 * user space pages.  We don't need them, and if we didn't close them
432	 * they would be locked into memory.
433	 */
434	exit_mm(current);
435	/*
436	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
437	 * or suspend transition begins right now.
438	 */
439	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
440
441	if (current->nsproxy != &init_nsproxy) {
442		get_nsproxy(&init_nsproxy);
443		switch_task_namespaces(current, &init_nsproxy);
444	}
445	set_special_pids(&init_struct_pid);
446	proc_clear_tty(current);
447
448	/* Block and flush all signals */
449	sigfillset(&blocked);
450	sigprocmask(SIG_BLOCK, &blocked, NULL);
451	flush_signals(current);
452
453	/* Become as one with the init task */
454
455	daemonize_fs_struct();
456	exit_files(current);
457	current->files = init_task.files;
458	atomic_inc(&current->files->count);
459
460	reparent_to_kthreadd();
461}
462
463EXPORT_SYMBOL(daemonize);
464
465static void close_files(struct files_struct * files)
466{
467	int i, j;
468	struct fdtable *fdt;
469
470	j = 0;
471
472	/*
473	 * It is safe to dereference the fd table without RCU or
474	 * ->file_lock because this is the last reference to the
475	 * files structure.  But use RCU to shut RCU-lockdep up.
476	 */
477	rcu_read_lock();
478	fdt = files_fdtable(files);
479	rcu_read_unlock();
480	for (;;) {
481		unsigned long set;
482		i = j * __NFDBITS;
483		if (i >= fdt->max_fds)
484			break;
485		set = fdt->open_fds->fds_bits[j++];
486		while (set) {
487			if (set & 1) {
488				struct file * file = xchg(&fdt->fd[i], NULL);
489				if (file) {
490					filp_close(file, files);
491					cond_resched();
492				}
493			}
494			i++;
495			set >>= 1;
496		}
497	}
498}
499
500struct files_struct *get_files_struct(struct task_struct *task)
501{
502	struct files_struct *files;
503
504	task_lock(task);
505	files = task->files;
506	if (files)
507		atomic_inc(&files->count);
508	task_unlock(task);
509
510	return files;
511}
512
513void put_files_struct(struct files_struct *files)
514{
515	struct fdtable *fdt;
516
517	if (atomic_dec_and_test(&files->count)) {
518		close_files(files);
519		/*
520		 * Free the fd and fdset arrays if we expanded them.
521		 * If the fdtable was embedded, pass files for freeing
522		 * at the end of the RCU grace period. Otherwise,
523		 * you can free files immediately.
524		 */
525		rcu_read_lock();
526		fdt = files_fdtable(files);
527		if (fdt != &files->fdtab)
528			kmem_cache_free(files_cachep, files);
529		free_fdtable(fdt);
530		rcu_read_unlock();
531	}
532}
533
534void reset_files_struct(struct files_struct *files)
535{
536	struct task_struct *tsk = current;
537	struct files_struct *old;
538
539	old = tsk->files;
540	task_lock(tsk);
541	tsk->files = files;
542	task_unlock(tsk);
543	put_files_struct(old);
544}
545
546void exit_files(struct task_struct *tsk)
547{
548	struct files_struct * files = tsk->files;
549
550	if (files) {
551		task_lock(tsk);
552		tsk->files = NULL;
553		task_unlock(tsk);
554		put_files_struct(files);
555	}
556}
557
558#ifdef CONFIG_MM_OWNER
559/*
560 * Task p is exiting and it owned mm, lets find a new owner for it
561 */
562static inline int
563mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
564{
565	/*
566	 * If there are other users of the mm and the owner (us) is exiting
567	 * we need to find a new owner to take on the responsibility.
568	 */
569	if (atomic_read(&mm->mm_users) <= 1)
570		return 0;
571	if (mm->owner != p)
572		return 0;
573	return 1;
574}
575
576void mm_update_next_owner(struct mm_struct *mm)
577{
578	struct task_struct *c, *g, *p = current;
579
580retry:
581	if (!mm_need_new_owner(mm, p))
582		return;
583
584	read_lock(&tasklist_lock);
585	/*
586	 * Search in the children
587	 */
588	list_for_each_entry(c, &p->children, sibling) {
589		if (c->mm == mm)
590			goto assign_new_owner;
591	}
592
593	/*
594	 * Search in the siblings
595	 */
596	list_for_each_entry(c, &p->real_parent->children, sibling) {
597		if (c->mm == mm)
598			goto assign_new_owner;
599	}
600
601	/*
602	 * Search through everything else. We should not get
603	 * here often
604	 */
605	do_each_thread(g, c) {
606		if (c->mm == mm)
607			goto assign_new_owner;
608	} while_each_thread(g, c);
609
610	read_unlock(&tasklist_lock);
611	/*
612	 * We found no owner yet mm_users > 1: this implies that we are
613	 * most likely racing with swapoff (try_to_unuse()) or /proc or
614	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
615	 */
616	mm->owner = NULL;
617	return;
618
619assign_new_owner:
620	BUG_ON(c == p);
621	get_task_struct(c);
622	/*
623	 * The task_lock protects c->mm from changing.
