1/*
2 *  Generic process-grouping system.
3 *
4 *  Based originally on the cpuset system, extracted by Paul Menage
5 *  Copyright (C) 2006 Google, Inc
6 *
7 *  Notifications support
8 *  Copyright (C) 2009 Nokia Corporation
9 *  Author: Kirill A. Shutemov
10 *
11 *  Copyright notices from the original cpuset code:
12 *  --------------------------------------------------
13 *  Copyright (C) 2003 BULL SA.
14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 *  Portions derived from Patrick Mochel's sysfs code.
17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 *  2003-10-10 Written by Simon Derr.
20 *  2003-10-22 Updates by Stephen Hemminger.
21 *  2004 May-July Rework by Paul Jackson.
22 *  ---------------------------------------------------
23 *
24 *  This file is subject to the terms and conditions of the GNU General Public
25 *  License.  See the file COPYING in the main directory of the Linux
26 *  distribution for more details.
27 */
28
29#include <linux/cgroup.h>
30#include <linux/ctype.h>
31#include <linux/errno.h>
32#include <linux/fs.h>
33#include <linux/kernel.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/mutex.h>
37#include <linux/mount.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/rcupdate.h>
41#include <linux/sched.h>
42#include <linux/backing-dev.h>
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
48#include <linux/sort.h>
49#include <linux/kmod.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
53#include <linux/hash.h>
54#include <linux/namei.h>
55#include <linux/smp_lock.h>
56#include <linux/pid_namespace.h>
57#include <linux/idr.h>
58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59#include <linux/eventfd.h>
60#include <linux/poll.h>
61
62#include <asm/atomic.h>
63
64static DEFINE_MUTEX(cgroup_mutex);
65
66/*
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
70 * cgroup_mutex.
71 */
72#define SUBSYS(_x) &_x ## _subsys,
73static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
74#include <linux/cgroup_subsys.h>
75};
76
77#define MAX_CGROUP_ROOT_NAMELEN 64
78
79/*
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
82 * hierarchy
83 */
84struct cgroupfs_root {
85	struct super_block *sb;
86
87	/*
88	 * The bitmask of subsystems intended to be attached to this
89	 * hierarchy
90	 */
91	unsigned long subsys_bits;
92
93	/* Unique id for this hierarchy. */
94	int hierarchy_id;
95
96	/* The bitmask of subsystems currently attached to this hierarchy */
97	unsigned long actual_subsys_bits;
98
99	/* A list running through the attached subsystems */
100	struct list_head subsys_list;
101
102	/* The root cgroup for this hierarchy */
103	struct cgroup top_cgroup;
104
105	/* Tracks how many cgroups are currently defined in hierarchy.*/
106	int number_of_cgroups;
107
108	/* A list running through the active hierarchies */
109	struct list_head root_list;
110
111	/* Hierarchy-specific flags */
112	unsigned long flags;
113
114	/* The path to use for release notifications. */
115	char release_agent_path[PATH_MAX];
116
117	/* The name for this hierarchy - may be empty */
118	char name[MAX_CGROUP_ROOT_NAMELEN];
119};
120
121/*
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
125 */
126static struct cgroupfs_root rootnode;
127
128/*
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
131 */
132#define CSS_ID_MAX	(65535)
133struct css_id {
134	/*
135	 * The css to which this ID points. This pointer is set to valid value
136	 * after cgroup is populated. If cgroup is removed, this will be NULL.
137	 * This pointer is expected to be RCU-safe because destroy()
138	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139	 * css_tryget() should be used for avoiding race.
140	 */
141	struct cgroup_subsys_state *css;
142	/*
143	 * ID of this css.
144	 */
145	unsigned short id;
146	/*
147	 * Depth in hierarchy which this ID belongs to.
148	 */
149	unsigned short depth;
150	/*
151	 * ID is freed by RCU. (and lookup routine is RCU safe.)
152	 */
153	struct rcu_head rcu_head;
154	/*
155	 * Hierarchy of CSS ID belongs to.
156	 */
157	unsigned short stack[0]; /* Array of Length (depth+1) */
158};
159
160/*
161 * cgroup_event represents events which userspace want to recieve.
162 */
163struct cgroup_event {
164	/*
165	 * Cgroup which the event belongs to.
166	 */
167	struct cgroup *cgrp;
168	/*
169	 * Control file which the event associated.
170	 */
171	struct cftype *cft;
172	/*
173	 * eventfd to signal userspace about the event.
174	 */
175	struct eventfd_ctx *eventfd;
176	/*
177	 * Each of these stored in a list by the cgroup.
178	 */
179	struct list_head list;
180	/*
181	 * All fields below needed to unregister event when
182	 * userspace closes eventfd.
183	 */
184	poll_table pt;
185	wait_queue_head_t *wqh;
186	wait_queue_t wait;
187	struct work_struct remove;
188};
189
190/* The list of hierarchy roots */
191
192static LIST_HEAD(roots);
193static int root_count;
194
195static DEFINE_IDA(hierarchy_ida);
196static int next_hierarchy_id;
197static DEFINE_SPINLOCK(hierarchy_id_lock);
198
199/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200#define dummytop (&rootnode.top_cgroup)
201
202/* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
205 * be called.
206 */
207static int need_forkexit_callback __read_mostly;
208
209#ifdef CONFIG_PROVE_LOCKING
210int cgroup_lock_is_held(void)
211{
212	return lockdep_is_held(&cgroup_mutex);
213}
214#else /* #ifdef CONFIG_PROVE_LOCKING */
215int cgroup_lock_is_held(void)
216{
217	return mutex_is_locked(&cgroup_mutex);
218}
219#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220
221EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
222
223/* convenient tests for these bits */
224inline int cgroup_is_removed(const struct cgroup *cgrp)
225{
226	return test_bit(CGRP_REMOVED, &cgrp->flags);
227}
228
229/* bits in struct cgroupfs_root flags field */
230enum {
231	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
232};
233
234static int cgroup_is_releasable(const struct cgroup *cgrp)
235{
236	const int bits =
237		(1 << CGRP_RELEASABLE) |
238		(1 << CGRP_NOTIFY_ON_RELEASE);
239	return (cgrp->flags & bits) == bits;
240}
241
242static int notify_on_release(const struct cgroup *cgrp)
243{
244	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
245}
246
247/*
248 * for_each_subsys() allows you to iterate on each subsystem attached to
249 * an active hierarchy
250 */
251#define for_each_subsys(_root, _ss) \
252list_for_each_entry(_ss, &_root->subsys_list, sibling)
253
254/* for_each_active_root() allows you to iterate across the active hierarchies */
255#define for_each_active_root(_root) \
256list_for_each_entry(_root, &roots, root_list)
257
258/* the list of cgroups eligible for automatic release. Protected by
259 * release_list_lock */
260static LIST_HEAD(release_list);
261static DEFINE_SPINLOCK(release_list_lock);
262static void cgroup_release_agent(struct work_struct *work);
263static DECLARE_WORK(release_agent_work, cgroup_release_agent);
264static void check_for_release(struct cgroup *cgrp);
265
266/* Link structure for associating css_set objects with cgroups */
267struct cg_cgroup_link {
268	/*
269	 * List running through cg_cgroup_links associated with a
270	 * cgroup, anchored on cgroup->css_sets
271	 */
272	struct list_head cgrp_link_list;
273	struct cgroup *cgrp;
274	/*
275	 * List running through cg_cgroup_links pointing at a
276	 * single css_set object, anchored on css_set->cg_links
277	 */
278	struct list_head cg_link_list;
279	struct css_set *cg;
280};
281
282/* The default css_set - used by init and its children prior to any
283 * hierarchies being mounted. It contains a pointer to the root state
284 * for each subsystem. Also used to anchor the list of css_sets. Not
285 * reference-counted, to improve performance when child cgroups
286 * haven't been created.
287 */
288
289static struct css_set init_css_set;
290static struct cg_cgroup_link init_css_set_link;
291
292static int cgroup_init_idr(struct cgroup_subsys *ss,
293			   struct cgroup_subsys_state *css);
294
295/* css_set_lock protects the list of css_set objects, and the
296 * chain of tasks off each css_set.  Nests outside task->alloc_lock
297 * due to cgroup_iter_start() */
298static DEFINE_RWLOCK(css_set_lock);
299static int css_set_count;
300
301/*
302 * hash table for cgroup groups. This improves the performance to find
303 * an existing css_set. This hash doesn't (currently) take into
304 * account cgroups in empty hierarchies.
305 */
306#define CSS_SET_HASH_BITS	7
307#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
308static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
309
310static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
311{
312	int i;
313	int index;
314	unsigned long tmp = 0UL;
315
316	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
317		tmp += (unsigned long)css[i];
318	tmp = (tmp >> 16) ^ tmp;
319
320	index = hash_long(tmp, CSS_SET_HASH_BITS);
321
322	return &css_set_table[index];
323}
324
325static void free_css_set_rcu(struct rcu_head *obj)
326{
327	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
328	kfree(cg);
329}
330
331/* We don't maintain the lists running through each css_set to its
332 * task until after the first call to cgroup_iter_start(). This
333 * reduces the fork()/exit() overhead for people who have cgroups
334 * compiled into their kernel but not actually in use */
335static int use_task_css_set_links __read_mostly;
336
337static void __put_css_set(struct css_set *cg, int taskexit)
338{
339	struct cg_cgroup_link *link;
340	struct cg_cgroup_link *saved_link;
341	/*
342	 * Ensure that the refcount doesn't hit zero while any readers
343	 * can see it. Similar to atomic_dec_and_lock(), but for an
344	 * rwlock
345	 */
346	if (atomic_add_unless(&cg->refcount, -1, 1))
347		return;
348	write_lock(&css_set_lock);
349	if (!atomic_dec_and_test(&cg->refcount)) {
350		write_unlock(&css_set_lock);
351		return;
352	}
353
354	/* This css_set is dead. unlink it and release cgroup refcounts */
355	hlist_del(&cg->hlist);
356	css_set_count--;
357
358	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
359				 cg_link_list) {
360		struct cgroup *cgrp = link->cgrp;
361		list_del(&link->cg_link_list);
362		list_del(&link->cgrp_link_list);
363		if (atomic_dec_and_test(&cgrp->count) &&
364		    notify_on_release(cgrp)) {
365			if (taskexit)
366				set_bit(CGRP_RELEASABLE, &cgrp->flags);
367			check_for_release(cgrp);
368		}
369
370		kfree(link);
371	}
372
373	write_unlock(&css_set_lock);
374	call_rcu(&cg->rcu_head, free_css_set_rcu);
375}
376
377/*
378 * refcounted get/put for css_set objects
379 */
380static inline void get_css_set(struct css_set *cg)
381{
382	atomic_inc(&cg->refcount);
383}
384
385static inline void put_css_set(struct css_set *cg)
386{
387	__put_css_set(cg, 0);
388}
389
390static inline void put_css_set_taskexit(struct css_set *cg)
391{
392	__put_css_set(cg, 1);
393}
394
395/*
396 * compare_css_sets - helper function for find_existing_css_set().
397 * @cg: candidate css_set being tested
398 * @old_cg: existing css_set for a task
399 * @new_cgrp: cgroup that's being entered by the task
400 * @template: desired set of css pointers in css_set (pre-calculated)
401 *
402 * Returns true if "cg" matches "old_cg" except for the hierarchy
403 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
404 */
405static bool compare_css_sets(struct css_set *cg,
406			     struct css_set *old_cg,
407			     struct cgroup *new_cgrp,
408			     struct cgroup_subsys_state *template[])
409{
410	struct list_head *l1, *l2;
411
412	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
413		/* Not all subsystems matched */
414		return false;
415	}
416
417	/*
418	 * Compare cgroup pointers in order to distinguish between
419	 * different cgroups in heirarchies with no subsystems. We
420	 * could get by with just this check alone (and skip the
421	 * memcmp above) but on most setups the memcmp check will
422	 * avoid the need for this more expensive check on almost all
423	 * candidates.
424	 */
425
426	l1 = &cg->cg_links;
427	l2 = &old_cg->cg_links;
428	while (1) {
429		struct cg_cgroup_link *cgl1, *cgl2;
430		struct cgroup *cg1, *cg2;
431
432		l1 = l1->next;
433		l2 = l2->next;
434		/* See if we reached the end - both lists are equal length. */
435		if (l1 == &cg->cg_links) {
436			BUG_ON(l2 != &old_cg->cg_links);
437			break;
438		} else {
439			BUG_ON(l2 == &old_cg->cg_links);
440		}
441		/* Locate the cgroups associated with these links. */
442		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
443		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
444		cg1 = cgl1->cgrp;
445		cg2 = cgl2->cgrp;
446		/* Hierarchies should be linked in the same order. */
447		BUG_ON(cg1->root != cg2->root);
448
449		/*
450		 * If this hierarchy is the hierarchy of the cgroup
451		 * that's changing, then we need to check that this
452		 * css_set points to the new cgroup; if it's any other
453		 * hierarchy, then this css_set should point to the
454		 * same cgroup as the old css_set.
455		 */
456		if (cg1->root == new_cgrp->root) {
457			if (cg1 != new_cgrp)
458				return false;
459		} else {
460			if (cg1 != cg2)
461				return false;
462		}
463	}
464	return true;
465}
466
467/*
468 * find_existing_css_set() is a helper for
469 * find_css_set(), and checks to see whether an existing
470 * css_set is suitable.
471 *
472 * oldcg: the cgroup group that we're using before the cgroup
473 * transition
474 *
475 * cgrp: the cgroup that we're moving into
476 *
477 * template: location in which to build the desired set of subsystem
478 * state objects for the new cgroup group
479 */
480static struct css_set *find_existing_css_set(
481	struct css_set *oldcg,
482	struct cgroup *cgrp,
483	struct cgroup_subsys_state *template[])
484{
485	int i;
486	struct cgroupfs_root *root = cgrp->root;
487	struct hlist_head *hhead;
488	struct hlist_node *node;
489	struct css_set *cg;
490
491	/*
492	 * Build the set of subsystem state objects that we want to see in the
493	 * new css_set. while subsystems can change globally, the entries here
494	 * won't change, so no need for locking.
495	 */
496	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
497		if (root->subsys_bits & (1UL << i)) {
498			/* Subsystem is in this hierarchy. So we want
499			 * the subsystem state from the new
500			 * cgroup */
501			template[i] = cgrp->subsys[i];
502		} else {
503			/* Subsystem is not in this hierarchy, so we
504			 * don't want to change the subsystem state */
505			template[i] = oldcg->subsys[i];
506		}
507	}
508
509	hhead = css_set_hash(template);
510	hlist_for_each_entry(cg, node, hhead, hlist) {
511		if (!compare_css_sets(cg, oldcg, cgrp, template))
512			continue;
513
514		/* This css_set matches what we need */
515		return cg;
516	}
517
518	/* No existing cgroup group matched */
519	return NULL;
520}
521
522static void free_cg_links(struct list_head *tmp)
523{
524	struct cg_cgroup_link *link;
525	struct cg_cgroup_link *saved_link;
526
527	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
528		list_del(&link->cgrp_link_list);
529		kfree(link);
530	}
531}
532
533/*
534 * allocate_cg_links() allocates "count" cg_cgroup_link structures
535 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
536 * success or a negative error
537 */
538static int allocate_cg_links(int count, struct list_head *tmp)
539{
540	struct cg_cgroup_link *link;
541	int i;
542	INIT_LIST_HEAD(tmp);
543	for (i = 0; i < count; i++) {
544		link = kmalloc(sizeof(*link), GFP_KERNEL);
545		if (!link) {
546			free_cg_links(tmp);
547			return -ENOMEM;
548		}
549		list_add(&link->cgrp_link_list, tmp);
550	}
551	return 0;
552}
553
554/**
555 * link_css_set - a helper function to link a css_set to a cgroup
556 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
557 * @cg: the css_set to be linked
558 * @cgrp: the destination cgroup
559 */
560static void link_css_set(struct list_head *tmp_cg_links,
561			 struct css_set *cg, struct cgroup *cgrp)
562{
563	struct cg_cgroup_link *link;
564
565	BUG_ON(list_empty(tmp_cg_links));
566	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
567				cgrp_link_list);
568	link->cg = cg;
569	link->cgrp = cgrp;
570	atomic_inc(&cgrp->count);
571	list_move(&link->cgrp_link_list, &cgrp->css_sets);
572	/*
573	 * Always add links to the tail of the list so that the list
574	 * is sorted by order of hierarchy creation
575	 */
576	list_add_tail(&link->cg_link_list, &cg->cg_links);
577}
578
579/*
580 * find_css_set() takes an existing cgroup group and a
581 * cgroup object, and returns a css_set object that's
582 * equivalent to the old group, but with the given cgroup
583 * substituted into the appropriate hierarchy. Must be called with
584 * cgroup_mutex held
585 */
586static struct css_set *find_css_set(
587	struct css_set *oldcg, struct cgroup *cgrp)
588{
589	struct css_set *res;
590	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
591
592	struct list_head tmp_cg_links;
593
594	struct hlist_head *hhead;
595	struct cg_cgroup_link *link;
596
597	/* First see if we already have a cgroup group that matches
598	 * the desired set */
599	read_lock(&css_set_lock);
600	res = find_existing_css_set(oldcg, cgrp, template);
601	if (res)
602		get_css_set(res);
603	read_unlock(&css_set_lock);
604
605	if (res)
606		return res;
607
608	res = kmalloc(sizeof(*res), GFP_KERNEL);
609	if (!res)
610		return NULL;
611
612	/* Allocate all the cg_cgroup_link objects that we'll need */
613	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
614		kfree(res);
615		return NULL;
616	}
617
618	atomic_set(&res->refcount, 1);
619	INIT_LIST_HEAD(&res->cg_links);
620	INIT_LIST_HEAD(&res->tasks);
621	INIT_HLIST_NODE(&res->hlist);
622
623	/* Copy the set of subsystem state objects generated in
624	 * find_existing_css_set() */
625	memcpy(res->subsys, template, sizeof(res->subsys));
626
627	write_lock(&css_set_lock);
628	/* Add reference counts and links from the new css_set. */
629	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
630		struct cgroup *c = link->cgrp;
631		if (c->root == cgrp->root)
632			c = cgrp;
633		link_css_set(&tmp_cg_links, res, c);
634	}
635
636	BUG_ON(!list_empty(&tmp_cg_links));
637
638	css_set_count++;
639
640	/* Add this cgroup group to the hash table */
641	hhead = css_set_hash(res->subsys);
642	hlist_add_head(&res->hlist, hhead);
643
644	write_unlock(&css_set_lock);
645
646	return res;
647}
648
649/*
650 * Return the cgroup for "task" from the given hierarchy. Must be
651 * called with cgroup_mutex held.