624	 * We always want mm->owner->mm == mm
625	 */
626	task_lock(c);
627	/*
628	 * Delay read_unlock() till we have the task_lock()
629	 * to ensure that c does not slip away underneath us
630	 */
631	read_unlock(&tasklist_lock);
632	if (c->mm != mm) {
633		task_unlock(c);
634		put_task_struct(c);
635		goto retry;
636	}
637	mm->owner = c;
638	task_unlock(c);
639	put_task_struct(c);
640}
641#endif /* CONFIG_MM_OWNER */
642
643/*
644 * Turn us into a lazy TLB process if we
645 * aren't already..
646 */
647static void exit_mm(struct task_struct * tsk)
648{
649	struct mm_struct *mm = tsk->mm;
650	struct core_state *core_state;
651
652	mm_release(tsk, mm);
653	if (!mm)
654		return;
655	/*
656	 * Serialize with any possible pending coredump.
657	 * We must hold mmap_sem around checking core_state
658	 * and clearing tsk->mm.  The core-inducing thread
659	 * will increment ->nr_threads for each thread in the
660	 * group with ->mm != NULL.
661	 */
662	down_read(&mm->mmap_sem);
663	core_state = mm->core_state;
664	if (core_state) {
665		struct core_thread self;
666		up_read(&mm->mmap_sem);
667
668		self.task = tsk;
669		self.next = xchg(&core_state->dumper.next, &self);
670		/*
671		 * Implies mb(), the result of xchg() must be visible
672		 * to core_state->dumper.
673		 */
674		if (atomic_dec_and_test(&core_state->nr_threads))
675			complete(&core_state->startup);
676
677		for (;;) {
678			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
679			if (!self.task) /* see coredump_finish() */
680				break;
681			schedule();
682		}
683		__set_task_state(tsk, TASK_RUNNING);
684		down_read(&mm->mmap_sem);
685	}
686	atomic_inc(&mm->mm_count);
687	BUG_ON(mm != tsk->active_mm);
688	/* more a memory barrier than a real lock */
689	task_lock(tsk);
690	tsk->mm = NULL;
691	up_read(&mm->mmap_sem);
692	enter_lazy_tlb(mm, current);
693	/* We don't want this task to be frozen prematurely */
694	clear_freeze_flag(tsk);
695	task_unlock(tsk);
696	mm_update_next_owner(mm);
697	mmput(mm);
698}
699
700/*
701 * When we die, we re-parent all our children.
702 * Try to give them to another thread in our thread
703 * group, and if no such member exists, give it to
704 * the child reaper process (ie "init") in our pid
705 * space.
706 */
707static struct task_struct *find_new_reaper(struct task_struct *father)
708{
709	struct pid_namespace *pid_ns = task_active_pid_ns(father);
710	struct task_struct *thread;
711
712	thread = father;
713	while_each_thread(father, thread) {
714		if (thread->flags & PF_EXITING)
715			continue;
716		if (unlikely(pid_ns->child_reaper == father))
717			pid_ns->child_reaper = thread;
718		return thread;
719	}
720
721	if (unlikely(pid_ns->child_reaper == father)) {
722		write_unlock_irq(&tasklist_lock);
723		if (unlikely(pid_ns == &init_pid_ns))
724			panic("Attempted to kill init!");
725
726		zap_pid_ns_processes(pid_ns);
727		write_lock_irq(&tasklist_lock);
728		/*
729		 * We can not clear ->child_reaper or leave it alone.
730		 * There may by stealth EXIT_DEAD tasks on ->children,
731		 * forget_original_parent() must move them somewhere.
732		 */
733		pid_ns->child_reaper = init_pid_ns.child_reaper;
734	}
735
736	return pid_ns->child_reaper;
737}
738
739/*
740* Any that need to be release_task'd are put on the @dead list.
741 */
742static void reparent_leader(struct task_struct *father, struct task_struct *p,
743				struct list_head *dead)
744{
745	list_move_tail(&p->sibling, &p->real_parent->children);
746
747	if (task_detached(p))
748		return;
749	/*
750	 * If this is a threaded reparent there is no need to
751	 * notify anyone anything has happened.
752	 */
753	if (same_thread_group(p->real_parent, father))
754		return;
755
756	/* We don't want people slaying init.  */
757	p->exit_signal = SIGCHLD;
758
759	/* If it has exited notify the new parent about this child's death. */
760	if (!task_ptrace(p) &&
761	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762		do_notify_parent(p, p->exit_signal);
763		if (task_detached(p)) {
764			p->exit_state = EXIT_DEAD;
765			list_move_tail(&p->sibling, dead);
766		}
767	}
768
769	kill_orphaned_pgrp(p, father);
770}
771
772static void forget_original_parent(struct task_struct *father)
773{
774	struct task_struct *p, *n, *reaper;
775	LIST_HEAD(dead_children);
776
777	write_lock_irq(&tasklist_lock);
778	/*
779	 * Note that exit_ptrace() and find_new_reaper() might
780	 * drop tasklist_lock and reacquire it.
781	 */
782	exit_ptrace(father);
783	reaper = find_new_reaper(father);
784
785	list_for_each_entry_safe(p, n, &father->children, sibling) {
786		struct task_struct *t = p;
787		do {
788			t->real_parent = reaper;
789			if (t->parent == father) {
790				BUG_ON(task_ptrace(t));
791				t->parent = t->real_parent;
792			}
793			if (t->pdeath_signal)
794				group_send_sig_info(t->pdeath_signal,
795						    SEND_SIG_NOINFO, t);
796		} while_each_thread(p, t);
797		reparent_leader(father, p, &dead_children);
798	}
799	write_unlock_irq(&tasklist_lock);
800
801	BUG_ON(!list_empty(&father->children));
802
803	list_for_each_entry_safe(p, n, &dead_children, sibling) {
804		list_del_init(&p->sibling);
805		release_task(p);
806	}
807}
808
809/*
810 * Send signals to all our closest relatives so that they know
811 * to properly mourn us..
812 */
813static void exit_notify(struct task_struct *tsk, int group_dead)
814{
815	int signal;
816	void *cookie;
817
818	/*
819	 * This does two things:
820	 *
821  	 * A.  Make init inherit all the child processes
822	 * B.  Check to see if any process groups have become orphaned
823	 *	as a result of our exiting, and if they have any stopped
824	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
825	 */
826	forget_original_parent(tsk);
827	exit_task_namespaces(tsk);
828
829	write_lock_irq(&tasklist_lock);
830	if (group_dead)
831		kill_orphaned_pgrp(tsk->group_leader, NULL);
832
833	/* Let father know we died
834	 *
835	 * Thread signals are configurable, but you aren't going to use
836	 * that to send signals to arbitary processes.
837	 * That stops right now.
838	 *
839	 * If the parent exec id doesn't match the exec id we saved
840	 * when we started then we know the parent has changed security
841	 * domain.
842	 *
843	 * If our self_exec id doesn't match our parent_exec_id then
844	 * we have changed execution domain as these two values started
845	 * the same after a fork.
846	 */
847	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
848	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
849	     tsk->self_exec_id != tsk->parent_exec_id))
850		tsk->exit_signal = SIGCHLD;
851
852	signal = tracehook_notify_death(tsk, &cookie, group_dead);
853	if (signal >= 0)
854		signal = do_notify_parent(tsk, signal);
855
856	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
857
858	/* mt-exec, de_thread() is waiting for group leader */
859	if (unlikely(tsk->signal->notify_count < 0))
860		wake_up_process(tsk->signal->group_exit_task);
861	write_unlock_irq(&tasklist_lock);
862
863	tracehook_report_death(tsk, signal, cookie, group_dead);
864
865	/* If the process is dead, release it - nobody will wait for it */
866	if (signal == DEATH_REAP)
867		release_task(tsk);
868}
869
870#ifdef CONFIG_DEBUG_STACK_USAGE
871static void check_stack_usage(void)
872{
873	static DEFINE_SPINLOCK(low_water_lock);
874	static int lowest_to_date = THREAD_SIZE;
875	unsigned long free;
876
877	free = stack_not_used(current);
878
879	if (free >= lowest_to_date)
880		return;
881
882	spin_lock(&low_water_lock);
883	if (free < lowest_to_date) {
884		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
885				"left\n",
886				current->comm, free);
887		lowest_to_date = free;
888	}
889	spin_unlock(&low_water_lock);
890}
891#else
892static inline void check_stack_usage(void) {}
893#endif
894
895NORET_TYPE void do_exit(long code)
896{
897	struct task_struct *tsk = current;
898	int group_dead;
899
900	profile_task_exit(tsk);
901
902	WARN_ON(atomic_read(&tsk->fs_excl));
903
904	if (unlikely(in_interrupt()))
905		panic("Aiee, killing interrupt handler!");
906	if (unlikely(!tsk->pid))
907		panic("Attempted to kill the idle task!");
908
909	/*
910	 * If do_exit is called because this processes oopsed, it's possible
911	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
912	 * continuing. Amongst other possible reasons, this is to prevent
913	 * mm_release()->clear_child_tid() from writing to a user-controlled
914	 * kernel address.
915	 */
916	set_fs(USER_DS);
917
918	tracehook_report_exit(&code);
919
920	validate_creds_for_do_exit(tsk);
921
922	/*
923	 * We're taking recursive faults here in do_exit. Safest is to just
924	 * leave this task alone and wait for reboot.
925	 */
926	if (unlikely(tsk->flags & PF_EXITING)) {
927		printk(KERN_ALERT
928			"Fixing recursive fault but reboot is needed!\n");
929		/*
930		 * We can do this unlocked here. The futex code uses
931		 * this flag just to verify whether the pi state
932		 * cleanup has been done or not. In the worst case it
933		 * loops once more. We pretend that the cleanup was
934		 * done as there is no way to return. Either the
935		 * OWNER_DIED bit is set by now or we push the blocked
936		 * task into the wait for ever nirwana as well.
937		 */
938		tsk->flags |= PF_EXITPIDONE;
939		set_current_state(TASK_UNINTERRUPTIBLE);
940		schedule();
941	}
942
943	exit_irq_thread();
944
945	exit_signals(tsk);  /* sets PF_EXITING */
946	/*
947	 * tsk->flags are checked in the futex code to protect against
948	 * an exiting task cleaning up the robust pi futexes.