652 */
653static struct cgroup *task_cgroup_from_root(struct task_struct *task,
654					    struct cgroupfs_root *root)
655{
656	struct css_set *css;
657	struct cgroup *res = NULL;
658
659	BUG_ON(!mutex_is_locked(&cgroup_mutex));
660	read_lock(&css_set_lock);
661	/*
662	 * No need to lock the task - since we hold cgroup_mutex the
663	 * task can't change groups, so the only thing that can happen
664	 * is that it exits and its css is set back to init_css_set.
665	 */
666	css = task->cgroups;
667	if (css == &init_css_set) {
668		res = &root->top_cgroup;
669	} else {
670		struct cg_cgroup_link *link;
671		list_for_each_entry(link, &css->cg_links, cg_link_list) {
672			struct cgroup *c = link->cgrp;
673			if (c->root == root) {
674				res = c;
675				break;
676			}
677		}
678	}
679	read_unlock(&css_set_lock);
680	BUG_ON(!res);
681	return res;
682}
683
684/*
685 * There is one global cgroup mutex. We also require taking
686 * task_lock() when dereferencing a task's cgroup subsys pointers.
687 * See "The task_lock() exception", at the end of this comment.
688 *
689 * A task must hold cgroup_mutex to modify cgroups.
690 *
691 * Any task can increment and decrement the count field without lock.
692 * So in general, code holding cgroup_mutex can't rely on the count
693 * field not changing.  However, if the count goes to zero, then only
694 * cgroup_attach_task() can increment it again.  Because a count of zero
695 * means that no tasks are currently attached, therefore there is no
696 * way a task attached to that cgroup can fork (the other way to
697 * increment the count).  So code holding cgroup_mutex can safely
698 * assume that if the count is zero, it will stay zero. Similarly, if
699 * a task holds cgroup_mutex on a cgroup with zero count, it
700 * knows that the cgroup won't be removed, as cgroup_rmdir()
701 * needs that mutex.
702 *
703 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
704 * (usually) take cgroup_mutex.  These are the two most performance
705 * critical pieces of code here.  The exception occurs on cgroup_exit(),
706 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
707 * is taken, and if the cgroup count is zero, a usermode call made
708 * to the release agent with the name of the cgroup (path relative to
709 * the root of cgroup file system) as the argument.
710 *
711 * A cgroup can only be deleted if both its 'count' of using tasks
712 * is zero, and its list of 'children' cgroups is empty.  Since all
713 * tasks in the system use _some_ cgroup, and since there is always at
714 * least one task in the system (init, pid == 1), therefore, top_cgroup
715 * always has either children cgroups and/or using tasks.  So we don't
716 * need a special hack to ensure that top_cgroup cannot be deleted.
717 *
718 *	The task_lock() exception
719 *
720 * The need for this exception arises from the action of
721 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
722 * another.  It does so using cgroup_mutex, however there are
723 * several performance critical places that need to reference
724 * task->cgroup without the expense of grabbing a system global
725 * mutex.  Therefore except as noted below, when dereferencing or, as
726 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
727 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
728 * the task_struct routinely used for such matters.
729 *
730 * P.S.  One more locking exception.  RCU is used to guard the
731 * update of a tasks cgroup pointer by cgroup_attach_task()
732 */
733
734/**
735 * cgroup_lock - lock out any changes to cgroup structures
736 *
737 */
738void cgroup_lock(void)
739{
740	mutex_lock(&cgroup_mutex);
741}
742EXPORT_SYMBOL_GPL(cgroup_lock);
743
744/**
745 * cgroup_unlock - release lock on cgroup changes
746 *
747 * Undo the lock taken in a previous cgroup_lock() call.
748 */
749void cgroup_unlock(void)
750{
751	mutex_unlock(&cgroup_mutex);
752}
753EXPORT_SYMBOL_GPL(cgroup_unlock);
754
755/*
756 * A couple of forward declarations required, due to cyclic reference loop:
757 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
758 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
759 * -> cgroup_mkdir.
760 */
761
762static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
763static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
764static int cgroup_populate_dir(struct cgroup *cgrp);
765static const struct inode_operations cgroup_dir_inode_operations;
766static const struct file_operations proc_cgroupstats_operations;
767
768static struct backing_dev_info cgroup_backing_dev_info = {
769	.name		= "cgroup",
770	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
771};
772
773static int alloc_css_id(struct cgroup_subsys *ss,
774			struct cgroup *parent, struct cgroup *child);
775
776static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
777{
778	struct inode *inode = new_inode(sb);
779
780	if (inode) {
781		inode->i_mode = mode;
782		inode->i_uid = current_fsuid();
783		inode->i_gid = current_fsgid();
784		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
785		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
786	}
787	return inode;
788}
789
790/*
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
793 */
794static int cgroup_call_pre_destroy(struct cgroup *cgrp)
795{
796	struct cgroup_subsys *ss;
797	int ret = 0;
798
799	for_each_subsys(cgrp->root, ss)
800		if (ss->pre_destroy) {
801			ret = ss->pre_destroy(ss, cgrp);
802			if (ret)
803				break;
804		}
805
806	return ret;
807}
808
809static void free_cgroup_rcu(struct rcu_head *obj)
810{
811	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
812
813	kfree(cgrp);
814}
815
816static void cgroup_diput(struct dentry *dentry, struct inode *inode)
817{
818	/* is dentry a directory ? if so, kfree() associated cgroup */
819	if (S_ISDIR(inode->i_mode)) {
820		struct cgroup *cgrp = dentry->d_fsdata;
821		struct cgroup_subsys *ss;
822		BUG_ON(!(cgroup_is_removed(cgrp)));
823		/* It's possible for external users to be holding css
824		 * reference counts on a cgroup; css_put() needs to
825		 * be able to access the cgroup after decrementing
826		 * the reference count in order to know if it needs to
827		 * queue the cgroup to be handled by the release
828		 * agent */
829		synchronize_rcu();
830
831		mutex_lock(&cgroup_mutex);
832		/*
833		 * Release the subsystem state objects.
834		 */
835		for_each_subsys(cgrp->root, ss)
836			ss->destroy(ss, cgrp);
837
838		cgrp->root->number_of_cgroups--;
839		mutex_unlock(&cgroup_mutex);
840
841		/*
842		 * Drop the active superblock reference that we took when we
843		 * created the cgroup
844		 */
845		deactivate_super(cgrp->root->sb);
846
847		/*
848		 * if we're getting rid of the cgroup, refcount should ensure
849		 * that there are no pidlists left.
850		 */
851		BUG_ON(!list_empty(&cgrp->pidlists));
852
853		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
854	}
855	iput(inode);
856}
857
858static void remove_dir(struct dentry *d)
859{
860	struct dentry *parent = dget(d->d_parent);
861
862	d_delete(d);
863	simple_rmdir(parent->d_inode, d);
864	dput(parent);
865}
866
867static void cgroup_clear_directory(struct dentry *dentry)
868{
869	struct list_head *node;
870
871	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
872	spin_lock(&dcache_lock);
873	node = dentry->d_subdirs.next;
874	while (node != &dentry->d_subdirs) {
875		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
876		list_del_init(node);
877		if (d->d_inode) {
878			/* This should never be called on a cgroup
879			 * directory with child cgroups */
880			BUG_ON(d->d_inode->i_mode & S_IFDIR);
881			d = dget_locked(d);
882			spin_unlock(&dcache_lock);
883			d_delete(d);
884			simple_unlink(dentry->d_inode, d);
885			dput(d);
886			spin_lock(&dcache_lock);
887		}
888		node = dentry->d_subdirs.next;
889	}
890	spin_unlock(&dcache_lock);
891}
892
893/*
894 * NOTE : the dentry must have been dget()'ed
895 */
896static void cgroup_d_remove_dir(struct dentry *dentry)
897{
898	cgroup_clear_directory(dentry);
899
900	spin_lock(&dcache_lock);
901	list_del_init(&dentry->d_u.d_child);
902	spin_unlock(&dcache_lock);
903	remove_dir(dentry);
904}
905
906/*
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
910 * to zero, soon.
911 *
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
913 */
914DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
915
916static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
917{
918	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
919		wake_up_all(&cgroup_rmdir_waitq);
920}
921
922void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
923{
924	css_get(css);
925}
926
927void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
928{
929	cgroup_wakeup_rmdir_waiter(css->cgroup);
930	css_put(css);
931}
932
933/*
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
937 */
938static int rebind_subsystems(struct cgroupfs_root *root,
939			      unsigned long final_bits)
940{
941	unsigned long added_bits, removed_bits;
942	struct cgroup *cgrp = &root->top_cgroup;
943	int i;
944
945	BUG_ON(!mutex_is_locked(&cgroup_mutex));
946
947	removed_bits = root->actual_subsys_bits & ~final_bits;
948	added_bits = final_bits & ~root->actual_subsys_bits;
949	/* Check that any added subsystems are currently free */
950	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
951		unsigned long bit = 1UL << i;
952		struct cgroup_subsys *ss = subsys[i];
953		if (!(bit & added_bits))
954			continue;
955		/*
956		 * Nobody should tell us to do a subsys that doesn't exist:
957		 * parse_cgroupfs_options should catch that case and refcounts
958		 * ensure that subsystems won't disappear once selected.
959		 */
960		BUG_ON(ss == NULL);
961		if (ss->root != &rootnode) {
962			/* Subsystem isn't free */
963			return -EBUSY;
964		}
965	}
966
967	/* Currently we don't handle adding/removing subsystems when
968	 * any child cgroups exist. This is theoretically supportable
969	 * but involves complex error handling, so it's being left until
970	 * later */
971	if (root->number_of_cgroups > 1)
972		return -EBUSY;
973
974	/* Process each subsystem */
975	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
976		struct cgroup_subsys *ss = subsys[i];
977		unsigned long bit = 1UL << i;
978		if (bit & added_bits) {
979			/* We're binding this subsystem to this hierarchy */
980			BUG_ON(ss == NULL);
981			BUG_ON(cgrp->subsys[i]);
982			BUG_ON(!dummytop->subsys[i]);
983			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
984			mutex_lock(&ss->hierarchy_mutex);
985			cgrp->subsys[i] = dummytop->subsys[i];
986			cgrp->subsys[i]->cgroup = cgrp;
987			list_move(&ss->sibling, &root->subsys_list);
988			ss->root = root;
989			if (ss->bind)
990				ss->bind(ss, cgrp);
991			mutex_unlock(&ss->hierarchy_mutex);
992			/* refcount was already taken, and we're keeping it */
993		} else if (bit & removed_bits) {
994			/* We're removing this subsystem */
995			BUG_ON(ss == NULL);
996			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
997			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
998			mutex_lock(&ss->hierarchy_mutex);
999			if (ss->bind)
1000				ss->bind(ss, dummytop);
1001			dummytop->subsys[i]->cgroup = dummytop;
1002			cgrp->subsys[i] = NULL;
1003			subsys[i]->root = &rootnode;
1004			list_move(&ss->sibling, &rootnode.subsys_list);
1005			mutex_unlock(&ss->hierarchy_mutex);
1006			/* subsystem is now free - drop reference on module */
1007			module_put(ss->module);
1008		} else if (bit & final_bits) {
1009			/* Subsystem state should already exist */
1010			BUG_ON(ss == NULL);
1011			BUG_ON(!cgrp->subsys[i]);
1012			/*
1013			 * a refcount was taken, but we already had one, so
1014			 * drop the extra reference.
1015			 */
1016			module_put(ss->module);
1017#ifdef CONFIG_MODULE_UNLOAD
1018			BUG_ON(ss->module && !module_refcount(ss->module));
1019#endif
1020		} else {
1021			/* Subsystem state shouldn't exist */
1022			BUG_ON(cgrp->subsys[i]);
1023		}
1024	}
1025	root->subsys_bits = root->actual_subsys_bits = final_bits;
1026	synchronize_rcu();
1027
1028	return 0;
1029}
1030
1031static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1032{
1033	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1034	struct cgroup_subsys *ss;
1035
1036	mutex_lock(&cgroup_mutex);
1037	for_each_subsys(root, ss)
1038		seq_printf(seq, ",%s", ss->name);
1039	if (test_bit(ROOT_NOPREFIX, &root->flags))
1040		seq_puts(seq, ",noprefix");
1041	if (strlen(root->release_agent_path))
1042		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1043	if (strlen(root->name))
1044		seq_printf(seq, ",name=%s", root->name);
1045	mutex_unlock(&cgroup_mutex);
1046	return 0;
1047}
1048
1049struct cgroup_sb_opts {
1050	unsigned long subsys_bits;
1051	unsigned long flags;
1052	char *release_agent;
1053	char *name;
1054	/* User explicitly requested empty subsystem */
1055	bool none;
1056
1057	struct cgroupfs_root *new_root;
1058
1059};
1060
1061/*
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1066 */
1067static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1068{
1069	char *token, *o = data ?: "all";
1070	unsigned long mask = (unsigned long)-1;
1071	int i;
1072	bool module_pin_failed = false;
1073
1074	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1075
1076#ifdef CONFIG_CPUSETS
1077	mask = ~(1UL << cpuset_subsys_id);
1078#endif
1079
1080	memset(opts, 0, sizeof(*opts));
1081
1082	while ((token = strsep(&o, ",")) != NULL) {
1083		if (!*token)
1084			return -EINVAL;
1085		if (!strcmp(token, "all")) {
1086			/* Add all non-disabled subsystems */
1087			opts->subsys_bits = 0;
1088			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1089				struct cgroup_subsys *ss = subsys[i];
1090				if (ss == NULL)
1091					continue;
1092				if (!ss->disabled)
1093					opts->subsys_bits |= 1ul << i;
1094			}
1095		} else if (!strcmp(token, "none")) {
1096			/* Explicitly have no subsystems */
1097			opts->none = true;
1098		} else if (!strcmp(token, "noprefix")) {
1099			set_bit(ROOT_NOPREFIX, &opts->flags);
1100		} else if (!strncmp(token, "release_agent=", 14)) {
1101			/* Specifying two release agents is forbidden */
1102			if (opts->release_agent)
1103				return -EINVAL;
1104			opts->release_agent =
1105				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1106			if (!opts->release_agent)
1107				return -ENOMEM;
1108		} else if (!strncmp(token, "name=", 5)) {
1109			const char *name = token + 5;
1110			/* Can't specify an empty name */
1111			if (!strlen(name))
1112				return -EINVAL;
1113			/* Must match [\w.-]+ */
1114			for (i = 0; i < strlen(name); i++) {
1115				char c = name[i];
1116				if (isalnum(c))
1117					continue;
1118				if ((c == '.') || (c == '-') || (c == '_'))
1119					continue;
1120				return -EINVAL;
1121			}
1122			/* Specifying two names is forbidden */
1123			if (opts->name)
1124				return -EINVAL;
1125			opts->name = kstrndup(name,
1126					      MAX_CGROUP_ROOT_NAMELEN - 1,
1127					      GFP_KERNEL);
1128			if (!opts->name)
1129				return -ENOMEM;
1130		} else {
1131			struct cgroup_subsys *ss;
1132			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1133				ss = subsys[i];
1134				if (ss == NULL)
1135					continue;
1136				if (!strcmp(token, ss->name)) {
1137					if (!ss->disabled)
1138						set_bit(i, &opts->subsys_bits);
1139					break;
1140				}
1141			}
1142			if (i == CGROUP_SUBSYS_COUNT)
1143				return -ENOENT;
1144		}
1145	}
1146
1147	/* Consistency checks */
1148
1149	/*
1150	 * Option noprefix was introduced just for backward compatibility
1151	 * with the old cpuset, so we allow noprefix only if mounting just
1152	 * the cpuset subsystem.
1153	 */
1154	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1155	    (opts->subsys_bits & mask))
1156		return -EINVAL;
1157
1158
1159	/* Can't specify "none" and some subsystems */
1160	if (opts->subsys_bits && opts->none)
1161		return -EINVAL;
1162
1163	/*
1164	 * We either have to specify by name or by subsystems. (So all
1165	 * empty hierarchies must have a name).
1166	 */
1167	if (!opts->subsys_bits && !opts->name)
1168		return -EINVAL;
1169
1170	/*
1171	 * Grab references on all the modules we'll need, so the subsystems
1172	 * don't dance around before rebind_subsystems attaches them. This may
1173	 * take duplicate reference counts on a subsystem that's already used,
1174	 * but rebind_subsystems handles this case.
1175	 */
1176	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1177		unsigned long bit = 1UL << i;
1178
1179		if (!(bit & opts->subsys_bits))
1180			continue;
1181		if (!try_module_get(subsys[i]->module)) {
1182			module_pin_failed = true;
1183			break;
1184		}
1185	}
1186	if (module_pin_failed) {
1187		/*
1188		 * oops, one of the modules was going away. this means that we
1189		 * raced with a module_delete call, and to the user this is
1190		 * essentially a "subsystem doesn't exist" case.