949	 */
950	smp_mb();
951	raw_spin_unlock_wait(&tsk->pi_lock);
952
953	if (unlikely(in_atomic()))
954		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
955				current->comm, task_pid_nr(current),
956				preempt_count());
957
958	acct_update_integrals(tsk);
959	/* sync mm's RSS info before statistics gathering */
960	if (tsk->mm)
961		sync_mm_rss(tsk, tsk->mm);
962	group_dead = atomic_dec_and_test(&tsk->signal->live);
963	if (group_dead) {
964		hrtimer_cancel(&tsk->signal->real_timer);
965		exit_itimers(tsk->signal);
966		if (tsk->mm)
967			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
968	}
969	acct_collect(code, group_dead);
970	if (group_dead)
971		tty_audit_exit();
972	if (unlikely(tsk->audit_context))
973		audit_free(tsk);
974
975	tsk->exit_code = code;
976	taskstats_exit(tsk, group_dead);
977
978	exit_mm(tsk);
979
980	if (group_dead)
981		acct_process();
982	trace_sched_process_exit(tsk);
983
984	exit_sem(tsk);
985	exit_files(tsk);
986	exit_fs(tsk);
987	check_stack_usage();
988	exit_thread();
989	cgroup_exit(tsk, 1);
990
991	if (group_dead)
992		disassociate_ctty(1);
993
994	module_put(task_thread_info(tsk)->exec_domain->module);
995
996	proc_exit_connector(tsk);
997
998	flush_ptrace_hw_breakpoint(tsk);
999	/*
1000	 * Flush inherited counters to the parent - before the parent
1001	 * gets woken up by child-exit notifications.
1002	 */
1003	perf_event_exit_task(tsk);
1004
1005	exit_notify(tsk, group_dead);
1006#ifdef CONFIG_NUMA
1007	task_lock(tsk);
1008	mpol_put(tsk->mempolicy);
1009	tsk->mempolicy = NULL;
1010	task_unlock(tsk);
1011#endif
1012#ifdef CONFIG_FUTEX
1013	if (unlikely(current->pi_state_cache))
1014		kfree(current->pi_state_cache);
1015#endif
1016	/*
1017	 * Make sure we are holding no locks:
1018	 */
1019	debug_check_no_locks_held(tsk);
1020	/*
1021	 * We can do this unlocked here. The futex code uses this flag
1022	 * just to verify whether the pi state cleanup has been done
1023	 * or not. In the worst case it loops once more.
1024	 */
1025	tsk->flags |= PF_EXITPIDONE;
1026
1027	if (tsk->io_context)
1028		exit_io_context(tsk);
1029
1030	if (tsk->splice_pipe)
1031		__free_pipe_info(tsk->splice_pipe);
1032
1033	validate_creds_for_do_exit(tsk);
1034
1035	preempt_disable();
1036	exit_rcu();
1037	/* causes final put_task_struct in finish_task_switch(). */
1038	tsk->state = TASK_DEAD;
1039	schedule();
1040	BUG();
1041	/* Avoid "noreturn function does return".  */
1042	for (;;)
1043		cpu_relax();	/* For when BUG is null */
1044}
1045
1046EXPORT_SYMBOL_GPL(do_exit);
1047
1048NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1049{
1050	if (comp)
1051		complete(comp);
1052
1053	do_exit(code);
1054}
1055
1056EXPORT_SYMBOL(complete_and_exit);
1057
1058SYSCALL_DEFINE1(exit, int, error_code)
1059{
1060	do_exit((error_code&0xff)<<8);
1061}
1062
1063/*
1064 * Take down every thread in the group.  This is called by fatal signals
1065 * as well as by sys_exit_group (below).
1066 */
1067NORET_TYPE void
1068do_group_exit(int exit_code)
1069{
1070	struct signal_struct *sig = current->signal;
1071
1072	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1073
1074	if (signal_group_exit(sig))
1075		exit_code = sig->group_exit_code;
1076	else if (!thread_group_empty(current)) {
1077		struct sighand_struct *const sighand = current->sighand;
1078		spin_lock_irq(&sighand->siglock);
1079		if (signal_group_exit(sig))
1080			/* Another thread got here before we took the lock.  */
1081			exit_code = sig->group_exit_code;
1082		else {
1083			sig->group_exit_code = exit_code;
1084			sig->flags = SIGNAL_GROUP_EXIT;
1085			zap_other_threads(current);
1086		}
1087		spin_unlock_irq(&sighand->siglock);
1088	}
1089
1090	do_exit(exit_code);
1091	/* NOTREACHED */
1092}
1093
1094/*
1095 * this kills every thread in the thread group. Note that any externally
1096 * wait4()-ing process will get the correct exit code - even if this
1097 * thread is not the thread group leader.
1098 */
1099SYSCALL_DEFINE1(exit_group, int, error_code)
1100{
1101	do_group_exit((error_code & 0xff) << 8);
1102	/* NOTREACHED */
1103	return 0;
1104}
1105
1106struct wait_opts {
1107	enum pid_type		wo_type;
1108	int			wo_flags;
1109	struct pid		*wo_pid;
1110
1111	struct siginfo __user	*wo_info;
1112	int __user		*wo_stat;
1113	struct rusage __user	*wo_rusage;
1114
1115	wait_queue_t		child_wait;
1116	int			notask_error;
1117};
1118
1119static inline
1120struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1121{
1122	if (type != PIDTYPE_PID)
1123		task = task->group_leader;
1124	return task->pids[type].pid;
1125}
1126
1127static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1128{
1129	return	wo->wo_type == PIDTYPE_MAX ||
1130		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1131}
1132
1133static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1134{
1135	if (!eligible_pid(wo, p))
1136		return 0;
1137	/* Wait for all children (clone and not) if __WALL is set;
1138	 * otherwise, wait for clone children *only* if __WCLONE is
1139	 * set; otherwise, wait for non-clone children *only*.  (Note:
1140	 * A "clone" child here is one that reports to its parent
1141	 * using a signal other than SIGCHLD.) */
1142	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1143	    && !(wo->wo_flags & __WALL))
1144		return 0;
1145
1146	return 1;
1147}
1148
1149static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1150				pid_t pid, uid_t uid, int why, int status)
1151{
1152	struct siginfo __user *infop;
1153	int retval = wo->wo_rusage
1154		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1155
1156	put_task_struct(p);
1157	infop = wo->wo_info;
1158	if (infop) {
1159		if (!retval)
1160			retval = put_user(SIGCHLD, &infop->si_signo);
1161		if (!retval)
1162			retval = put_user(0, &infop->si_errno);
1163		if (!retval)
1164			retval = put_user((short)why, &infop->si_code);
1165		if (!retval)
1166			retval = put_user(pid, &infop->si_pid);
1167		if (!retval)
1168			retval = put_user(uid, &infop->si_uid);
1169		if (!retval)
1170			retval = put_user(status, &infop->si_status);
1171	}
1172	if (!retval)
1173		retval = pid;
1174	return retval;
1175}
1176
1177/*
1178 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1179 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1180 * the lock and this task is uninteresting.  If we return nonzero, we have
1181 * released the lock and the system call should return.
1182 */
1183static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1184{
1185	unsigned long state;
1186	int retval, status, traced;
1187	pid_t pid = task_pid_vnr(p);
1188	uid_t uid = __task_cred(p)->uid;
1189	struct siginfo __user *infop;
1190
1191	if (!likely(wo->wo_flags & WEXITED))
1192		return 0;
1193
1194	if (unlikely(wo->wo_flags & WNOWAIT)) {
1195		int exit_code = p->exit_code;
1196		int why;
1197
1198		get_task_struct(p);
1199		read_unlock(&tasklist_lock);
1200		if ((exit_code & 0x7f) == 0) {
1201			why = CLD_EXITED;
1202			status = exit_code >> 8;
1203		} else {
1204			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1205			status = exit_code & 0x7f;
1206		}
1207		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1208	}
1209
1210	/*
1211	 * Try to move the task's state to DEAD
1212	 * only one thread is allowed to do this:
1213	 */
1214	state = xchg(&p->exit_state, EXIT_DEAD);
1215	if (state != EXIT_ZOMBIE) {
1216		BUG_ON(state != EXIT_DEAD);
1217		return 0;
1218	}
1219
1220	traced = ptrace_reparented(p);
1221	/*
1222	 * It can be ptraced but not reparented, check
1223	 * !task_detached() to filter out sub-threads.
1224	 */
1225	if (likely(!traced) && likely(!task_detached(p))) {
1226		struct signal_struct *psig;
1227		struct signal_struct *sig;
1228		unsigned long maxrss;
1229		cputime_t tgutime, tgstime;
1230
1231		/*
1232		 * The resource counters for the group leader are in its
1233		 * own task_struct.  Those for dead threads in the group
1234		 * are in its signal_struct, as are those for the child
1235		 * processes it has previously reaped.  All these
1236		 * accumulate in the parent's signal_struct c* fields.
1237		 *
1238		 * We don't bother to take a lock here to protect these
1239		 * p->signal fields, because they are only touched by
1240		 * __exit_signal, which runs with tasklist_lock
1241		 * write-locked anyway, and so is excluded here.  We do
1242		 * need to protect the access to parent->signal fields,
1243		 * as other threads in the parent group can be right
1244		 * here reaping other children at the same time.
1245		 *
1246		 * We use thread_group_times() to get times for the thread
1247		 * group, which consolidates times for all threads in the
1248		 * group including the group leader.
1249		 */
1250		thread_group_times(p, &tgutime, &tgstime);
1251		spin_lock_irq(&p->real_parent->sighand->siglock);
1252		psig = p->real_parent->signal;
1253		sig = p->signal;
1254		psig->cutime =
1255			cputime_add(psig->cutime,
1256			cputime_add(tgutime,
1257				    sig->cutime));
1258		psig->cstime =
1259			cputime_add(psig->cstime,
1260			cputime_add(tgstime,
1261				    sig->cstime));
1262		psig->cgtime =
1263			cputime_add(psig->cgtime,
1264			cputime_add(p->gtime,
1265			cputime_add(sig->gtime,
1266				    sig->cgtime)));
1267		psig->cmin_flt +=
1268			p->min_flt + sig->min_flt + sig->cmin_flt;
1269		psig->cmaj_flt +=
1270			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1271		psig->cnvcsw +=
1272			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1273		psig->cnivcsw +=
1274			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1275		psig->cinblock +=
1276			task_io_get_inblock(p) +
1277			sig->inblock + sig->cinblock;
1278		psig->coublock +=
1279			task_io_get_oublock(p) +
1280			sig->oublock + sig->coublock;
1281		maxrss = max(sig->maxrss, sig->cmaxrss);
1282		if (psig->cmaxrss < maxrss)
1283			psig->cmaxrss = maxrss;
1284		task_io_accounting_add(&psig->ioac, &p->ioac);
1285		task_io_accounting_add(&psig->ioac, &sig->ioac);
1286		spin_unlock_irq(&p->real_parent->sighand->siglock);
1287	}
1288
1289	/*
1290	 * Now we are sure this task is interesting, and no other
1291	 * thread can reap it because we set its state to EXIT_DEAD.