1191		 */
1192		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1193			/* drop refcounts only on the ones we took */
1194			unsigned long bit = 1UL << i;
1195
1196			if (!(bit & opts->subsys_bits))
1197				continue;
1198			module_put(subsys[i]->module);
1199		}
1200		return -ENOENT;
1201	}
1202
1203	return 0;
1204}
1205
1206static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1207{
1208	int i;
1209	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1210		unsigned long bit = 1UL << i;
1211
1212		if (!(bit & subsys_bits))
1213			continue;
1214		module_put(subsys[i]->module);
1215	}
1216}
1217
1218static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1219{
1220	int ret = 0;
1221	struct cgroupfs_root *root = sb->s_fs_info;
1222	struct cgroup *cgrp = &root->top_cgroup;
1223	struct cgroup_sb_opts opts;
1224
1225	lock_kernel();
1226	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1227	mutex_lock(&cgroup_mutex);
1228
1229	/* See what subsystems are wanted */
1230	ret = parse_cgroupfs_options(data, &opts);
1231	if (ret)
1232		goto out_unlock;
1233
1234	/* Don't allow flags or name to change at remount */
1235	if (opts.flags != root->flags ||
1236	    (opts.name && strcmp(opts.name, root->name))) {
1237		ret = -EINVAL;
1238		drop_parsed_module_refcounts(opts.subsys_bits);
1239		goto out_unlock;
1240	}
1241
1242	ret = rebind_subsystems(root, opts.subsys_bits);
1243	if (ret) {
1244		drop_parsed_module_refcounts(opts.subsys_bits);
1245		goto out_unlock;
1246	}
1247
1248	/* (re)populate subsystem files */
1249	cgroup_populate_dir(cgrp);
1250
1251	if (opts.release_agent)
1252		strcpy(root->release_agent_path, opts.release_agent);
1253 out_unlock:
1254	kfree(opts.release_agent);
1255	kfree(opts.name);
1256	mutex_unlock(&cgroup_mutex);
1257	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1258	unlock_kernel();
1259	return ret;
1260}
1261
1262static const struct super_operations cgroup_ops = {
1263	.statfs = simple_statfs,
1264	.drop_inode = generic_delete_inode,
1265	.show_options = cgroup_show_options,
1266	.remount_fs = cgroup_remount,
1267};
1268
1269static void init_cgroup_housekeeping(struct cgroup *cgrp)
1270{
1271	INIT_LIST_HEAD(&cgrp->sibling);
1272	INIT_LIST_HEAD(&cgrp->children);
1273	INIT_LIST_HEAD(&cgrp->css_sets);
1274	INIT_LIST_HEAD(&cgrp->release_list);
1275	INIT_LIST_HEAD(&cgrp->pidlists);
1276	mutex_init(&cgrp->pidlist_mutex);
1277	INIT_LIST_HEAD(&cgrp->event_list);
1278	spin_lock_init(&cgrp->event_list_lock);
1279}
1280
1281static void init_cgroup_root(struct cgroupfs_root *root)
1282{
1283	struct cgroup *cgrp = &root->top_cgroup;
1284	INIT_LIST_HEAD(&root->subsys_list);
1285	INIT_LIST_HEAD(&root->root_list);
1286	root->number_of_cgroups = 1;
1287	cgrp->root = root;
1288	cgrp->top_cgroup = cgrp;
1289	init_cgroup_housekeeping(cgrp);
1290}
1291
1292static bool init_root_id(struct cgroupfs_root *root)
1293{
1294	int ret = 0;
1295
1296	do {
1297		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1298			return false;
1299		spin_lock(&hierarchy_id_lock);
1300		/* Try to allocate the next unused ID */
1301		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1302					&root->hierarchy_id);
1303		if (ret == -ENOSPC)
1304			/* Try again starting from 0 */
1305			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1306		if (!ret) {
1307			next_hierarchy_id = root->hierarchy_id + 1;
1308		} else if (ret != -EAGAIN) {
1309			/* Can only get here if the 31-bit IDR is full ... */
1310			BUG_ON(ret);
1311		}
1312		spin_unlock(&hierarchy_id_lock);
1313	} while (ret);
1314	return true;
1315}
1316
1317static int cgroup_test_super(struct super_block *sb, void *data)
1318{
1319	struct cgroup_sb_opts *opts = data;
1320	struct cgroupfs_root *root = sb->s_fs_info;
1321
1322	/* If we asked for a name then it must match */
1323	if (opts->name && strcmp(opts->name, root->name))
1324		return 0;
1325
1326	/*
1327	 * If we asked for subsystems (or explicitly for no
1328	 * subsystems) then they must match
1329	 */
1330	if ((opts->subsys_bits || opts->none)
1331	    && (opts->subsys_bits != root->subsys_bits))
1332		return 0;
1333
1334	return 1;
1335}
1336
1337static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1338{
1339	struct cgroupfs_root *root;
1340
1341	if (!opts->subsys_bits && !opts->none)
1342		return NULL;
1343
1344	root = kzalloc(sizeof(*root), GFP_KERNEL);
1345	if (!root)
1346		return ERR_PTR(-ENOMEM);
1347
1348	if (!init_root_id(root)) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
1351	}
1352	init_cgroup_root(root);
1353
1354	root->subsys_bits = opts->subsys_bits;
1355	root->flags = opts->flags;
1356	if (opts->release_agent)
1357		strcpy(root->release_agent_path, opts->release_agent);
1358	if (opts->name)
1359		strcpy(root->name, opts->name);
1360	return root;
1361}
1362
1363static void cgroup_drop_root(struct cgroupfs_root *root)
1364{
1365	if (!root)
1366		return;
1367
1368	BUG_ON(!root->hierarchy_id);
1369	spin_lock(&hierarchy_id_lock);
1370	ida_remove(&hierarchy_ida, root->hierarchy_id);
1371	spin_unlock(&hierarchy_id_lock);
1372	kfree(root);
1373}
1374
1375static int cgroup_set_super(struct super_block *sb, void *data)
1376{
1377	int ret;
1378	struct cgroup_sb_opts *opts = data;
1379
1380	/* If we don't have a new root, we can't set up a new sb */
1381	if (!opts->new_root)
1382		return -EINVAL;
1383
1384	BUG_ON(!opts->subsys_bits && !opts->none);
1385
1386	ret = set_anon_super(sb, NULL);
1387	if (ret)
1388		return ret;
1389
1390	sb->s_fs_info = opts->new_root;
1391	opts->new_root->sb = sb;
1392
1393	sb->s_blocksize = PAGE_CACHE_SIZE;
1394	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1395	sb->s_magic = CGROUP_SUPER_MAGIC;
1396	sb->s_op = &cgroup_ops;
1397
1398	return 0;
1399}
1400
1401static int cgroup_get_rootdir(struct super_block *sb)
1402{
1403	struct inode *inode =
1404		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1405	struct dentry *dentry;
1406
1407	if (!inode)
1408		return -ENOMEM;
1409
1410	inode->i_fop = &simple_dir_operations;
1411	inode->i_op = &cgroup_dir_inode_operations;
1412	/* directories start off with i_nlink == 2 (for "." entry) */
1413	inc_nlink(inode);
1414	dentry = d_alloc_root(inode);
1415	if (!dentry) {
1416		iput(inode);
1417		return -ENOMEM;
1418	}
1419	sb->s_root = dentry;
1420	return 0;
1421}
1422
1423static int cgroup_get_sb(struct file_system_type *fs_type,
1424			 int flags, const char *unused_dev_name,
1425			 void *data, struct vfsmount *mnt)
1426{
1427	struct cgroup_sb_opts opts;
1428	struct cgroupfs_root *root;
1429	int ret = 0;
1430	struct super_block *sb;
1431	struct cgroupfs_root *new_root;
1432
1433	/* First find the desired set of subsystems */
1434	mutex_lock(&cgroup_mutex);
1435	ret = parse_cgroupfs_options(data, &opts);
1436	mutex_unlock(&cgroup_mutex);
1437	if (ret)
1438		goto out_err;
1439
1440	/*
1441	 * Allocate a new cgroup root. We may not need it if we're
1442	 * reusing an existing hierarchy.
1443	 */
1444	new_root = cgroup_root_from_opts(&opts);
1445	if (IS_ERR(new_root)) {
1446		ret = PTR_ERR(new_root);
1447		goto drop_modules;
1448	}
1449	opts.new_root = new_root;
1450
1451	/* Locate an existing or new sb for this hierarchy */
1452	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1453	if (IS_ERR(sb)) {
1454		ret = PTR_ERR(sb);
1455		cgroup_drop_root(opts.new_root);
1456		goto drop_modules;
1457	}
1458
1459	root = sb->s_fs_info;
1460	BUG_ON(!root);
1461	if (root == opts.new_root) {
1462		/* We used the new root structure, so this is a new hierarchy */
1463		struct list_head tmp_cg_links;
1464		struct cgroup *root_cgrp = &root->top_cgroup;
1465		struct inode *inode;
1466		struct cgroupfs_root *existing_root;
1467		int i;
1468
1469		BUG_ON(sb->s_root != NULL);
1470
1471		ret = cgroup_get_rootdir(sb);
1472		if (ret)
1473			goto drop_new_super;
1474		inode = sb->s_root->d_inode;
1475
1476		mutex_lock(&inode->i_mutex);
1477		mutex_lock(&cgroup_mutex);
1478
1479		if (strlen(root->name)) {
1480			/* Check for name clashes with existing mounts */
1481			for_each_active_root(existing_root) {
1482				if (!strcmp(existing_root->name, root->name)) {
1483					ret = -EBUSY;
1484					mutex_unlock(&cgroup_mutex);
1485					mutex_unlock(&inode->i_mutex);
1486					goto drop_new_super;
1487				}
1488			}
1489		}
1490
1491		/*
1492		 * We're accessing css_set_count without locking
1493		 * css_set_lock here, but that's OK - it can only be
1494		 * increased by someone holding cgroup_lock, and
1495		 * that's us. The worst that can happen is that we
1496		 * have some link structures left over
1497		 */
1498		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1499		if (ret) {
1500			mutex_unlock(&cgroup_mutex);
1501			mutex_unlock(&inode->i_mutex);
1502			goto drop_new_super;
1503		}
1504
1505		ret = rebind_subsystems(root, root->subsys_bits);
1506		if (ret == -EBUSY) {
1507			mutex_unlock(&cgroup_mutex);
1508			mutex_unlock(&inode->i_mutex);
1509			free_cg_links(&tmp_cg_links);
1510			goto drop_new_super;
1511		}
1512		/*
1513		 * There must be no failure case after here, since rebinding
1514		 * takes care of subsystems' refcounts, which are explicitly
1515		 * dropped in the failure exit path.
1516		 */
1517
1518		/* EBUSY should be the only error here */
1519		BUG_ON(ret);
1520
1521		list_add(&root->root_list, &roots);
1522		root_count++;
1523
1524		sb->s_root->d_fsdata = root_cgrp;
1525		root->top_cgroup.dentry = sb->s_root;
1526
1527		/* Link the top cgroup in this hierarchy into all
1528		 * the css_set objects */
1529		write_lock(&css_set_lock);
1530		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1531			struct hlist_head *hhead = &css_set_table[i];
1532			struct hlist_node *node;
1533			struct css_set *cg;
1534
1535			hlist_for_each_entry(cg, node, hhead, hlist)
1536				link_css_set(&tmp_cg_links, cg, root_cgrp);
1537		}
1538		write_unlock(&css_set_lock);
1539
1540		free_cg_links(&tmp_cg_links);
1541
1542		BUG_ON(!list_empty(&root_cgrp->sibling));
1543		BUG_ON(!list_empty(&root_cgrp->children));
1544		BUG_ON(root->number_of_cgroups != 1);
1545
1546		cgroup_populate_dir(root_cgrp);
1547		mutex_unlock(&cgroup_mutex);
1548		mutex_unlock(&inode->i_mutex);
1549	} else {
1550		/*
1551		 * We re-used an existing hierarchy - the new root (if
1552		 * any) is not needed
1553		 */
1554		cgroup_drop_root(opts.new_root);
1555		/* no subsys rebinding, so refcounts don't change */
1556		drop_parsed_module_refcounts(opts.subsys_bits);
1557	}
1558
1559	simple_set_mnt(mnt, sb);
1560	kfree(opts.release_agent);
1561	kfree(opts.name);
1562	return 0;
1563
1564 drop_new_super:
1565	deactivate_locked_super(sb);
1566 drop_modules:
1567	drop_parsed_module_refcounts(opts.subsys_bits);
1568 out_err:
1569	kfree(opts.release_agent);
1570	kfree(opts.name);
1571
1572	return ret;
1573}
1574
1575static void cgroup_kill_sb(struct super_block *sb) {
1576	struct cgroupfs_root *root = sb->s_fs_info;
1577	struct cgroup *cgrp = &root->top_cgroup;
1578	int ret;
1579	struct cg_cgroup_link *link;
1580	struct cg_cgroup_link *saved_link;
1581
1582	BUG_ON(!root);
1583
1584	BUG_ON(root->number_of_cgroups != 1);
1585	BUG_ON(!list_empty(&cgrp->children));
1586	BUG_ON(!list_empty(&cgrp->sibling));
1587
1588	mutex_lock(&cgroup_mutex);
1589
1590	/* Rebind all subsystems back to the default hierarchy */
1591	ret = rebind_subsystems(root, 0);
1592	/* Shouldn't be able to fail ... */
1593	BUG_ON(ret);
1594
1595	/*
1596	 * Release all the links from css_sets to this hierarchy's
1597	 * root cgroup
1598	 */
1599	write_lock(&css_set_lock);
1600
1601	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1602				 cgrp_link_list) {
1603		list_del(&link->cg_link_list);
1604		list_del(&link->cgrp_link_list);
1605		kfree(link);
1606	}
1607	write_unlock(&css_set_lock);
1608
1609	if (!list_empty(&root->root_list)) {
1610		list_del(&root->root_list);
1611		root_count--;
1612	}
1613
1614	mutex_unlock(&cgroup_mutex);
1615
1616	kill_litter_super(sb);
1617	cgroup_drop_root(root);
1618}
1619
1620static struct file_system_type cgroup_fs_type = {
1621	.name = "cgroup",
1622	.get_sb = cgroup_get_sb,
1623	.kill_sb = cgroup_kill_sb,
1624};
1625
1626static struct kobject *cgroup_kobj;
1627
1628static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1629{
1630	return dentry->d_fsdata;
1631}
1632
1633static inline struct cftype *__d_cft(struct dentry *dentry)
1634{
1635	return dentry->d_fsdata;
1636}
1637
1638/**
1639 * cgroup_path - generate the path of a cgroup
1640 * @cgrp: the cgroup in question
1641 * @buf: the buffer to write the path into
1642 * @buflen: the length of the buffer
1643 *
1644 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1645 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1646 * -errno on error.
1647 */
1648int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1649{
1650	char *start;
1651	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1652						      rcu_read_lock_held() ||
1653						      cgroup_lock_is_held());
1654
1655	if (!dentry || cgrp == dummytop) {
1656		/*
1657		 * Inactive subsystems have no dentry for their root
1658		 * cgroup
1659		 */
1660		strcpy(buf, "/");
1661		return 0;
1662	}
1663
1664	start = buf + buflen;
1665
1666	*--start = '\0';
1667	for (;;) {
1668		int len = dentry->d_name.len;
1669
1670		if ((start -= len) < buf)
1671			return -ENAMETOOLONG;
1672		memcpy(start, dentry->d_name.name, len);
1673		cgrp = cgrp->parent;
1674		if (!cgrp)
1675			break;
1676
1677		dentry = rcu_dereference_check(cgrp->dentry,
1678					       rcu_read_lock_held() ||
1679					       cgroup_lock_is_held());
1680		if (!cgrp->parent)
1681			continue;
1682		if (--start < buf)
1683			return -ENAMETOOLONG;
1684		*start = '/';
1685	}
1686	memmove(buf, start, buf + buflen - start);
1687	return 0;
1688}
1689EXPORT_SYMBOL_GPL(cgroup_path);
1690
1691/**
1692 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1693 * @cgrp: the cgroup the task is attaching to
1694 * @tsk: the task to be attached
1695 *
1696 * Call holding cgroup_mutex. May take task_lock of
1697 * the task 'tsk' during call.
1698 */
1699int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1700{
1701	int retval = 0;
1702	struct cgroup_subsys *ss, *failed_ss = NULL;
1703	struct cgroup *oldcgrp;
1704	struct css_set *cg;
1705	struct css_set *newcg;
1706	struct cgroupfs_root *root = cgrp->root;
1707
1708	/* Nothing to do if the task is already in that cgroup */
1709	oldcgrp = task_cgroup_from_root(tsk, root);
1710	if (cgrp == oldcgrp)
1711		return 0;
1712
1713	for_each_subsys(root, ss) {
1714		if (ss->can_attach) {
1715			retval = ss->can_attach(ss, cgrp, tsk, false);
1716			if (retval) {
1717				/*
1718				 * Remember on which subsystem the can_attach()
1719				 * failed, so that we only call cancel_attach()
1720				 * against the subsystems whose can_attach()
1721				 * succeeded. (See below)
1722				 */
1723				failed_ss = ss;
1724				goto out;
1725			}
1726		}
1727	}
1728
1729	task_lock(tsk);
1730	cg = tsk->cgroups;
1731	get_css_set(cg);
1732	task_unlock(tsk);
1733	/*
1734	 * Locate or allocate a new css_set for this task,
1735	 * based on its final set of cgroups
1736	 */
1737	newcg = find_css_set(cg, cgrp);
1738	put_css_set(cg);
1739	if (!newcg) {
1740		retval = -ENOMEM;
1741		goto out;
1742	}
1743
1744	task_lock(tsk);
1745	if (tsk->flags & PF_EXITING) {
1746		task_unlock(tsk);
1747		put_css_set(newcg);
1748		retval = -ESRCH;
1749		goto out;
1750	}
1751	rcu_assign_pointer(tsk->cgroups, newcg);
1752	task_unlock(tsk);
1753
1754	/* Update the css_set linked lists if we're using them */
1755	write_lock(&css_set_lock);
1756	if (!list_empty(&tsk->cg_list)) {
1757		list_del(&tsk->cg_list);
1758		list_add(&tsk->cg_list, &newcg->tasks);
1759	}
1760	write_unlock(&css_set_lock);
1761
1762	for_each_subsys(root, ss) {
1763		if (ss->attach)
1764			ss->attach(ss, cgrp, oldcgrp, tsk, false);
1765	}
1766	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1767	synchronize_rcu();
1768	put_css_set(cg);
1769
1770	/*
1771	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1772	 * is no longer empty.
1773	 */
1774	cgroup_wakeup_rmdir_waiter(cgrp);
1775out:
1776	if (retval) {
1777		for_each_subsys(root, ss) {
1778			if (ss == failed_ss)
1779				/*
1780				 * This subsystem was the one that failed the
1781				 * can_attach() check earlier, so we don't need
1782				 * to call cancel_attach() against it or any
1783				 * remaining subsystems.
1784				 */
1785				break;
1786			if (ss->cancel_attach)
1787				ss->cancel_attach(ss, cgrp, tsk, false);
1788		}
1789	}
1790	return retval;
1791}
1792
1793/**
1794 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1795 * @from: attach to all cgroups of a given task
1796 * @tsk: the task to be attached
1797 */
1798int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1799{
1800	struct cgroupfs_root *root;
1801	int retval = 0;
1802
1803	cgroup_lock();
1804	for_each_active_root(root) {
1805		struct cgroup *from_cg = task_cgroup_from_root(from, root);
1806
1807		retval = cgroup_attach_task(from_cg, tsk);
1808		if (retval)
1809			break;
1810	}
1811	cgroup_unlock();
1812
1813	return retval;
1814}
1815EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1816
1817/*
1818 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1819 * held. May take task_lock of task
1820 */
1821static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1822{
1823	struct task_struct *tsk;
1824	const struct cred *cred = current_cred(), *tcred;
1825	int ret;
1826
1827	if (pid) {
1828		rcu_read_lock();
1829		tsk = find_task_by_vpid(pid);
1830		if (!tsk || tsk->flags & PF_EXITING) {
1831			rcu_read_unlock();
1832			return -ESRCH;
1833		}
1834
1835		tcred = __task_cred(tsk);
1836		if (cred->euid &&
1837		    cred->euid != tcred->uid &&
1838		    cred->euid != tcred->suid) {
1839			rcu_read_unlock();
1840			return -EACCES;
1841		}
1842		get_task_struct(tsk);
1843		rcu_read_unlock();
1844	} else {
1845		tsk = current;
1846		get_task_struct(tsk);
1847	}
1848
1849	ret = cgroup_attach_task(cgrp, tsk);
1850	put_task_struct(tsk);
1851	return ret;
1852}
1853
1854static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1855{
1856	int ret;
1857	if (!cgroup_lock_live_group(cgrp))
1858		return -ENODEV;
1859	ret = attach_task_by_pid(cgrp, pid);
1860	cgroup_unlock();
1861	return ret;
1862}
1863
1864/**
1865 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1866 * @cgrp: the cgroup to be checked for liveness
1867 *
1868 * On success, returns true; the lock should be later released with
1869 * cgroup_unlock(). On failure returns false with no lock held.
1870 */
1871bool cgroup_lock_live_group(struct cgroup *cgrp)
1872{
1873	mutex_lock(&cgroup_mutex);
1874	if (cgroup_is_removed(cgrp)) {
1875		mutex_unlock(&cgroup_mutex);
1876		return false;
1877	}
1878	return true;
1879}
1880EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1881
1882static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1883				      const char *buffer)
1884{
1885	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1886	if (!cgroup_lock_live_group(cgrp))
1887		return -ENODEV;
1888	strcpy(cgrp->root->release_agent_path, buffer);
1889	cgroup_unlock();
1890	return 0;
1891}
1892
1893static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1894				     struct seq_file *seq)
1895{
1896	if (!cgroup_lock_live_group(cgrp))
1897		return -ENODEV;
1898	seq_puts(seq, cgrp->root->release_agent_path);
1899	seq_putc(seq, '\n');
1900	cgroup_unlock();
1901	return 0;
1902}
1903
1904/* A buffer size big enough for numbers or short strings */
1905#define CGROUP_LOCAL_BUFFER_SIZE 64
1906
1907static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1908				struct file *file,
1909				const char __user *userbuf,
1910				size_t nbytes, loff_t *unused_ppos)
1911{
1912	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1913	int retval = 0;
1914	char *end;
1915
1916	if (!nbytes)
1917		return -EINVAL;
1918	if (nbytes >= sizeof(buffer))
1919		return -E2BIG;
1920	if (copy_from_user(buffer, userbuf, nbytes))
1921		return -EFAULT;
1922
1923	buffer[nbytes] = 0;     /* nul-terminate */
1924	if (cft->write_u64) {
1925		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1926		if (*end)
1927			return -EINVAL;
1928		retval = cft->write_u64(cgrp, cft, val);
1929	} else {
1930		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1931		if (*end)
1932			return -EINVAL;
1933		retval = cft->write_s64(cgrp, cft, val);
1934	}
1935	if (!retval)
1936		retval = nbytes;
1937	return retval;
1938}
1939
1940static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1941				   struct file *file,
1942				   const char __user *userbuf,
1943				   size_t nbytes, loff_t *unused_ppos)
1944{
1945	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1946	int retval = 0;
1947	size_t max_bytes = cft->max_write_len;
1948	char *buffer = local_buffer;
1949
1950	if (!max_bytes)
1951		max_bytes = sizeof(local_buffer) - 1;
1952	if (nbytes >= max_bytes)
1953		return -E2BIG;
1954	/* Allocate a dynamic buffer if we need one */
1955	if (nbytes >= sizeof(local_buffer)) {
1956		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1957		if (buffer == NULL)
1958			return -ENOMEM;
1959	}
1960	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1961		retval = -EFAULT;
1962		goto out;
1963	}
1964
1965	buffer[nbytes] = 0;     /* nul-terminate */
1966	retval = cft->write_string(cgrp, cft, strstrip(buffer));
1967	if (!retval)
1968		retval = nbytes;
1969out:
1970	if (buffer != local_buffer)
1971		kfree(buffer);
1972	return retval;
1973}
1974
1975static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1976						size_t nbytes, loff_t *ppos)
1977{
1978	struct cftype *cft = __d_cft(file->f_dentry);
1979	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1980
1981	if (cgroup_is_removed(cgrp))
1982		return -ENODEV;
1983	if (cft->write)
1984		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1985	if (cft->write_u64 || cft->write_s64)
1986		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1987	if (cft->write_string)
1988		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1989	if (cft->trigger) {
1990		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1991		return ret ? ret : nbytes;
1992	}
1993	return -EINVAL;
1994}
1995
1996static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1997			       struct file *file,
1998			       char __user *buf, size_t nbytes,
1999			       loff_t *ppos)
2000{
2001	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2002	u64 val = cft->read_u64(cgrp, cft);
2003	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2004
2005	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2006}
2007
2008static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2009			       struct file *file,
2010			       char __user *buf, size_t nbytes,
2011			       loff_t *ppos)
2012{
2013	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2014	s64 val = cft->read_s64(cgrp, cft);
2015	int len = sprintf(tmp, "%lld\n", (long long) val);
2016
2017	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2018}
2019
2020static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2021				   size_t nbytes, loff_t *ppos)
2022{
2023	struct cftype *cft = __d_cft(file->f_dentry);
2024	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2025
2026	if (cgroup_is_removed(cgrp))
2027		return -ENODEV;
2028
2029	if (cft->read)
2030		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2031	if (cft->read_u64)
2032		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2033	if (cft->read_s64)
2034		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2035	return -EINVAL;
2036}
2037
2038/*
2039 * seqfile ops/methods for returning structured data. Currently just
2040 * supports string->u64 maps, but can be extended in future.
2041 */
2042
2043struct cgroup_seqfile_state {
2044	struct cftype *cft;
2045	struct cgroup *cgroup;
2046};
2047
2048static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2049{
2050	struct seq_file *sf = cb->state;
2051	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2052}
2053
2054static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2055{
2056	struct cgroup_seqfile_state *state = m->private;
2057	struct cftype *cft = state->cft;
2058	if (cft->read_map) {
2059		struct cgroup_map_cb cb = {
2060			.fill = cgroup_map_add,
2061			.state = m,
2062		};
2063		return cft->read_map(state->cgroup, cft, &cb);
2064	}
2065	return cft->read_seq_string(state->cgroup, cft, m);
2066}
2067
2068static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2069{
2070	struct seq_file *seq = file->private_data;
2071	kfree(seq->private);
2072	return single_release(inode, file);
2073}
2074
2075static const struct file_operations cgroup_seqfile_operations = {
2076	.read = seq_read,
2077	.write = cgroup_file_write,
2078	.llseek = seq_lseek,
2079	.release = cgroup_seqfile_release,
2080};
2081
2082static int cgroup_file_open(struct inode *inode, struct file *file)
2083{
2084	int err;
2085	struct cftype *cft;
2086
2087	err = generic_file_open(inode, file);
2088	if (err)
2089		return err;
2090	cft = __d_cft(file->f_dentry);
2091
2092	if (cft->read_map || cft->read_seq_string) {
2093		struct cgroup_seqfile_state *state =
2094			kzalloc(sizeof(*state), GFP_USER);
2095		if (!state)
2096			return -ENOMEM;
2097		state->cft = cft;
2098		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2099		file->f_op = &cgroup_seqfile_operations;
2100		err = single_open(file, cgroup_seqfile_show, state);
2101		if (err < 0)
2102			kfree(state);
2103	} else if (cft->open)
2104		err = cft->open(inode, file);
2105	else
2106		err = 0;
2107
2108	return err;
2109}
2110
2111static int cgroup_file_release(struct inode *inode, struct file *file)
2112{
2113	struct cftype *cft = __d_cft(file->f_dentry);
2114	if (cft->release)
2115		return cft->release(inode, file);
2116	return 0;
2117}
2118
2119/*
2120 * cgroup_rename - Only allow simple rename of directories in place.
2121 */
2122static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2123			    struct inode *new_dir, struct dentry *new_dentry)
2124{
2125	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2126		return -ENOTDIR;
2127	if (new_dentry->d_inode)
2128		return -EEXIST;
2129	if (old_dir != new_dir)
2130		return -EIO;
2131	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2132}
2133
2134static const struct file_operations cgroup_file_operations = {
2135	.read = cgroup_file_read,
2136	.write = cgroup_file_write,
2137	.llseek = generic_file_llseek,
2138	.open = cgroup_file_open,
2139	.release = cgroup_file_release,
2140};
2141
2142static const struct inode_operations cgroup_dir_inode_operations = {
2143	.lookup = simple_lookup,
2144	.mkdir = cgroup_mkdir,
2145	.rmdir = cgroup_rmdir,
2146	.rename = cgroup_rename,
2147};
2148
2149/*
2150 * Check if a file is a control file
2151 */
2152static inline struct cftype *__file_cft(struct file *file)
2153{
2154	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2155		return ERR_PTR(-EINVAL);
2156	return __d_cft(file->f_dentry);
2157}
2158
2159static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2160				struct super_block *sb)
2161{
2162	static const struct dentry_operations cgroup_dops = {
2163		.d_iput = cgroup_diput,
2164	};
2165
2166	struct inode *inode;
2167
2168	if (!dentry)
2169		return -ENOENT;
2170	if (dentry->d_inode)
2171		return -EEXIST;
2172
2173	inode = cgroup_new_inode(mode, sb);
2174	if (!inode)
2175		return -ENOMEM;
2176
2177	if (S_ISDIR(mode)) {
2178		inode->i_op = &cgroup_dir_inode_operations;
2179		inode->i_fop = &simple_dir_operations;
2180
2181		/* start off with i_nlink == 2 (for "." entry) */
2182		inc_nlink(inode);
2183
2184		/* start with the directory inode held, so that we can
2185		 * populate it without racing with another mkdir */
2186		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2187	} else if (S_ISREG(mode)) {
2188		inode->i_size = 0;
2189		inode->i_fop = &cgroup_file_operations;
2190	}
2191	dentry->d_op = &cgroup_dops;
2192	d_instantiate(dentry, inode);
2193	dget(dentry);	/* Extra count - pin the dentry in core */
2194	return 0;
2195}
2196
2197/*
2198 * cgroup_create_dir - create a directory for an object.
2199 * @cgrp: the cgroup we create the directory for. It must have a valid
2200 *        ->parent field. And we are going to fill its ->dentry field.
2201 * @dentry: dentry of the new cgroup
2202 * @mode: mode to set on new directory.
2203 */
2204static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2205				mode_t mode)
2206{
2207	struct dentry *parent;
2208	int error = 0;
2209
2210	parent = cgrp->parent->dentry;
2211	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2212	if (!error) {
2213		dentry->d_fsdata = cgrp;
2214		inc_nlink(parent->d_inode);
2215		rcu_assign_pointer(cgrp->dentry, dentry);
2216		dget(dentry);
2217	}
2218	dput(dentry);
2219
2220	return error;
2221}
2222
2223/**
2224 * cgroup_file_mode - deduce file mode of a control file
2225 * @cft: the control file in question
2226 *
2227 * returns cft->mode if ->mode is not 0
2228 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2229 * returns S_IRUGO if it has only a read handler
2230 * returns S_IWUSR if it has only a write hander
2231 */
2232static mode_t cgroup_file_mode(const struct cftype *cft)
2233{
2234	mode_t mode = 0;
2235
2236	if (cft->mode)
2237		return cft->mode;
2238
2239	if (cft->read || cft->read_u64 || cft->read_s64 ||
2240	    cft->read_map || cft->read_seq_string)
2241		mode |= S_IRUGO;
2242
2243	if (cft->write || cft->write_u64 || cft->write_s64 ||
2244	    cft->write_string || cft->trigger)
2245		mode |= S_IWUSR;
2246
2247	return mode;
2248}
2249
2250int cgroup_add_file(struct cgroup *cgrp,
2251		       struct cgroup_subsys *subsys,
2252		       const struct cftype *cft)
2253{
2254	struct dentry *dir = cgrp->dentry;
2255	struct dentry *dentry;
2256	int error;
2257	mode_t mode;
2258
2259	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2260	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2261		strcpy(name, subsys->name);
2262		strcat(name, ".");
2263	}
2264	strcat(name, cft->name);
2265	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2266	dentry = lookup_one_len(name, dir, strlen(name));
2267	if (!IS_ERR(dentry)) {
2268		mode = cgroup_file_mode(cft);
2269		error = cgroup_create_file(dentry, mode | S_IFREG,
2270						cgrp->root->sb);
2271		if (!error)
2272			dentry->d_fsdata = (void *)cft;
2273		dput(dentry);
2274	} else
2275		error = PTR_ERR(dentry);
2276	return error;
2277}
2278EXPORT_SYMBOL_GPL(cgroup_add_file);
2279
2280int cgroup_add_files(struct cgroup *cgrp,
2281			struct cgroup_subsys *subsys,
2282			const struct cftype cft[],
2283			int count)
2284{
2285	int i, err;
2286	for (i = 0; i < count; i++) {
2287		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2288		if (err)
2289			return err;
2290	}
2291	return 0;
2292}
2293EXPORT_SYMBOL_GPL(cgroup_add_files);
2294
2295/**
2296 * cgroup_task_count - count the number of tasks in a cgroup.
2297 * @cgrp: the cgroup in question
2298 *
2299 * Return the number of tasks in the cgroup.
2300 */
2301int cgroup_task_count(const struct cgroup *cgrp)
2302{
2303	int count = 0;
2304	struct cg_cgroup_link *link;
2305
2306	read_lock(&css_set_lock);
2307	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2308		count += atomic_read(&link->cg->refcount);
2309	}
2310	read_unlock(&css_set_lock);
2311	return count;
2312}
2313
2314/*
2315 * Advance a list_head iterator.  The iterator should be positioned at
2316 * the start of a css_set
2317 */
2318static void cgroup_advance_iter(struct cgroup *cgrp,
2319				struct cgroup_iter *it)
2320{
2321	struct list_head *l = it->cg_link;
2322	struct cg_cgroup_link *link;
2323	struct css_set *cg;
2324
2325	/* Advance to the next non-empty css_set */
2326	do {
2327		l = l->next;
2328		if (l == &cgrp->css_sets) {
2329			it->cg_link = NULL;
2330			return;
2331		}
2332		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2333		cg = link->cg;
2334	} while (list_empty(&cg->tasks));
2335	it->cg_link = l;
2336	it->task = cg->tasks.next;
2337}
2338
2339/*
2340 * To reduce the fork() overhead for systems that are not actually
2341 * using their cgroups capability, we don't maintain the lists running
2342 * through each css_set to its tasks until we see the list actually
2343 * used - in other words after the first call to cgroup_iter_start().
2344 *
2345 * The tasklist_lock is not held here, as do_each_thread() and
2346 * while_each_thread() are protected by RCU.
2347 */
2348static void cgroup_enable_task_cg_lists(void)
2349{
2350	struct task_struct *p, *g;
2351	write_lock(&css_set_lock);
2352	use_task_css_set_links = 1;
2353	do_each_thread(g, p) {
2354		task_lock(p);
2355		/*
2356		 * We should check if the process is exiting, otherwise
2357		 * it will race with cgroup_exit() in that the list
2358		 * entry won't be deleted though the process has exited.
2359		 */
2360		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2361			list_add(&p->cg_list, &p->cgroups->tasks);
2362		task_unlock(p);
2363	} while_each_thread(g, p);
2364	write_unlock(&css_set_lock);
2365}
2366
2367void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2368{
2369	/*
2370	 * The first time anyone tries to iterate across a cgroup,
2371	 * we need to enable the list linking each css_set to its
2372	 * tasks, and fix up all existing tasks.
2373	 */
2374	if (!use_task_css_set_links)
2375		cgroup_enable_task_cg_lists();
2376
2377	read_lock(&css_set_lock);
2378	it->cg_link = &cgrp->css_sets;
2379	cgroup_advance_iter(cgrp, it);
2380}
2381
2382struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2383					struct cgroup_iter *it)
2384{
2385	struct task_struct *res;
2386	struct list_head *l = it->task;
2387	struct cg_cgroup_link *link;
2388
2389	/* If the iterator cg is NULL, we have no tasks */
2390	if (!it->cg_link)
2391		return NULL;
2392	res = list_entry(l, struct task_struct, cg_list);
2393	/* Advance iterator to find next entry */
2394	l = l->next;
2395	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2396	if (l == &link->cg->tasks) {
2397		/* We reached the end of this task list - move on to
2398		 * the next cg_cgroup_link */
2399		cgroup_advance_iter(cgrp, it);
2400	} else {
2401		it->task = l;
2402	}
2403	return res;
2404}
2405
2406void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2407{
2408	read_unlock(&css_set_lock);
2409}
2410
2411static inline int started_after_time(struct task_struct *t1,
2412				     struct timespec *time,
2413				     struct task_struct *t2)
2414{
2415	int start_diff = timespec_compare(&t1->start_time, time);
2416	if (start_diff > 0) {
2417		return 1;
2418	} else if (start_diff < 0) {
2419		return 0;
2420	} else {
2421		/*
2422		 * Arbitrarily, if two processes started at the same
2423		 * time, we'll say that the lower pointer value
2424		 * started first. Note that t2 may have exited by now
2425		 * so this may not be a valid pointer any longer, but
2426		 * that's fine - it still serves to distinguish
2427		 * between two tasks started (effectively) simultaneously.
2428		 */
2429		return t1 > t2;
2430	}
2431}
2432
2433/*
2434 * This function is a callback from heap_insert() and is used to order
2435 * the heap.
2436 * In this case we order the heap in descending task start time.
2437 */
2438static inline int started_after(void *p1, void *p2)
2439{
2440	struct task_struct *t1 = p1;
2441	struct task_struct *t2 = p2;
2442	return started_after_time(t1, &t2->start_time, t2);
2443}
2444
2445/**
2446 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2447 * @scan: struct cgroup_scanner containing arguments for the scan
2448 *
2449 * Arguments include pointers to callback functions test_task() and
2450 * process_task().