1292	 */
1293	read_unlock(&tasklist_lock);
1294
1295	retval = wo->wo_rusage
1296		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1297	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1298		? p->signal->group_exit_code : p->exit_code;
1299	if (!retval && wo->wo_stat)
1300		retval = put_user(status, wo->wo_stat);
1301
1302	infop = wo->wo_info;
1303	if (!retval && infop)
1304		retval = put_user(SIGCHLD, &infop->si_signo);
1305	if (!retval && infop)
1306		retval = put_user(0, &infop->si_errno);
1307	if (!retval && infop) {
1308		int why;
1309
1310		if ((status & 0x7f) == 0) {
1311			why = CLD_EXITED;
1312			status >>= 8;
1313		} else {
1314			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1315			status &= 0x7f;
1316		}
1317		retval = put_user((short)why, &infop->si_code);
1318		if (!retval)
1319			retval = put_user(status, &infop->si_status);
1320	}
1321	if (!retval && infop)
1322		retval = put_user(pid, &infop->si_pid);
1323	if (!retval && infop)
1324		retval = put_user(uid, &infop->si_uid);
1325	if (!retval)
1326		retval = pid;
1327
1328	if (traced) {
1329		write_lock_irq(&tasklist_lock);
1330		/* We dropped tasklist, ptracer could die and untrace */
1331		ptrace_unlink(p);
1332		/*
1333		 * If this is not a detached task, notify the parent.
1334		 * If it's still not detached after that, don't release
1335		 * it now.
1336		 */
1337		if (!task_detached(p)) {
1338			do_notify_parent(p, p->exit_signal);
1339			if (!task_detached(p)) {
1340				p->exit_state = EXIT_ZOMBIE;
1341				p = NULL;
1342			}
1343		}
1344		write_unlock_irq(&tasklist_lock);
1345	}
1346	if (p != NULL)
1347		release_task(p);
1348
1349	return retval;
1350}
1351
1352static int *task_stopped_code(struct task_struct *p, bool ptrace)
1353{
1354	if (ptrace) {
1355		if (task_is_stopped_or_traced(p))
1356			return &p->exit_code;
1357	} else {
1358		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1359			return &p->signal->group_exit_code;
1360	}
1361	return NULL;
1362}
1363
1364/*
1365 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1366 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1367 * the lock and this task is uninteresting.  If we return nonzero, we have
1368 * released the lock and the system call should return.
1369 */
1370static int wait_task_stopped(struct wait_opts *wo,
1371				int ptrace, struct task_struct *p)
1372{
1373	struct siginfo __user *infop;
1374	int retval, exit_code, *p_code, why;
1375	uid_t uid = 0; /* unneeded, required by compiler */
1376	pid_t pid;
1377
1378	/*
1379	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1380	 */
1381	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1382		return 0;
1383
1384	exit_code = 0;
1385	spin_lock_irq(&p->sighand->siglock);
1386
1387	p_code = task_stopped_code(p, ptrace);
1388	if (unlikely(!p_code))
1389		goto unlock_sig;
1390
1391	exit_code = *p_code;
1392	if (!exit_code)
1393		goto unlock_sig;
1394
1395	if (!unlikely(wo->wo_flags & WNOWAIT))
1396		*p_code = 0;
1397
1398	uid = task_uid(p);
1399unlock_sig:
1400	spin_unlock_irq(&p->sighand->siglock);
1401	if (!exit_code)
1402		return 0;
1403
1404	/*
1405	 * Now we are pretty sure this task is interesting.
1406	 * Make sure it doesn't get reaped out from under us while we
1407	 * give up the lock and then examine it below.  We don't want to
1408	 * keep holding onto the tasklist_lock while we call getrusage and
1409	 * possibly take page faults for user memory.
1410	 */
1411	get_task_struct(p);
1412	pid = task_pid_vnr(p);
1413	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1414	read_unlock(&tasklist_lock);
1415
1416	if (unlikely(wo->wo_flags & WNOWAIT))
1417		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1418
1419	retval = wo->wo_rusage
1420		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1421	if (!retval && wo->wo_stat)
1422		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1423
1424	infop = wo->wo_info;
1425	if (!retval && infop)
1426		retval = put_user(SIGCHLD, &infop->si_signo);
1427	if (!retval && infop)
1428		retval = put_user(0, &infop->si_errno);
1429	if (!retval && infop)
1430		retval = put_user((short)why, &infop->si_code);
1431	if (!retval && infop)
1432		retval = put_user(exit_code, &infop->si_status);
1433	if (!retval && infop)
1434		retval = put_user(pid, &infop->si_pid);
1435	if (!retval && infop)
1436		retval = put_user(uid, &infop->si_uid);
1437	if (!retval)
1438		retval = pid;
1439	put_task_struct(p);
1440
1441	BUG_ON(!retval);
1442	return retval;
1443}
1444
1445/*
1446 * Handle do_wait work for one task in a live, non-stopped state.