2451 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2452 * and if it returns true, call process_task() for it also.
2453 * The test_task pointer may be NULL, meaning always true (select all tasks).
2454 * Effectively duplicates cgroup_iter_{start,next,end}()
2455 * but does not lock css_set_lock for the call to process_task().
2456 * The struct cgroup_scanner may be embedded in any structure of the caller's
2457 * creation.
2458 * It is guaranteed that process_task() will act on every task that
2459 * is a member of the cgroup for the duration of this call. This
2460 * function may or may not call process_task() for tasks that exit
2461 * or move to a different cgroup during the call, or are forked or
2462 * move into the cgroup during the call.
2463 *
2464 * Note that test_task() may be called with locks held, and may in some
2465 * situations be called multiple times for the same task, so it should
2466 * be cheap.
2467 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2468 * pre-allocated and will be used for heap operations (and its "gt" member will
2469 * be overwritten), else a temporary heap will be used (allocation of which
2470 * may cause this function to fail).
2471 */
2472int cgroup_scan_tasks(struct cgroup_scanner *scan)
2473{
2474	int retval, i;
2475	struct cgroup_iter it;
2476	struct task_struct *p, *dropped;
2477	/* Never dereference latest_task, since it's not refcounted */
2478	struct task_struct *latest_task = NULL;
2479	struct ptr_heap tmp_heap;
2480	struct ptr_heap *heap;
2481	struct timespec latest_time = { 0, 0 };
2482
2483	if (scan->heap) {
2484		/* The caller supplied our heap and pre-allocated its memory */
2485		heap = scan->heap;
2486		heap->gt = &started_after;
2487	} else {
2488		/* We need to allocate our own heap memory */
2489		heap = &tmp_heap;
2490		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2491		if (retval)
2492			/* cannot allocate the heap */
2493			return retval;
2494	}
2495
2496 again:
2497	/*
2498	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2499	 * to determine which are of interest, and using the scanner's
2500	 * "process_task" callback to process any of them that need an update.
2501	 * Since we don't want to hold any locks during the task updates,
2502	 * gather tasks to be processed in a heap structure.
2503	 * The heap is sorted by descending task start time.
2504	 * If the statically-sized heap fills up, we overflow tasks that
2505	 * started later, and in future iterations only consider tasks that
2506	 * started after the latest task in the previous pass. This
2507	 * guarantees forward progress and that we don't miss any tasks.
2508	 */
2509	heap->size = 0;
2510	cgroup_iter_start(scan->cg, &it);
2511	while ((p = cgroup_iter_next(scan->cg, &it))) {
2512		/*
2513		 * Only affect tasks that qualify per the caller's callback,
2514		 * if he provided one
2515		 */
2516		if (scan->test_task && !scan->test_task(p, scan))
2517			continue;
2518		/*
2519		 * Only process tasks that started after the last task
2520		 * we processed
2521		 */
2522		if (!started_after_time(p, &latest_time, latest_task))
2523			continue;
2524		dropped = heap_insert(heap, p);
2525		if (dropped == NULL) {
2526			/*
2527			 * The new task was inserted; the heap wasn't
2528			 * previously full
2529			 */
2530			get_task_struct(p);
2531		} else if (dropped != p) {
2532			/*
2533			 * The new task was inserted, and pushed out a
2534			 * different task
2535			 */
2536			get_task_struct(p);
2537			put_task_struct(dropped);
2538		}
2539		/*
2540		 * Else the new task was newer than anything already in
2541		 * the heap and wasn't inserted
2542		 */
2543	}
2544	cgroup_iter_end(scan->cg, &it);
2545
2546	if (heap->size) {
2547		for (i = 0; i < heap->size; i++) {
2548			struct task_struct *q = heap->ptrs[i];
2549			if (i == 0) {
2550				latest_time = q->start_time;
2551				latest_task = q;
2552			}
2553			/* Process the task per the caller's callback */
2554			scan->process_task(q, scan);
2555			put_task_struct(q);
2556		}
2557		/*
2558		 * If we had to process any tasks at all, scan again
2559		 * in case some of them were in the middle of forking
2560		 * children that didn't get processed.
2561		 * Not the most efficient way to do it, but it avoids
2562		 * having to take callback_mutex in the fork path
2563		 */
2564		goto again;
2565	}
2566	if (heap == &tmp_heap)
2567		heap_free(&tmp_heap);
2568	return 0;
2569}
2570
2571/*
2572 * Stuff for reading the 'tasks'/'procs' files.
2573 *
2574 * Reading this file can return large amounts of data if a cgroup has
2575 * *lots* of attached tasks. So it may need several calls to read(),
2576 * but we cannot guarantee that the information we produce is correct
2577 * unless we produce it entirely atomically.
2578 *
2579 */
2580
2581/*
2582 * The following two functions "fix" the issue where there are more pids
2583 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2584 * TODO: replace with a kernel-wide solution to this problem
2585 */
2586#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2587static void *pidlist_allocate(int count)
2588{
2589	if (PIDLIST_TOO_LARGE(count))
2590		return vmalloc(count * sizeof(pid_t));
2591	else
2592		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2593}
2594static void pidlist_free(void *p)
2595{
2596	if (is_vmalloc_addr(p))
2597		vfree(p);
2598	else
2599		kfree(p);
2600}
2601static void *pidlist_resize(void *p, int newcount)
2602{
2603	void *newlist;
2604	/* note: if new alloc fails, old p will still be valid either way */
2605	if (is_vmalloc_addr(p)) {
2606		newlist = vmalloc(newcount * sizeof(pid_t));
2607		if (!newlist)
2608			return NULL;
2609		memcpy(newlist, p, newcount * sizeof(pid_t));
2610		vfree(p);
2611	} else {
2612		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2613	}
2614	return newlist;
2615}
2616
2617/*
2618 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2619 * If the new stripped list is sufficiently smaller and there's enough memory
2620 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2621 * number of unique elements.
2622 */
2623/* is the size difference enough that we should re-allocate the array? */
2624#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2625static int pidlist_uniq(pid_t **p, int length)
2626{
2627	int src, dest = 1;
2628	pid_t *list = *p;
2629	pid_t *newlist;
2630
2631	/*
2632	 * we presume the 0th element is unique, so i starts at 1. trivial
2633	 * edge cases first; no work needs to be done for either
2634	 */
2635	if (length == 0 || length == 1)
2636		return length;
2637	/* src and dest walk down the list; dest counts unique elements */
2638	for (src = 1; src < length; src++) {
2639		/* find next unique element */
2640		while (list[src] == list[src-1]) {
2641			src++;
2642			if (src == length)
2643				goto after;
2644		}
2645		/* dest always points to where the next unique element goes */
2646		list[dest] = list[src];
2647		dest++;
2648	}
2649after:
2650	/*
2651	 * if the length difference is large enough, we want to allocate a
2652	 * smaller buffer to save memory. if this fails due to out of memory,
2653	 * we'll just stay with what we've got.
2654	 */
2655	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2656		newlist = pidlist_resize(list, dest);
2657		if (newlist)
2658			*p = newlist;
2659	}
2660	return dest;
2661}
2662
2663static int cmppid(const void *a, const void *b)
2664{
2665	return *(pid_t *)a - *(pid_t *)b;
2666}
2667
2668/*
2669 * find the appropriate pidlist for our purpose (given procs vs tasks)
2670 * returns with the lock on that pidlist already held, and takes care
2671 * of the use count, or returns NULL with no locks held if we're out of
2672 * memory.
2673 */
2674static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2675						  enum cgroup_filetype type)
2676{
2677	struct cgroup_pidlist *l;
2678	/* don't need task_nsproxy() if we're looking at ourself */
2679	struct pid_namespace *ns = current->nsproxy->pid_ns;
2680
2681	/*
2682	 * We can't drop the pidlist_mutex before taking the l->mutex in case
2683	 * the last ref-holder is trying to remove l from the list at the same
2684	 * time. Holding the pidlist_mutex precludes somebody taking whichever
2685	 * list we find out from under us - compare release_pid_array().
2686	 */
2687	mutex_lock(&cgrp->pidlist_mutex);
2688	list_for_each_entry(l, &cgrp->pidlists, links) {
2689		if (l->key.type == type && l->key.ns == ns) {
2690			/* make sure l doesn't vanish out from under us */
2691			down_write(&l->mutex);
2692			mutex_unlock(&cgrp->pidlist_mutex);
2693			return l;
2694		}
2695	}
2696	/* entry not found; create a new one */
2697	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2698	if (!l) {
2699		mutex_unlock(&cgrp->pidlist_mutex);
2700		return l;
2701	}
2702	init_rwsem(&l->mutex);
2703	down_write(&l->mutex);
2704	l->key.type = type;
2705	l->key.ns = get_pid_ns(ns);
2706	l->use_count = 0; /* don't increment here */
2707	l->list = NULL;
2708	l->owner = cgrp;
2709	list_add(&l->links, &cgrp->pidlists);
2710	mutex_unlock(&cgrp->pidlist_mutex);
2711	return l;
2712}
2713
2714/*
2715 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2716 */
2717static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2718			      struct cgroup_pidlist **lp)
2719{
2720	pid_t *array;
2721	int length;
2722	int pid, n = 0; /* used for populating the array */
2723	struct cgroup_iter it;
2724	struct task_struct *tsk;
2725	struct cgroup_pidlist *l;
2726
2727	/*
2728	 * If cgroup gets more users after we read count, we won't have
2729	 * enough space - tough.  This race is indistinguishable to the
2730	 * caller from the case that the additional cgroup users didn't
2731	 * show up until sometime later on.
2732	 */
2733	length = cgroup_task_count(cgrp);
2734	array = pidlist_allocate(length);
2735	if (!array)
2736		return -ENOMEM;
2737	/* now, populate the array */
2738	cgroup_iter_start(cgrp, &it);
2739	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2740		if (unlikely(n == length))
2741			break;
2742		/* get tgid or pid for procs or tasks file respectively */
2743		if (type == CGROUP_FILE_PROCS)
2744			pid = task_tgid_vnr(tsk);
2745		else
2746			pid = task_pid_vnr(tsk);
2747		if (pid > 0) /* make sure to only use valid results */
2748			array[n++] = pid;
2749	}
2750	cgroup_iter_end(cgrp, &it);
2751	length = n;
2752	/* now sort & (if procs) strip out duplicates */
2753	sort(array, length, sizeof(pid_t), cmppid, NULL);
2754	if (type == CGROUP_FILE_PROCS)
2755		length = pidlist_uniq(&array, length);
2756	l = cgroup_pidlist_find(cgrp, type);
2757	if (!l) {
2758		pidlist_free(array);
2759		return -ENOMEM;
2760	}
2761	/* store array, freeing old if necessary - lock already held */
2762	pidlist_free(l->list);
2763	l->list = array;
2764	l->length = length;
2765	l->use_count++;
2766	up_write(&l->mutex);
2767	*lp = l;
2768	return 0;
2769}
2770
2771/**
2772 * cgroupstats_build - build and fill cgroupstats
2773 * @stats: cgroupstats to fill information into
2774 * @dentry: A dentry entry belonging to the cgroup for which stats have
2775 * been requested.
2776 *
2777 * Build and fill cgroupstats so that taskstats can export it to user
2778 * space.
2779 */
2780int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2781{
2782	int ret = -EINVAL;
2783	struct cgroup *cgrp;
2784	struct cgroup_iter it;
2785	struct task_struct *tsk;
2786
2787	/*
2788	 * Validate dentry by checking the superblock operations,
2789	 * and make sure it's a directory.
2790	 */
2791	if (dentry->d_sb->s_op != &cgroup_ops ||
2792	    !S_ISDIR(dentry->d_inode->i_mode))
2793		 goto err;
2794
2795	ret = 0;
2796	cgrp = dentry->d_fsdata;
2797
2798	cgroup_iter_start(cgrp, &it);
2799	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2800		switch (tsk->state) {
2801		case TASK_RUNNING:
2802			stats->nr_running++;
2803			break;
2804		case TASK_INTERRUPTIBLE:
2805			stats->nr_sleeping++;
2806			break;
2807		case TASK_UNINTERRUPTIBLE:
2808			stats->nr_uninterruptible++;
2809			break;
2810		case TASK_STOPPED:
2811			stats->nr_stopped++;
2812			break;
2813		default:
2814			if (delayacct_is_task_waiting_on_io(tsk))
2815				stats->nr_io_wait++;
2816			break;
2817		}
2818	}
2819	cgroup_iter_end(cgrp, &it);
2820
2821err:
2822	return ret;
2823}
2824
2825
2826/*
2827 * seq_file methods for the tasks/procs files. The seq_file position is the
2828 * next pid to display; the seq_file iterator is a pointer to the pid
2829 * in the cgroup->l->list array.
2830 */
2831
2832static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2833{
2834	/*
2835	 * Initially we receive a position value that corresponds to
2836	 * one more than the last pid shown (or 0 on the first call or
2837	 * after a seek to the start). Use a binary-search to find the
2838	 * next pid to display, if any
2839	 */
2840	struct cgroup_pidlist *l = s->private;
2841	int index = 0, pid = *pos;
2842	int *iter;
2843
2844	down_read(&l->mutex);
2845	if (pid) {
2846		int end = l->length;
2847
2848		while (index < end) {
2849			int mid = (index + end) / 2;
2850			if (l->list[mid] == pid) {
2851				index = mid;
2852				break;
2853			} else if (l->list[mid] <= pid)
2854				index = mid + 1;
2855			else
2856				end = mid;
2857		}
2858	}
2859	/* If we're off the end of the array, we're done */
2860	if (index >= l->length)
2861		return NULL;
2862	/* Update the abstract position to be the actual pid that we found */
2863	iter = l->list + index;
2864	*pos = *iter;
2865	return iter;
2866}
2867
2868static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2869{
2870	struct cgroup_pidlist *l = s->private;
2871	up_read(&l->mutex);
2872}
2873
2874static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2875{
2876	struct cgroup_pidlist *l = s->private;
2877	pid_t *p = v;
2878	pid_t *end = l->list + l->length;
2879	/*
2880	 * Advance to the next pid in the array. If this goes off the
2881	 * end, we're done
2882	 */
2883	p++;
2884	if (p >= end) {
2885		return NULL;
2886	} else {
2887		*pos = *p;
2888		return p;
2889	}
2890}
2891
2892static int cgroup_pidlist_show(struct seq_file *s, void *v)
2893{
2894	return seq_printf(s, "%d\n", *(int *)v);
2895}
2896
2897/*
2898 * seq_operations functions for iterating on pidlists through seq_file -
2899 * independent of whether it's tasks or procs
2900 */
2901static const struct seq_operations cgroup_pidlist_seq_operations = {
2902	.start = cgroup_pidlist_start,
2903	.stop = cgroup_pidlist_stop,
2904	.next = cgroup_pidlist_next,
2905	.show = cgroup_pidlist_show,
2906};
2907
2908static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2909{
2910	/*
2911	 * the case where we're the last user of this particular pidlist will
2912	 * have us remove it from the cgroup's list, which entails taking the
2913	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2914	 * pidlist_mutex, we have to take pidlist_mutex first.
2915	 */
2916	mutex_lock(&l->owner->pidlist_mutex);
2917	down_write(&l->mutex);
2918	BUG_ON(!l->use_count);
2919	if (!--l->use_count) {
2920		/* we're the last user if refcount is 0; remove and free */
2921		list_del(&l->links);
2922		mutex_unlock(&l->owner->pidlist_mutex);
2923		pidlist_free(l->list);
2924		put_pid_ns(l->key.ns);
2925		up_write(&l->mutex);
2926		kfree(l);
2927		return;
2928	}
2929	mutex_unlock(&l->owner->pidlist_mutex);
2930	up_write(&l->mutex);
2931}
2932
2933static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2934{
2935	struct cgroup_pidlist *l;
2936	if (!(file->f_mode & FMODE_READ))
2937		return 0;
2938	/*
2939	 * the seq_file will only be initialized if the file was opened for
2940	 * reading; hence we check if it's not null only in that case.
2941	 */
2942	l = ((struct seq_file *)file->private_data)->private;
2943	cgroup_release_pid_array(l);
2944	return seq_release(inode, file);
2945}
2946
2947static const struct file_operations cgroup_pidlist_operations = {
2948	.read = seq_read,
2949	.llseek = seq_lseek,
2950	.write = cgroup_file_write,
2951	.release = cgroup_pidlist_release,
2952};
2953
2954/*
2955 * The following functions handle opens on a file that displays a pidlist
2956 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2957 * in the cgroup.
2958 */
2959/* helper function for the two below it */
2960static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2961{
2962	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2963	struct cgroup_pidlist *l;
2964	int retval;
2965
2966	/* Nothing to do for write-only files */
2967	if (!(file->f_mode & FMODE_READ))
2968		return 0;
2969
2970	/* have the array populated */
2971	retval = pidlist_array_load(cgrp, type, &l);
2972	if (retval)
2973		return retval;
2974	/* configure file information */
2975	file->f_op = &cgroup_pidlist_operations;
2976
2977	retval = seq_open(file, &cgroup_pidlist_seq_operations);
2978	if (retval) {
2979		cgroup_release_pid_array(l);
2980		return retval;
2981	}
2982	((struct seq_file *)file->private_data)->private = l;
2983	return 0;
2984}
2985static int cgroup_tasks_open(struct inode *unused, struct file *file)
2986{
2987	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2988}
2989static int cgroup_procs_open(struct inode *unused, struct file *file)
2990{
2991	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2992}
2993
2994static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2995					    struct cftype *cft)
2996{
2997	return notify_on_release(cgrp);
2998}
2999
3000static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3001					  struct cftype *cft,
3002					  u64 val)
3003{
3004	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3005	if (val)
3006		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3007	else
3008		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3009	return 0;
3010}
3011
3012/*
3013 * Unregister event and free resources.
3014 *
3015 * Gets called from workqueue.
3016 */
3017static void cgroup_event_remove(struct work_struct *work)
3018{
3019	struct cgroup_event *event = container_of(work, struct cgroup_event,
3020			remove);
3021	struct cgroup *cgrp = event->cgrp;
3022
3023	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3024
3025	eventfd_ctx_put(event->eventfd);
3026	kfree(event);
3027	dput(cgrp->dentry);
3028}
3029
3030/*
3031 * Gets called on POLLHUP on eventfd when user closes it.
3032 *
3033 * Called with wqh->lock held and interrupts disabled.
3034 */
3035static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3036		int sync, void *key)
3037{
3038	struct cgroup_event *event = container_of(wait,
3039			struct cgroup_event, wait);
3040	struct cgroup *cgrp = event->cgrp;
3041	unsigned long flags = (unsigned long)key;
3042
3043	if (flags & POLLHUP) {
3044		__remove_wait_queue(event->wqh, &event->wait);
3045		spin_lock(&cgrp->event_list_lock);
3046		list_del(&event->list);
3047		spin_unlock(&cgrp->event_list_lock);
3048		/*
3049		 * We are in atomic context, but cgroup_event_remove() may
3050		 * sleep, so we have to call it in workqueue.
3051		 */
3052		schedule_work(&event->remove);
3053	}
3054
3055	return 0;
3056}
3057
3058static void cgroup_event_ptable_queue_proc(struct file *file,
3059		wait_queue_head_t *wqh, poll_table *pt)
3060{
3061	struct cgroup_event *event = container_of(pt,
3062			struct cgroup_event, pt);
3063
3064	event->wqh = wqh;
3065	add_wait_queue(wqh, &event->wait);
3066}
3067
3068/*
3069 * Parse input and register new cgroup event handler.
3070 *
3071 * Input must be in format '<event_fd> <control_fd> <args>'.
3072 * Interpretation of args is defined by control file implementation.
3073 */
3074static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3075				      const char *buffer)
3076{
3077	struct cgroup_event *event = NULL;
3078	unsigned int efd, cfd;
3079	struct file *efile = NULL;
3080	struct file *cfile = NULL;
3081	char *endp;
3082	int ret;
3083
3084	efd = simple_strtoul(buffer, &endp, 10);
3085	if (*endp != ' ')
3086		return -EINVAL;
3087	buffer = endp + 1;
3088
3089	cfd = simple_strtoul(buffer, &endp, 10);
3090	if ((*endp != ' ') && (*endp != '\0'))
3091		return -EINVAL;
3092	buffer = endp + 1;
3093
3094	event = kzalloc(sizeof(*event), GFP_KERNEL);
3095	if (!event)
3096		return -ENOMEM;
3097	event->cgrp = cgrp;
3098	INIT_LIST_HEAD(&event->list);
3099	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3100	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3101	INIT_WORK(&event->remove, cgroup_event_remove);
3102
3103	efile = eventfd_fget(efd);
3104	if (IS_ERR(efile)) {
3105		ret = PTR_ERR(efile);
3106		goto fail;
3107	}
3108
3109	event->eventfd = eventfd_ctx_fileget(efile);
3110	if (IS_ERR(event->eventfd)) {
3111		ret = PTR_ERR(event->eventfd);
3112		goto fail;
3113	}
3114
3115	cfile = fget(cfd);
3116	if (!cfile) {
3117		ret = -EBADF;
3118		goto fail;
3119	}
3120
3121	/* the process need read permission on control file */
3122	ret = file_permission(cfile, MAY_READ);
3123	if (ret < 0)
3124		goto fail;
3125
3126	event->cft = __file_cft(cfile);
3127	if (IS_ERR(event->cft)) {
3128		ret = PTR_ERR(event->cft);
3129		goto fail;
3130	}
3131
3132	if (!event->cft->register_event || !event->cft->unregister_event) {
3133		ret = -EINVAL;
3134		goto fail;
3135	}
3136
3137	ret = event->cft->register_event(cgrp, event->cft,
3138			event->eventfd, buffer);
3139	if (ret)
3140		goto fail;
3141
3142	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3143		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3144		ret = 0;
3145		goto fail;
3146	}
3147
3148	/*
3149	 * Events should be removed after rmdir of cgroup directory, but before
3150	 * destroying subsystem state objects. Let's take reference to cgroup
3151	 * directory dentry to do that.
3152	 */
3153	dget(cgrp->dentry);
3154
3155	spin_lock(&cgrp->event_list_lock);
3156	list_add(&event->list, &cgrp->event_list);
3157	spin_unlock(&cgrp->event_list_lock);
3158
3159	fput(cfile);
3160	fput(efile);
3161
3162	return 0;
3163
3164fail:
3165	if (cfile)
3166		fput(cfile);
3167
3168	if (event && event->eventfd && !IS_ERR(event->eventfd))
3169		eventfd_ctx_put(event->eventfd);
3170
3171	if (!IS_ERR_OR_NULL(efile))
3172		fput(efile);
3173
3174	kfree(event);
3175
3176	return ret;
3177}
3178
3179/*
3180 * for the common functions, 'private' gives the type of file
3181 */
3182/* for hysterical raisins, we can't put this on the older files */
3183#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3184static struct cftype files[] = {
3185	{
3186		.name = "tasks",
3187		.open = cgroup_tasks_open,
3188		.write_u64 = cgroup_tasks_write,
3189		.release = cgroup_pidlist_release,
3190		.mode = S_IRUGO | S_IWUSR,
3191	},
3192	{
3193		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3194		.open = cgroup_procs_open,
3195		/* .write_u64 = cgroup_procs_write, TODO */
3196		.release = cgroup_pidlist_release,
3197		.mode = S_IRUGO,
3198	},
3199	{
3200		.name = "notify_on_release",
3201		.read_u64 = cgroup_read_notify_on_release,
3202		.write_u64 = cgroup_write_notify_on_release,
3203	},
3204	{
3205		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3206		.write_string = cgroup_write_event_control,
3207		.mode = S_IWUGO,
3208	},
3209};
3210
3211static struct cftype cft_release_agent = {
3212	.name = "release_agent",
3213	.read_seq_string = cgroup_release_agent_show,
3214	.write_string = cgroup_release_agent_write,
3215	.max_write_len = PATH_MAX,
3216};
3217
3218static int cgroup_populate_dir(struct cgroup *cgrp)
3219{
3220	int err;
3221	struct cgroup_subsys *ss;
3222
3223	/* First clear out any existing files */
3224	cgroup_clear_directory(cgrp->dentry);
3225
3226	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3227	if (err < 0)
3228		return err;
3229
3230	if (cgrp == cgrp->top_cgroup) {
3231		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3232			return err;
3233	}
3234
3235	for_each_subsys(cgrp->root, ss) {
3236		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3237			return err;
3238	}
3239	/* This cgroup is ready now */
3240	for_each_subsys(cgrp->root, ss) {
3241		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3242		/*
3243		 * Update id->css pointer and make this css visible from
3244		 * CSS ID functions. This pointer will be dereferened
3245		 * from RCU-read-side without locks.
3246		 */
3247		if (css->id)
3248			rcu_assign_pointer(css->id->css, css);
3249	}
3250
3251	return 0;
3252}
3253
3254static void init_cgroup_css(struct cgroup_subsys_state *css,
3255			       struct cgroup_subsys *ss,
3256			       struct cgroup *cgrp)
3257{
3258	css->cgroup = cgrp;
3259	atomic_set(&css->refcnt, 1);
3260	css->flags = 0;
3261	css->id = NULL;
3262	if (cgrp == dummytop)
3263		set_bit(CSS_ROOT, &css->flags);
3264	BUG_ON(cgrp->subsys[ss->subsys_id]);
3265	cgrp->subsys[ss->subsys_id] = css;
3266}
3267
3268static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3269{
3270	/* We need to take each hierarchy_mutex in a consistent order */
3271	int i;
3272
3273	/*
3274	 * No worry about a race with rebind_subsystems that might mess up the
3275	 * locking order, since both parties are under cgroup_mutex.
3276	 */
3277	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3278		struct cgroup_subsys *ss = subsys[i];
3279		if (ss == NULL)
3280			continue;
3281		if (ss->root == root)
3282			mutex_lock(&ss->hierarchy_mutex);
3283	}
3284}
3285
3286static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3287{
3288	int i;
3289
3290	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3291		struct cgroup_subsys *ss = subsys[i];
3292		if (ss == NULL)
3293			continue;
3294		if (ss->root == root)
3295			mutex_unlock(&ss->hierarchy_mutex);
3296	}
3297}
3298
3299/*
3300 * cgroup_create - create a cgroup
3301 * @parent: cgroup that will be parent of the new cgroup
3302 * @dentry: dentry of the new cgroup
3303 * @mode: mode to set on new inode
3304 *
3305 * Must be called with the mutex on the parent inode held
3306 */
3307static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3308			     mode_t mode)
3309{
3310	struct cgroup *cgrp;
3311	struct cgroupfs_root *root = parent->root;
3312	int err = 0;
3313	struct cgroup_subsys *ss;
3314	struct super_block *sb = root->sb;
3315
3316	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3317	if (!cgrp)
3318		return -ENOMEM;
3319
3320	/* Grab a reference on the superblock so the hierarchy doesn't
3321	 * get deleted on unmount if there are child cgroups.  This
3322	 * can be done outside cgroup_mutex, since the sb can't
3323	 * disappear while someone has an open control file on the
3324	 * fs */
3325	atomic_inc(&sb->s_active);
3326
3327	mutex_lock(&cgroup_mutex);
3328
3329	init_cgroup_housekeeping(cgrp);
3330
3331	cgrp->parent = parent;
3332	cgrp->root = parent->root;
3333	cgrp->top_cgroup = parent->top_cgroup;
3334
3335	if (notify_on_release(parent))
3336		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3337
3338	for_each_subsys(root, ss) {
3339		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3340
3341		if (IS_ERR(css)) {
3342			err = PTR_ERR(css);
3343			goto err_destroy;
3344		}
3345		init_cgroup_css(css, ss, cgrp);
3346		if (ss->use_id) {
3347			err = alloc_css_id(ss, parent, cgrp);
3348			if (err)
3349				goto err_destroy;
3350		}
3351		/* At error, ->destroy() callback has to free assigned ID. */
3352	}
3353
3354	cgroup_lock_hierarchy(root);
3355	list_add(&cgrp->sibling, &cgrp->parent->children);
3356	cgroup_unlock_hierarchy(root);
3357	root->number_of_cgroups++;
3358
3359	err = cgroup_create_dir(cgrp, dentry, mode);
3360	if (err < 0)
3361		goto err_remove;
3362
3363	/* The cgroup directory was pre-locked for us */
3364	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3365
3366	err = cgroup_populate_dir(cgrp);
3367	/* If err < 0, we have a half-filled directory - oh well ;) */
3368
3369	mutex_unlock(&cgroup_mutex);
3370	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3371
3372	return 0;
3373
3374 err_remove:
3375
3376	cgroup_lock_hierarchy(root);
3377	list_del(&cgrp->sibling);
3378	cgroup_unlock_hierarchy(root);
3379	root->number_of_cgroups--;
3380
3381 err_destroy:
3382
3383	for_each_subsys(root, ss) {
3384		if (cgrp->subsys[ss->subsys_id])
3385			ss->destroy(ss, cgrp);
3386	}
3387
3388	mutex_unlock(&cgroup_mutex);
3389
3390	/* Release the reference count that we took on the superblock */
3391	deactivate_super(sb);
3392
3393	kfree(cgrp);
3394	return err;
3395}
3396
3397static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3398{
3399	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3400
3401	/* the vfs holds inode->i_mutex already */
3402	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3403}
3404
3405static int cgroup_has_css_refs(struct cgroup *cgrp)
3406{
3407	/* Check the reference count on each subsystem. Since we
3408	 * already established that there are no tasks in the
3409	 * cgroup, if the css refcount is also 1, then there should
3410	 * be no outstanding references, so the subsystem is safe to
3411	 * destroy. We scan across all subsystems rather than using
3412	 * the per-hierarchy linked list of mounted subsystems since
3413	 * we can be called via check_for_release() with no
3414	 * synchronization other than RCU, and the subsystem linked
3415	 * list isn't RCU-safe */
3416	int i;
3417	/*
3418	 * We won't need to lock the subsys array, because the subsystems
3419	 * we're concerned about aren't going anywhere since our cgroup root
3420	 * has a reference on them.
3421	 */
3422	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3423		struct cgroup_subsys *ss = subsys[i];
3424		struct cgroup_subsys_state *css;
3425		/* Skip subsystems not present or not in this hierarchy */
3426		if (ss == NULL || ss->root != cgrp->root)
3427			continue;
3428		css = cgrp->subsys[ss->subsys_id];
3429		/* When called from check_for_release() it's possible
3430		 * that by this point the cgroup has been removed
3431		 * and the css deleted. But a false-positive doesn't
3432		 * matter, since it can only happen if the cgroup
3433		 * has been deleted and hence no longer needs the
3434		 * release agent to be called anyway. */
3435		if (css && (atomic_read(&css->refcnt) > 1))
3436			return 1;
3437	}
3438	return 0;
3439}
3440
3441/*
3442 * Atomically mark all (or else none) of the cgroup's CSS objects as
3443 * CSS_REMOVED. Return true on success, or false if the cgroup has
3444 * busy subsystems. Call with cgroup_mutex held
3445 */
3446
3447static int cgroup_clear_css_refs(struct cgroup *cgrp)
3448{
3449	struct cgroup_subsys *ss;
3450	unsigned long flags;
3451	bool failed = false;
3452	local_irq_save(flags);
3453	for_each_subsys(cgrp->root, ss) {
3454		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3455		int refcnt;
3456		while (1) {
3457			/* We can only remove a CSS with a refcnt==1 */
3458			refcnt = atomic_read(&css->refcnt);
3459			if (refcnt > 1) {
3460				failed = true;
3461				goto done;
3462			}
3463			BUG_ON(!refcnt);
3464			/*
3465			 * Drop the refcnt to 0 while we check other
3466			 * subsystems. This will cause any racing
3467			 * css_tryget() to spin until we set the
3468			 * CSS_REMOVED bits or abort
3469			 */
3470			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3471				break;
3472			cpu_relax();
3473		}
3474	}
3475 done:
3476	for_each_subsys(cgrp->root, ss) {
3477		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3478		if (failed) {
3479			/*
3480			 * Restore old refcnt if we previously managed
3481			 * to clear it from 1 to 0
3482			 */
3483			if (!atomic_read(&css->refcnt))
3484				atomic_set(&css->refcnt, 1);
3485		} else {
3486			/* Commit the fact that the CSS is removed */
3487			set_bit(CSS_REMOVED, &css->flags);
3488		}
3489	}
3490	local_irq_restore(flags);
3491	return !failed;
3492}
3493
3494static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3495{
3496	struct cgroup *cgrp = dentry->d_fsdata;
3497	struct dentry *d;
3498	struct cgroup *parent;
3499	DEFINE_WAIT(wait);
3500	struct cgroup_event *event, *tmp;
3501	int ret;
3502
3503	/* the vfs holds both inode->i_mutex already */
3504again:
3505	mutex_lock(&cgroup_mutex);
3506	if (atomic_read(&cgrp->count) != 0) {
3507		mutex_unlock(&cgroup_mutex);
3508		return -EBUSY;
3509	}
3510	if (!list_empty(&cgrp->children)) {
3511		mutex_unlock(&cgroup_mutex);
3512		return -EBUSY;
3513	}
3514	mutex_unlock(&cgroup_mutex);
3515
3516	/*
3517	 * In general, subsystem has no css->refcnt after pre_destroy(). But
3518	 * in racy cases, subsystem may have to get css->refcnt after
3519	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3520	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3521	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3522	 * and subsystem's reference count handling. Please see css_get/put
3523	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3524	 */
3525	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3526
3527	/*
3528	 * Call pre_destroy handlers of subsys. Notify subsystems
3529	 * that rmdir() request comes.
3530	 */
3531	ret = cgroup_call_pre_destroy(cgrp);
3532	if (ret) {
3533		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3534		return ret;
3535	}
3536
3537	mutex_lock(&cgroup_mutex);
3538	parent = cgrp->parent;
3539	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3540		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3541		mutex_unlock(&cgroup_mutex);
3542		return -EBUSY;
3543	}
3544	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3545	if (!cgroup_clear_css_refs(cgrp)) {
3546		mutex_unlock(&cgroup_mutex);
3547		/*
3548		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3549		 * prepare_to_wait(), we need to check this flag.
3550		 */
3551		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3552			schedule();
3553		finish_wait(&cgroup_rmdir_waitq, &wait);
3554		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3555		if (signal_pending(current))
3556			return -EINTR;
3557		goto again;
3558	}
3559	/* NO css_tryget() can success after here. */
3560	finish_wait(&cgroup_rmdir_waitq, &wait);
3561	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3562
3563	spin_lock(&release_list_lock);
3564	set_bit(CGRP_REMOVED, &cgrp->flags);
3565	if (!list_empty(&cgrp->release_list))
3566		list_del(&cgrp->release_list);
3567	spin_unlock(&release_list_lock);
3568
3569	cgroup_lock_hierarchy(cgrp->root);
3570	/* delete this cgroup from parent->children */
3571	list_del(&cgrp->sibling);
3572	cgroup_unlock_hierarchy(cgrp->root);
3573
3574	spin_lock(&cgrp->dentry->d_lock);
3575	d = dget(cgrp->dentry);
3576	spin_unlock(&d->d_lock);
3577
3578	cgroup_d_remove_dir(d);
3579	dput(d);
3580
3581	set_bit(CGRP_RELEASABLE, &parent->flags);
3582	check_for_release(parent);
3583
3584	/*
3585	 * Unregister events and notify userspace.
3586	 * Notify userspace about cgroup removing only after rmdir of cgroup
3587	 * directory to avoid race between userspace and kernelspace
3588	 */
3589	spin_lock(&cgrp->event_list_lock);
3590	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3591		list_del(&event->list);
3592		remove_wait_queue(event->wqh, &event->wait);
3593		eventfd_signal(event->eventfd, 1);
3594		schedule_work(&event->remove);
3595	}
3596	spin_unlock(&cgrp->event_list_lock);
3597
3598	mutex_unlock(&cgroup_mutex);
3599	return 0;
3600}
3601
3602static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3603{
3604	struct cgroup_subsys_state *css;
3605
3606	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3607
3608	/* Create the top cgroup state for this subsystem */
3609	list_add(&ss->sibling, &rootnode.subsys_list);
3610	ss->root = &rootnode;
3611	css = ss->create(ss, dummytop);
3612	/* We don't handle early failures gracefully */
3613	BUG_ON(IS_ERR(css));
3614	init_cgroup_css(css, ss, dummytop);
3615
3616	/* Update the init_css_set to contain a subsys
3617	 * pointer to this state - since the subsystem is
3618	 * newly registered, all tasks and hence the
3619	 * init_css_set is in the subsystem's top cgroup. */
3620	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3621
3622	need_forkexit_callback |= ss->fork || ss->exit;
3623
3624	/* At system boot, before all subsystems have been
3625	 * registered, no tasks have been forked, so we don't
3626	 * need to invoke fork callbacks here. */
3627	BUG_ON(!list_empty(&init_task.tasks));
3628
3629	mutex_init(&ss->hierarchy_mutex);
3630	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3631	ss->active = 1;
3632
3633	/* this function shouldn't be used with modular subsystems, since they
3634	 * need to register a subsys_id, among other things */
3635	BUG_ON(ss->module);
3636}
3637
3638/**
3639 * cgroup_load_subsys: load and register a modular subsystem at runtime
3640 * @ss: the subsystem to load
3641 *
3642 * This function should be called in a modular subsystem's initcall. If the
3643 * subsystem is built as a module, it will be assigned a new subsys_id and set
3644 * up for use. If the subsystem is built-in anyway, work is delegated to the
3645 * simpler cgroup_init_subsys.