1447 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1448 * the lock and this task is uninteresting.  If we return nonzero, we have
1449 * released the lock and the system call should return.
1450 */
1451static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1452{
1453	int retval;
1454	pid_t pid;
1455	uid_t uid;
1456
1457	if (!unlikely(wo->wo_flags & WCONTINUED))
1458		return 0;
1459
1460	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1461		return 0;
1462
1463	spin_lock_irq(&p->sighand->siglock);
1464	/* Re-check with the lock held.  */
1465	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1466		spin_unlock_irq(&p->sighand->siglock);
1467		return 0;
1468	}
1469	if (!unlikely(wo->wo_flags & WNOWAIT))
1470		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1471	uid = task_uid(p);
1472	spin_unlock_irq(&p->sighand->siglock);
1473
1474	pid = task_pid_vnr(p);
1475	get_task_struct(p);
1476	read_unlock(&tasklist_lock);
1477
1478	if (!wo->wo_info) {
1479		retval = wo->wo_rusage
1480			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1481		put_task_struct(p);
1482		if (!retval && wo->wo_stat)
1483			retval = put_user(0xffff, wo->wo_stat);
1484		if (!retval)
1485			retval = pid;
1486	} else {
1487		retval = wait_noreap_copyout(wo, p, pid, uid,
1488					     CLD_CONTINUED, SIGCONT);
1489		BUG_ON(retval == 0);
1490	}
1491
1492	return retval;
1493}
1494
1495/*
1496 * Consider @p for a wait by @parent.
1497 *
1498 * -ECHILD should be in ->notask_error before the first call.
1499 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1500 * Returns zero if the search for a child should continue;
1501 * then ->notask_error is 0 if @p is an eligible child,
1502 * or another error from security_task_wait(), or still -ECHILD.
1503 */
1504static int wait_consider_task(struct wait_opts *wo, int ptrace,
1505				struct task_struct *p)
1506{
1507	int ret = eligible_child(wo, p);
1508	if (!ret)
1509		return ret;
1510
1511	ret = security_task_wait(p);
1512	if (unlikely(ret < 0)) {
1513		/*
1514		 * If we have not yet seen any eligible child,
1515		 * then let this error code replace -ECHILD.
1516		 * A permission error will give the user a clue
1517		 * to look for security policy problems, rather
1518		 * than for mysterious wait bugs.
1519		 */
1520		if (wo->notask_error)
1521			wo->notask_error = ret;
1522		return 0;
1523	}
1524
1525	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1526		/*
1527		 * This child is hidden by ptrace.
1528		 * We aren't allowed to see it now, but eventually we will.
1529		 */
1530		wo->notask_error = 0;
1531		return 0;
1532	}
1533
1534	if (p->exit_state == EXIT_DEAD)
1535		return 0;
1536
1537	/*
1538	 * We don't reap group leaders with subthreads.
1539	 */
1540	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1541		return wait_task_zombie(wo, p);
1542
1543	/*
1544	 * It's stopped or running now, so it might
1545	 * later continue, exit, or stop again.
1546	 */
1547	wo->notask_error = 0;
1548
1549	if (task_stopped_code(p, ptrace))
1550		return wait_task_stopped(wo, ptrace, p);
1551
1552	return wait_task_continued(wo, p);
1553}
1554
1555/*
1556 * Do the work of do_wait() for one thread in the group, @tsk.
1557 *
1558 * -ECHILD should be in ->notask_error before the first call.
1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1560 * Returns zero if the search for a child should continue; then
1561 * ->notask_error is 0 if there were any eligible children,
1562 * or another error from security_task_wait(), or still -ECHILD.
1563 */
1564static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1565{
1566	struct task_struct *p;
1567
1568	list_for_each_entry(p, &tsk->children, sibling) {
1569		int ret = wait_consider_task(wo, 0, p);
1570		if (ret)
1571			return ret;
1572	}
1573
1574	return 0;
1575}
1576
1577static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1578{
1579	struct task_struct *p;
1580
1581	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1582		int ret = wait_consider_task(wo, 1, p);
1583		if (ret)
1584			return ret;
1585	}
1586
1587	return 0;
1588}
1589
1590static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1591				int sync, void *key)
1592{
1593	struct wait_opts *wo = container_of(wait, struct wait_opts,
1594						child_wait);
1595	struct task_struct *p = key;
1596
1597	if (!eligible_pid(wo, p))
1598		return 0;
1599
1600	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1601		return 0;
1602
1603	return default_wake_function(wait, mode, sync, key);
1604}
1605
1606void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1607{
1608	__wake_up_sync_key(&parent->signal->wait_chldexit,
1609				TASK_INTERRUPTIBLE, 1, p);
1610}
1611
1612static long do_wait(struct wait_opts *wo)
1613{
1614	struct task_struct *tsk;
1615	int retval;
1616
1617	trace_sched_process_wait(wo->wo_pid);
1618
1619	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1620	wo->child_wait.private = current;
1621	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1622repeat:
1623	/*
1624	 * If there is nothing that can match our critiera just get out.