3646 */
3647int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3648{
3649	int i;
3650	struct cgroup_subsys_state *css;
3651
3652	/* check name and function validity */
3653	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3654	    ss->create == NULL || ss->destroy == NULL)
3655		return -EINVAL;
3656
3657	/*
3658	 * we don't support callbacks in modular subsystems. this check is
3659	 * before the ss->module check for consistency; a subsystem that could
3660	 * be a module should still have no callbacks even if the user isn't
3661	 * compiling it as one.
3662	 */
3663	if (ss->fork || ss->exit)
3664		return -EINVAL;
3665
3666	/*
3667	 * an optionally modular subsystem is built-in: we want to do nothing,
3668	 * since cgroup_init_subsys will have already taken care of it.
3669	 */
3670	if (ss->module == NULL) {
3671		/* a few sanity checks */
3672		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3673		BUG_ON(subsys[ss->subsys_id] != ss);
3674		return 0;
3675	}
3676
3677	/*
3678	 * need to register a subsys id before anything else - for example,
3679	 * init_cgroup_css needs it.
3680	 */
3681	mutex_lock(&cgroup_mutex);
3682	/* find the first empty slot in the array */
3683	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3684		if (subsys[i] == NULL)
3685			break;
3686	}
3687	if (i == CGROUP_SUBSYS_COUNT) {
3688		/* maximum number of subsystems already registered! */
3689		mutex_unlock(&cgroup_mutex);
3690		return -EBUSY;
3691	}
3692	/* assign ourselves the subsys_id */
3693	ss->subsys_id = i;
3694	subsys[i] = ss;
3695
3696	/*
3697	 * no ss->create seems to need anything important in the ss struct, so
3698	 * this can happen first (i.e. before the rootnode attachment).
3699	 */
3700	css = ss->create(ss, dummytop);
3701	if (IS_ERR(css)) {
3702		/* failure case - need to deassign the subsys[] slot. */
3703		subsys[i] = NULL;
3704		mutex_unlock(&cgroup_mutex);
3705		return PTR_ERR(css);
3706	}
3707
3708	list_add(&ss->sibling, &rootnode.subsys_list);
3709	ss->root = &rootnode;
3710
3711	/* our new subsystem will be attached to the dummy hierarchy. */
3712	init_cgroup_css(css, ss, dummytop);
3713	/* init_idr must be after init_cgroup_css because it sets css->id. */
3714	if (ss->use_id) {
3715		int ret = cgroup_init_idr(ss, css);
3716		if (ret) {
3717			dummytop->subsys[ss->subsys_id] = NULL;
3718			ss->destroy(ss, dummytop);
3719			subsys[i] = NULL;
3720			mutex_unlock(&cgroup_mutex);
3721			return ret;
3722		}
3723	}
3724
3725	/*
3726	 * Now we need to entangle the css into the existing css_sets. unlike
3727	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3728	 * will need a new pointer to it; done by iterating the css_set_table.
3729	 * furthermore, modifying the existing css_sets will corrupt the hash
3730	 * table state, so each changed css_set will need its hash recomputed.
3731	 * this is all done under the css_set_lock.
3732	 */
3733	write_lock(&css_set_lock);
3734	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3735		struct css_set *cg;
3736		struct hlist_node *node, *tmp;
3737		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3738
3739		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3740			/* skip entries that we already rehashed */
3741			if (cg->subsys[ss->subsys_id])
3742				continue;
3743			/* remove existing entry */
3744			hlist_del(&cg->hlist);
3745			/* set new value */
3746			cg->subsys[ss->subsys_id] = css;
3747			/* recompute hash and restore entry */
3748			new_bucket = css_set_hash(cg->subsys);
3749			hlist_add_head(&cg->hlist, new_bucket);
3750		}
3751	}
3752	write_unlock(&css_set_lock);
3753
3754	mutex_init(&ss->hierarchy_mutex);
3755	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3756	ss->active = 1;
3757
3758	/* success! */
3759	mutex_unlock(&cgroup_mutex);
3760	return 0;
3761}
3762EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3763
3764/**
3765 * cgroup_unload_subsys: unload a modular subsystem
3766 * @ss: the subsystem to unload
3767 *
3768 * This function should be called in a modular subsystem's exitcall. When this
3769 * function is invoked, the refcount on the subsystem's module will be 0, so
3770 * the subsystem will not be attached to any hierarchy.
3771 */
3772void cgroup_unload_subsys(struct cgroup_subsys *ss)
3773{
3774	struct cg_cgroup_link *link;
3775	struct hlist_head *hhead;
3776
3777	BUG_ON(ss->module == NULL);
3778
3779	/*
3780	 * we shouldn't be called if the subsystem is in use, and the use of
3781	 * try_module_get in parse_cgroupfs_options should ensure that it
3782	 * doesn't start being used while we're killing it off.
3783	 */
3784	BUG_ON(ss->root != &rootnode);
3785
3786	mutex_lock(&cgroup_mutex);
3787	/* deassign the subsys_id */
3788	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3789	subsys[ss->subsys_id] = NULL;
3790
3791	/* remove subsystem from rootnode's list of subsystems */
3792	list_del(&ss->sibling);
3793
3794	/*
3795	 * disentangle the css from all css_sets attached to the dummytop. as
3796	 * in loading, we need to pay our respects to the hashtable gods.
3797	 */
3798	write_lock(&css_set_lock);
3799	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3800		struct css_set *cg = link->cg;
3801
3802		hlist_del(&cg->hlist);
3803		BUG_ON(!cg->subsys[ss->subsys_id]);
3804		cg->subsys[ss->subsys_id] = NULL;
3805		hhead = css_set_hash(cg->subsys);
3806		hlist_add_head(&cg->hlist, hhead);
3807	}
3808	write_unlock(&css_set_lock);
3809
3810	/*
3811	 * remove subsystem's css from the dummytop and free it - need to free
3812	 * before marking as null because ss->destroy needs the cgrp->subsys
3813	 * pointer to find their state. note that this also takes care of
3814	 * freeing the css_id.
3815	 */
3816	ss->destroy(ss, dummytop);
3817	dummytop->subsys[ss->subsys_id] = NULL;
3818
3819	mutex_unlock(&cgroup_mutex);
3820}
3821EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3822
3823/**
3824 * cgroup_init_early - cgroup initialization at system boot
3825 *
3826 * Initialize cgroups at system boot, and initialize any
3827 * subsystems that request early init.
3828 */
3829int __init cgroup_init_early(void)
3830{
3831	int i;
3832	atomic_set(&init_css_set.refcount, 1);
3833	INIT_LIST_HEAD(&init_css_set.cg_links);
3834	INIT_LIST_HEAD(&init_css_set.tasks);
3835	INIT_HLIST_NODE(&init_css_set.hlist);
3836	css_set_count = 1;
3837	init_cgroup_root(&rootnode);
3838	root_count = 1;
3839	init_task.cgroups = &init_css_set;
3840
3841	init_css_set_link.cg = &init_css_set;
3842	init_css_set_link.cgrp = dummytop;
3843	list_add(&init_css_set_link.cgrp_link_list,
3844		 &rootnode.top_cgroup.css_sets);
3845	list_add(&init_css_set_link.cg_link_list,
3846		 &init_css_set.cg_links);
3847
3848	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3849		INIT_HLIST_HEAD(&css_set_table[i]);
3850
3851	/* at bootup time, we don't worry about modular subsystems */
3852	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3853		struct cgroup_subsys *ss = subsys[i];
3854
3855		BUG_ON(!ss->name);
3856		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3857		BUG_ON(!ss->create);
3858		BUG_ON(!ss->destroy);
3859		if (ss->subsys_id != i) {
3860			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3861			       ss->name, ss->subsys_id);
3862			BUG();
3863		}
3864
3865		if (ss->early_init)
3866			cgroup_init_subsys(ss);
3867	}
3868	return 0;
3869}
3870
3871/**
3872 * cgroup_init - cgroup initialization
3873 *
3874 * Register cgroup filesystem and /proc file, and initialize
3875 * any subsystems that didn't request early init.
3876 */
3877int __init cgroup_init(void)
3878{
3879	int err;
3880	int i;
3881	struct hlist_head *hhead;
3882
3883	err = bdi_init(&cgroup_backing_dev_info);
3884	if (err)
3885		return err;
3886
3887	/* at bootup time, we don't worry about modular subsystems */
3888	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3889		struct cgroup_subsys *ss = subsys[i];
3890		if (!ss->early_init)
3891			cgroup_init_subsys(ss);
3892		if (ss->use_id)
3893			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3894	}
3895
3896	/* Add init_css_set to the hash table */
3897	hhead = css_set_hash(init_css_set.subsys);
3898	hlist_add_head(&init_css_set.hlist, hhead);
3899	BUG_ON(!init_root_id(&rootnode));
3900
3901	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3902	if (!cgroup_kobj) {
3903		err = -ENOMEM;
3904		goto out;
3905	}
3906
3907	err = register_filesystem(&cgroup_fs_type);
3908	if (err < 0) {
3909		kobject_put(cgroup_kobj);
3910		goto out;
3911	}
3912
3913	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3914
3915out:
3916	if (err)
3917		bdi_destroy(&cgroup_backing_dev_info);
3918
3919	return err;
3920}
3921
3922/*
3923 * proc_cgroup_show()
3924 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
3925 *  - Used for /proc/<pid>/cgroup.
3926 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3927 *    doesn't really matter if tsk->cgroup changes after we read it,
3928 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3929 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
3930 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3931 *    cgroup to top_cgroup.
3932 */
3933
3934/* TODO: Use a proper seq_file iterator */
3935static int proc_cgroup_show(struct seq_file *m, void *v)
3936{
3937	struct pid *pid;
3938	struct task_struct *tsk;
3939	char *buf;
3940	int retval;
3941	struct cgroupfs_root *root;
3942
3943	retval = -ENOMEM;
3944	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3945	if (!buf)
3946		goto out;
3947
3948	retval = -ESRCH;
3949	pid = m->private;
3950	tsk = get_pid_task(pid, PIDTYPE_PID);
3951	if (!tsk)
3952		goto out_free;
3953
3954	retval = 0;
3955
3956	mutex_lock(&cgroup_mutex);
3957
3958	for_each_active_root(root) {
3959		struct cgroup_subsys *ss;
3960		struct cgroup *cgrp;
3961		int count = 0;
3962
3963		seq_printf(m, "%d:", root->hierarchy_id);
3964		for_each_subsys(root, ss)
3965			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3966		if (strlen(root->name))
3967			seq_printf(m, "%sname=%s", count ? "," : "",
3968				   root->name);
3969		seq_putc(m, ':');
3970		cgrp = task_cgroup_from_root(tsk, root);
3971		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3972		if (retval < 0)
3973			goto out_unlock;
3974		seq_puts(m, buf);
3975		seq_putc(m, '\n');
3976	}
3977
3978out_unlock:
3979	mutex_unlock(&cgroup_mutex);
3980	put_task_struct(tsk);
3981out_free:
3982	kfree(buf);
3983out:
3984	return retval;
3985}
3986
3987static int cgroup_open(struct inode *inode, struct file *file)
3988{
3989	struct pid *pid = PROC_I(inode)->pid;
3990	return single_open(file, proc_cgroup_show, pid);
3991}
3992
3993const struct file_operations proc_cgroup_operations = {
3994	.open		= cgroup_open,
3995	.read		= seq_read,
3996	.llseek		= seq_lseek,
3997	.release	= single_release,
3998};
3999
4000/* Display information about each subsystem and each hierarchy */
4001static int proc_cgroupstats_show(struct seq_file *m, void *v)
4002{
4003	int i;
4004
4005	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4006	/*
4007	 * ideally we don't want subsystems moving around while we do this.
4008	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4009	 * subsys/hierarchy state.
4010	 */
4011	mutex_lock(&cgroup_mutex);
4012	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4013		struct cgroup_subsys *ss = subsys[i];
4014		if (ss == NULL)
4015			continue;
4016		seq_printf(m, "%s\t%d\t%d\t%d\n",
4017			   ss->name, ss->root->hierarchy_id,
4018			   ss->root->number_of_cgroups, !ss->disabled);
4019	}
4020	mutex_unlock(&cgroup_mutex);
4021	return 0;
4022}
4023
4024static int cgroupstats_open(struct inode *inode, struct file *file)
4025{
4026	return single_open(file, proc_cgroupstats_show, NULL);
4027}
4028
4029static const struct file_operations proc_cgroupstats_operations = {
4030	.open = cgroupstats_open,
4031	.read = seq_read,
4032	.llseek = seq_lseek,
4033	.release = single_release,
4034};
4035
4036/**
4037 * cgroup_fork - attach newly forked task to its parents cgroup.
4038 * @child: pointer to task_struct of forking parent process.
4039 *
4040 * Description: A task inherits its parent's cgroup at fork().
4041 *
4042 * A pointer to the shared css_set was automatically copied in
4043 * fork.c by dup_task_struct().  However, we ignore that copy, since
4044 * it was not made under the protection of RCU or cgroup_mutex, so
4045 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4046 * have already changed current->cgroups, allowing the previously
4047 * referenced cgroup group to be removed and freed.
4048 *
4049 * At the point that cgroup_fork() is called, 'current' is the parent
4050 * task, and the passed argument 'child' points to the child task.
4051 */
4052void cgroup_fork(struct task_struct *child)
4053{
4054	task_lock(current);
4055	child->cgroups = current->cgroups;
4056	get_css_set(child->cgroups);
4057	task_unlock(current);
4058	INIT_LIST_HEAD(&child->cg_list);
4059}
4060
4061/**
4062 * cgroup_fork_callbacks - run fork callbacks
4063 * @child: the new task
4064 *
4065 * Called on a new task very soon before adding it to the
4066 * tasklist. No need to take any locks since no-one can
4067 * be operating on this task.
4068 */
4069void cgroup_fork_callbacks(struct task_struct *child)
4070{
4071	if (need_forkexit_callback) {
4072		int i;
4073		/*
4074		 * forkexit callbacks are only supported for builtin
4075		 * subsystems, and the builtin section of the subsys array is
4076		 * immutable, so we don't need to lock the subsys array here.
4077		 */
4078		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4079			struct cgroup_subsys *ss = subsys[i];
4080			if (ss->fork)
4081				ss->fork(ss, child);
4082		}
4083	}
4084}
4085
4086/**
4087 * cgroup_post_fork - called on a new task after adding it to the task list
4088 * @child: the task in question
4089 *
4090 * Adds the task to the list running through its css_set if necessary.
4091 * Has to be after the task is visible on the task list in case we race
4092 * with the first call to cgroup_iter_start() - to guarantee that the
4093 * new task ends up on its list.
4094 */
4095void cgroup_post_fork(struct task_struct *child)
4096{
4097	if (use_task_css_set_links) {
4098		write_lock(&css_set_lock);
4099		task_lock(child);
4100		if (list_empty(&child->cg_list))
4101			list_add(&child->cg_list, &child->cgroups->tasks);
4102		task_unlock(child);
4103		write_unlock(&css_set_lock);
4104	}
4105}
4106/**
4107 * cgroup_exit - detach cgroup from exiting task
4108 * @tsk: pointer to task_struct of exiting process
4109 * @run_callback: run exit callbacks?
4110 *
4111 * Description: Detach cgroup from @tsk and release it.
4112 *
4113 * Note that cgroups marked notify_on_release force every task in
4114 * them to take the global cgroup_mutex mutex when exiting.
4115 * This could impact scaling on very large systems.  Be reluctant to
4116 * use notify_on_release cgroups where very high task exit scaling
4117 * is required on large systems.
4118 *
4119 * the_top_cgroup_hack:
4120 *
4121 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4122 *
4123 *    We call cgroup_exit() while the task is still competent to
4124 *    handle notify_on_release(), then leave the task attached to the
4125 *    root cgroup in each hierarchy for the remainder of its exit.
4126 *
4127 *    To do this properly, we would increment the reference count on
4128 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4129 *    code we would add a second cgroup function call, to drop that
4130 *    reference.  This would just create an unnecessary hot spot on
4131 *    the top_cgroup reference count, to no avail.
4132 *
4133 *    Normally, holding a reference to a cgroup without bumping its
4134 *    count is unsafe.   The cgroup could go away, or someone could
4135 *    attach us to a different cgroup, decrementing the count on
4136 *    the first cgroup that we never incremented.  But in this case,
4137 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4138 *    which wards off any cgroup_attach_task() attempts, or task is a failed
4139 *    fork, never visible to cgroup_attach_task.
4140 */
4141void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4142{
4143	int i;
4144	struct css_set *cg;
4145
4146	if (run_callbacks && need_forkexit_callback) {
4147		/*
4148		 * modular subsystems can't use callbacks, so no need to lock
4149		 * the subsys array
4150		 */
4151		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4152			struct cgroup_subsys *ss = subsys[i];
4153			if (ss->exit)
4154				ss->exit(ss, tsk);
4155		}
4156	}
4157
4158	/*
4159	 * Unlink from the css_set task list if necessary.
4160	 * Optimistically check cg_list before taking
4161	 * css_set_lock
4162	 */
4163	if (!list_empty(&tsk->cg_list)) {
4164		write_lock(&css_set_lock);
4165		if (!list_empty(&tsk->cg_list))
4166			list_del(&tsk->cg_list);
4167		write_unlock(&css_set_lock);
4168	}
4169
4170	/* Reassign the task to the init_css_set. */
4171	task_lock(tsk);
4172	cg = tsk->cgroups;
4173	tsk->cgroups = &init_css_set;
4174	task_unlock(tsk);
4175	if (cg)
4176		put_css_set_taskexit(cg);
4177}
4178
4179/**
4180 * cgroup_clone - clone the cgroup the given subsystem is attached to
4181 * @tsk: the task to be moved
4182 * @subsys: the given subsystem
4183 * @nodename: the name for the new cgroup
4184 *
4185 * Duplicate the current cgroup in the hierarchy that the given
4186 * subsystem is attached to, and move this task into the new
4187 * child.