1625	 * We will clear ->notask_error to zero if we see any child that
1626	 * might later match our criteria, even if we are not able to reap
1627	 * it yet.
1628	 */
1629	wo->notask_error = -ECHILD;
1630	if ((wo->wo_type < PIDTYPE_MAX) &&
1631	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1632		goto notask;
1633
1634	set_current_state(TASK_INTERRUPTIBLE);
1635	read_lock(&tasklist_lock);
1636	tsk = current;
1637	do {
1638		retval = do_wait_thread(wo, tsk);
1639		if (retval)
1640			goto end;
1641
1642		retval = ptrace_do_wait(wo, tsk);
1643		if (retval)
1644			goto end;
1645
1646		if (wo->wo_flags & __WNOTHREAD)
1647			break;
1648	} while_each_thread(current, tsk);
1649	read_unlock(&tasklist_lock);
1650
1651notask:
1652	retval = wo->notask_error;
1653	if (!retval && !(wo->wo_flags & WNOHANG)) {
1654		retval = -ERESTARTSYS;
1655		if (!signal_pending(current)) {
1656			schedule();
1657			goto repeat;
1658		}
1659	}
1660end:
1661	__set_current_state(TASK_RUNNING);
1662	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1663	return retval;
1664}
1665
1666SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1667		infop, int, options, struct rusage __user *, ru)
1668{
1669	struct wait_opts wo;
1670	struct pid *pid = NULL;
1671	enum pid_type type;
1672	long ret;
1673
1674	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1675		return -EINVAL;
1676	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1677		return -EINVAL;
1678
1679	switch (which) {
1680	case P_ALL:
1681		type = PIDTYPE_MAX;
1682		break;
1683	case P_PID:
1684		type = PIDTYPE_PID;
1685		if (upid <= 0)
1686			return -EINVAL;
1687		break;
1688	case P_PGID:
1689		type = PIDTYPE_PGID;
1690		if (upid <= 0)
1691			return -EINVAL;
1692		break;
1693	default:
1694		return -EINVAL;
1695	}
1696
1697	if (type < PIDTYPE_MAX)
1698		pid = find_get_pid(upid);
1699
1700	wo.wo_type	= type;
1701	wo.wo_pid	= pid;
1702	wo.wo_flags	= options;
1703	wo.wo_info	= infop;
1704	wo.wo_stat	= NULL;
1705	wo.wo_rusage	= ru;
1706	ret = do_wait(&wo);
1707
1708	if (ret > 0) {
1709		ret = 0;
1710	} else if (infop) {
1711		/*
1712		 * For a WNOHANG return, clear out all the fields
1713		 * we would set so the user can easily tell the
1714		 * difference.
1715		 */
1716		if (!ret)
1717			ret = put_user(0, &infop->si_signo);
1718		if (!ret)
1719			ret = put_user(0, &infop->si_errno);
1720		if (!ret)
1721			ret = put_user(0, &infop->si_code);
1722		if (!ret)
1723			ret = put_user(0, &infop->si_pid);
1724		if (!ret)
1725			ret = put_user(0, &infop->si_uid);
1726		if (!ret)
1727			ret = put_user(0, &infop->si_status);
1728	}
1729
1730	put_pid(pid);
1731
1732	/* avoid REGPARM breakage on x86: */
1733	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1734	return ret;
1735}
1736
1737SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1738		int, options, struct rusage __user *, ru)
1739{
1740	struct wait_opts wo;
1741	struct pid *pid = NULL;
1742	enum pid_type type;
1743	long ret;
1744
1745	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1746			__WNOTHREAD|__WCLONE|__WALL))
1747		return -EINVAL;
1748
1749	if (upid == -1)
1750		type = PIDTYPE_MAX;
1751	else if (upid < 0) {
1752		type = PIDTYPE_PGID;
1753		pid = find_get_pid(-upid);
1754	} else if (upid == 0) {
1755		type = PIDTYPE_PGID;
1756		pid = get_task_pid(current, PIDTYPE_PGID);
1757	} else /* upid > 0 */ {
1758		type = PIDTYPE_PID;
1759		pid = find_get_pid(upid);
1760	}
1761
1762	wo.wo_type	= type;
1763	wo.wo_pid	= pid;
1764	wo.wo_flags	= options | WEXITED;
1765	wo.wo_info	= NULL;
1766	wo.wo_stat	= stat_addr;
1767	wo.wo_rusage	= ru;
1768	ret = do_wait(&wo);
1769	put_pid(pid);
1770
1771	/* avoid REGPARM breakage on x86: */
1772	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1773	return ret;
1774}
1775
1776#ifdef __ARCH_WANT_SYS_WAITPID
1777
1778/*
1779 * sys_waitpid() remains for compatibility. waitpid() should be
1780 * implemented by calling sys_wait4() from libc.a.
1781 */
1782SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1783{
1784	return sys_wait4(pid, stat_addr, options, NULL);
1785}
1786
1787#endif
1788