4188 */
4189int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4190							char *nodename)
4191{
4192	struct dentry *dentry;
4193	int ret = 0;
4194	struct cgroup *parent, *child;
4195	struct inode *inode;
4196	struct css_set *cg;
4197	struct cgroupfs_root *root;
4198	struct cgroup_subsys *ss;
4199
4200	/* We shouldn't be called by an unregistered subsystem */
4201	BUG_ON(!subsys->active);
4202
4203	/* First figure out what hierarchy and cgroup we're dealing
4204	 * with, and pin them so we can drop cgroup_mutex */
4205	mutex_lock(&cgroup_mutex);
4206 again:
4207	root = subsys->root;
4208	if (root == &rootnode) {
4209		mutex_unlock(&cgroup_mutex);
4210		return 0;
4211	}
4212
4213	/* Pin the hierarchy */
4214	if (!atomic_inc_not_zero(&root->sb->s_active)) {
4215		/* We race with the final deactivate_super() */
4216		mutex_unlock(&cgroup_mutex);
4217		return 0;
4218	}
4219
4220	/* Keep the cgroup alive */
4221	task_lock(tsk);
4222	parent = task_cgroup(tsk, subsys->subsys_id);
4223	cg = tsk->cgroups;
4224	get_css_set(cg);
4225	task_unlock(tsk);
4226
4227	mutex_unlock(&cgroup_mutex);
4228
4229	/* Now do the VFS work to create a cgroup */
4230	inode = parent->dentry->d_inode;
4231
4232	/* Hold the parent directory mutex across this operation to
4233	 * stop anyone else deleting the new cgroup */
4234	mutex_lock(&inode->i_mutex);
4235	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4236	if (IS_ERR(dentry)) {
4237		printk(KERN_INFO
4238		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4239		       PTR_ERR(dentry));
4240		ret = PTR_ERR(dentry);
4241		goto out_release;
4242	}
4243
4244	/* Create the cgroup directory, which also creates the cgroup */
4245	ret = vfs_mkdir(inode, dentry, 0755);
4246	child = __d_cgrp(dentry);
4247	dput(dentry);
4248	if (ret) {
4249		printk(KERN_INFO
4250		       "Failed to create cgroup %s: %d\n", nodename,
4251		       ret);
4252		goto out_release;
4253	}
4254
4255	/* The cgroup now exists. Retake cgroup_mutex and check
4256	 * that we're still in the same state that we thought we
4257	 * were. */
4258	mutex_lock(&cgroup_mutex);
4259	if ((root != subsys->root) ||
4260	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
4261		/* Aargh, we raced ... */
4262		mutex_unlock(&inode->i_mutex);
4263		put_css_set(cg);
4264
4265		deactivate_super(root->sb);
4266		/* The cgroup is still accessible in the VFS, but
4267		 * we're not going to try to rmdir() it at this
4268		 * point. */
4269		printk(KERN_INFO
4270		       "Race in cgroup_clone() - leaking cgroup %s\n",
4271		       nodename);
4272		goto again;
4273	}
4274
4275	/* do any required auto-setup */
4276	for_each_subsys(root, ss) {
4277		if (ss->post_clone)
4278			ss->post_clone(ss, child);
4279	}
4280
4281	/* All seems fine. Finish by moving the task into the new cgroup */
4282	ret = cgroup_attach_task(child, tsk);
4283	mutex_unlock(&cgroup_mutex);
4284
4285 out_release:
4286	mutex_unlock(&inode->i_mutex);
4287
4288	mutex_lock(&cgroup_mutex);
4289	put_css_set(cg);
4290	mutex_unlock(&cgroup_mutex);
4291	deactivate_super(root->sb);
4292	return ret;
4293}
4294
4295/**
4296 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4297 * @cgrp: the cgroup in question
4298 * @task: the task in question
4299 *
4300 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4301 * hierarchy.
4302 *
4303 * If we are sending in dummytop, then presumably we are creating
4304 * the top cgroup in the subsystem.
4305 *
4306 * Called only by the ns (nsproxy) cgroup.
4307 */
4308int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4309{
4310	int ret;
4311	struct cgroup *target;
4312
4313	if (cgrp == dummytop)
4314		return 1;
4315
4316	target = task_cgroup_from_root(task, cgrp->root);
4317	while (cgrp != target && cgrp!= cgrp->top_cgroup)
4318		cgrp = cgrp->parent;
4319	ret = (cgrp == target);
4320	return ret;
4321}
4322
4323static void check_for_release(struct cgroup *cgrp)
4324{
4325	/* All of these checks rely on RCU to keep the cgroup
4326	 * structure alive */
4327	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4328	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4329		/* Control Group is currently removeable. If it's not
4330		 * already queued for a userspace notification, queue
4331		 * it now */
4332		int need_schedule_work = 0;
4333		spin_lock(&release_list_lock);
4334		if (!cgroup_is_removed(cgrp) &&
4335		    list_empty(&cgrp->release_list)) {
4336			list_add(&cgrp->release_list, &release_list);
4337			need_schedule_work = 1;
4338		}
4339		spin_unlock(&release_list_lock);
4340		if (need_schedule_work)
4341			schedule_work(&release_agent_work);
4342	}
4343}
4344
4345/* Caller must verify that the css is not for root cgroup */
4346void __css_put(struct cgroup_subsys_state *css, int count)
4347{
4348	struct cgroup *cgrp = css->cgroup;
4349	int val;
4350	rcu_read_lock();
4351	val = atomic_sub_return(count, &css->refcnt);
4352	if (val == 1) {
4353		if (notify_on_release(cgrp)) {
4354			set_bit(CGRP_RELEASABLE, &cgrp->flags);
4355			check_for_release(cgrp);
4356		}
4357		cgroup_wakeup_rmdir_waiter(cgrp);
4358	}
4359	rcu_read_unlock();
4360	WARN_ON_ONCE(val < 1);
4361}
4362EXPORT_SYMBOL_GPL(__css_put);
4363
4364/*
4365 * Notify userspace when a cgroup is released, by running the
4366 * configured release agent with the name of the cgroup (path
4367 * relative to the root of cgroup file system) as the argument.
4368 *
4369 * Most likely, this user command will try to rmdir this cgroup.
4370 *
4371 * This races with the possibility that some other task will be
4372 * attached to this cgroup before it is removed, or that some other
4373 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4374 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4375 * unused, and this cgroup will be reprieved from its death sentence,
4376 * to continue to serve a useful existence.  Next time it's released,
4377 * we will get notified again, if it still has 'notify_on_release' set.
4378 *
4379 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4380 * means only wait until the task is successfully execve()'d.  The
4381 * separate release agent task is forked by call_usermodehelper(),
4382 * then control in this thread returns here, without waiting for the
4383 * release agent task.  We don't bother to wait because the caller of
4384 * this routine has no use for the exit status of the release agent
4385 * task, so no sense holding our caller up for that.
4386 */
4387static void cgroup_release_agent(struct work_struct *work)
4388{
4389	BUG_ON(work != &release_agent_work);
4390	mutex_lock(&cgroup_mutex);
4391	spin_lock(&release_list_lock);
4392	while (!list_empty(&release_list)) {
4393		char *argv[3], *envp[3];
4394		int i;
4395		char *pathbuf = NULL, *agentbuf = NULL;
4396		struct cgroup *cgrp = list_entry(release_list.next,
4397						    struct cgroup,
4398						    release_list);
4399		list_del_init(&cgrp->release_list);
4400		spin_unlock(&release_list_lock);
4401		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4402		if (!pathbuf)
4403			goto continue_free;
4404		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4405			goto continue_free;
4406		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4407		if (!agentbuf)
4408			goto continue_free;
4409
4410		i = 0;
4411		argv[i++] = agentbuf;
4412		argv[i++] = pathbuf;
4413		argv[i] = NULL;
4414
4415		i = 0;
4416		/* minimal command environment */
4417		envp[i++] = "HOME=/";
4418		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4419		envp[i] = NULL;
4420
4421		/* Drop the lock while we invoke the usermode helper,
4422		 * since the exec could involve hitting disk and hence
4423		 * be a slow process */
4424		mutex_unlock(&cgroup_mutex);
4425		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4426		mutex_lock(&cgroup_mutex);
4427 continue_free:
4428		kfree(pathbuf);
4429		kfree(agentbuf);
4430		spin_lock(&release_list_lock);
4431	}
4432	spin_unlock(&release_list_lock);
4433	mutex_unlock(&cgroup_mutex);
4434}
4435
4436static int __init cgroup_disable(char *str)
4437{
4438	int i;
4439	char *token;
4440
4441	while ((token = strsep(&str, ",")) != NULL) {
4442		if (!*token)
4443			continue;
4444		/*
4445		 * cgroup_disable, being at boot time, can't know about module
4446		 * subsystems, so we don't worry about them.
4447		 */
4448		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4449			struct cgroup_subsys *ss = subsys[i];
4450
4451			if (!strcmp(token, ss->name)) {
4452				ss->disabled = 1;
4453				printk(KERN_INFO "Disabling %s control group"
4454					" subsystem\n", ss->name);
4455				break;
4456			}
4457		}
4458	}
4459	return 1;
4460}
4461__setup("cgroup_disable=", cgroup_disable);
4462
4463/*
4464 * Functons for CSS ID.
4465 */
4466
4467/*
4468 *To get ID other than 0, this should be called when !cgroup_is_removed().
4469 */
4470unsigned short css_id(struct cgroup_subsys_state *css)
4471{
4472	struct css_id *cssid;
4473
4474	/*
4475	 * This css_id() can return correct value when somone has refcnt
4476	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4477	 * it's unchanged until freed.
4478	 */
4479	cssid = rcu_dereference_check(css->id,
4480			rcu_read_lock_held() || atomic_read(&css->refcnt));
4481
4482	if (cssid)
4483		return cssid->id;
4484	return 0;
4485}
4486EXPORT_SYMBOL_GPL(css_id);
4487
4488unsigned short css_depth(struct cgroup_subsys_state *css)
4489{
4490	struct css_id *cssid;
4491
4492	cssid = rcu_dereference_check(css->id,
4493			rcu_read_lock_held() || atomic_read(&css->refcnt));
4494
4495	if (cssid)
4496		return cssid->depth;
4497	return 0;
4498}
4499EXPORT_SYMBOL_GPL(css_depth);
4500
4501/**
4502 *  css_is_ancestor - test "root" css is an ancestor of "child"
4503 * @child: the css to be tested.
4504 * @root: the css supporsed to be an ancestor of the child.
4505 *
4506 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4507 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4508 * But, considering usual usage, the csses should be valid objects after test.
4509 * Assuming that the caller will do some action to the child if this returns
4510 * returns true, the caller must take "child";s reference count.
4511 * If "child" is valid object and this returns true, "root" is valid, too.
4512 */
4513
4514bool css_is_ancestor(struct cgroup_subsys_state *child,
4515		    const struct cgroup_subsys_state *root)
4516{
4517	struct css_id *child_id;
4518	struct css_id *root_id;
4519	bool ret = true;
4520
4521	rcu_read_lock();
4522	child_id  = rcu_dereference(child->id);
4523	root_id = rcu_dereference(root->id);
4524	if (!child_id
4525	    || !root_id
4526	    || (child_id->depth < root_id->depth)
4527	    || (child_id->stack[root_id->depth] != root_id->id))
4528		ret = false;
4529	rcu_read_unlock();
4530	return ret;
4531}
4532
4533static void __free_css_id_cb(struct rcu_head *head)
4534{
4535	struct css_id *id;
4536
4537	id = container_of(head, struct css_id, rcu_head);
4538	kfree(id);
4539}
4540
4541void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4542{
4543	struct css_id *id = css->id;
4544	/* When this is called before css_id initialization, id can be NULL */
4545	if (!id)
4546		return;
4547
4548	BUG_ON(!ss->use_id);
4549
4550	rcu_assign_pointer(id->css, NULL);
4551	rcu_assign_pointer(css->id, NULL);
4552	spin_lock(&ss->id_lock);
4553	idr_remove(&ss->idr, id->id);
4554	spin_unlock(&ss->id_lock);
4555	call_rcu(&id->rcu_head, __free_css_id_cb);
4556}
4557EXPORT_SYMBOL_GPL(free_css_id);
4558
4559/*
4560 * This is called by init or create(). Then, calls to this function are
4561 * always serialized (By cgroup_mutex() at create()).
4562 */
4563
4564static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4565{
4566	struct css_id *newid;
4567	int myid, error, size;
4568
4569	BUG_ON(!ss->use_id);
4570
4571	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4572	newid = kzalloc(size, GFP_KERNEL);
4573	if (!newid)
4574		return ERR_PTR(-ENOMEM);
4575	/* get id */
4576	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4577		error = -ENOMEM;
4578		goto err_out;
4579	}
4580	spin_lock(&ss->id_lock);
4581	/* Don't use 0. allocates an ID of 1-65535 */
4582	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4583	spin_unlock(&ss->id_lock);
4584
4585	/* Returns error when there are no free spaces for new ID.*/
4586	if (error) {
4587		error = -ENOSPC;
4588		goto err_out;
4589	}
4590	if (myid > CSS_ID_MAX)
4591		goto remove_idr;
4592
4593	newid->id = myid;
4594	newid->depth = depth;
4595	return newid;
4596remove_idr:
4597	error = -ENOSPC;
4598	spin_lock(&ss->id_lock);
4599	idr_remove(&ss->idr, myid);
4600	spin_unlock(&ss->id_lock);
4601err_out:
4602	kfree(newid);
4603	return ERR_PTR(error);
4604
4605}
4606
4607static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4608					    struct cgroup_subsys_state *rootcss)
4609{
4610	struct css_id *newid;
4611
4612	spin_lock_init(&ss->id_lock);
4613	idr_init(&ss->idr);
4614
4615	newid = get_new_cssid(ss, 0);
4616	if (IS_ERR(newid))
4617		return PTR_ERR(newid);
4618
4619	newid->stack[0] = newid->id;
4620	newid->css = rootcss;
4621	rootcss->id = newid;
4622	return 0;
4623}
4624
4625static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4626			struct cgroup *child)
4627{
4628	int subsys_id, i, depth = 0;
4629	struct cgroup_subsys_state *parent_css, *child_css;
4630	struct css_id *child_id, *parent_id;
4631
4632	subsys_id = ss->subsys_id;
4633	parent_css = parent->subsys[subsys_id];
4634	child_css = child->subsys[subsys_id];
4635	parent_id = parent_css->id;
4636	depth = parent_id->depth + 1;
4637
4638	child_id = get_new_cssid(ss, depth);
4639	if (IS_ERR(child_id))
4640		return PTR_ERR(child_id);
4641
4642	for (i = 0; i < depth; i++)
4643		child_id->stack[i] = parent_id->stack[i];
4644	child_id->stack[depth] = child_id->id;
4645	/*
4646	 * child_id->css pointer will be set after this cgroup is available
4647	 * see cgroup_populate_dir()
4648	 */
4649	rcu_assign_pointer(child_css->id, child_id);
4650
4651	return 0;
4652}
4653
4654/**
4655 * css_lookup - lookup css by id
4656 * @ss: cgroup subsys to be looked into.
4657 * @id: the id
4658 *
4659 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4660 * NULL if not. Should be called under rcu_read_lock()
4661 */
4662struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4663{
4664	struct css_id *cssid = NULL;
4665
4666	BUG_ON(!ss->use_id);
4667	cssid = idr_find(&ss->idr, id);
4668
4669	if (unlikely(!cssid))
4670		return NULL;
4671
4672	return rcu_dereference(cssid->css);
4673}
4674EXPORT_SYMBOL_GPL(css_lookup);
4675
4676/**
4677 * css_get_next - lookup next cgroup under specified hierarchy.
4678 * @ss: pointer to subsystem
4679 * @id: current position of iteration.
4680 * @root: pointer to css. search tree under this.
4681 * @foundid: position of found object.
4682 *
4683 * Search next css under the specified hierarchy of rootid. Calling under
4684 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4685 */
4686struct cgroup_subsys_state *
4687css_get_next(struct cgroup_subsys *ss, int id,
4688	     struct cgroup_subsys_state *root, int *foundid)
4689{
4690	struct cgroup_subsys_state *ret = NULL;
4691	struct css_id *tmp;
4692	int tmpid;
4693	int rootid = css_id(root);
4694	int depth = css_depth(root);
4695
4696	if (!rootid)
4697		return NULL;
4698
4699	BUG_ON(!ss->use_id);
4700	/* fill start point for scan */
4701	tmpid = id;
4702	while (1) {
4703		/*
4704		 * scan next entry from bitmap(tree), tmpid is updated after
4705		 * idr_get_next().
4706		 */
4707		spin_lock(&ss->id_lock);
4708		tmp = idr_get_next(&ss->idr, &tmpid);
4709		spin_unlock(&ss->id_lock);
4710
4711		if (!tmp)
4712			break;
4713		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4714			ret = rcu_dereference(tmp->css);
4715			if (ret) {
4716				*foundid = tmpid;
4717				break;
4718			}
4719		}
4720		/* continue to scan from next id */
4721		tmpid = tmpid + 1;
4722	}
4723	return ret;
4724}
4725
4726#ifdef CONFIG_CGROUP_DEBUG
4727static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4728						   struct cgroup *cont)
4729{
4730	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4731
4732	if (!css)
4733		return ERR_PTR(-ENOMEM);
4734
4735	return css;
4736}
4737
4738static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4739{
4740	kfree(cont->subsys[debug_subsys_id]);
4741}
4742
4743static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4744{
4745	return atomic_read(&cont->count);
4746}
4747
4748static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4749{
4750	return cgroup_task_count(cont);
4751}
4752
4753static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4754{
4755	return (u64)(unsigned long)current->cgroups;
4756}
4757
4758static u64 current_css_set_refcount_read(struct cgroup *cont,
4759					   struct cftype *cft)
4760{
4761	u64 count;
4762
4763	rcu_read_lock();
4764	count = atomic_read(&current->cgroups->refcount);
4765	rcu_read_unlock();
4766	return count;
4767}
4768
4769static int current_css_set_cg_links_read(struct cgroup *cont,
4770					 struct cftype *cft,
4771					 struct seq_file *seq)
4772{
4773	struct cg_cgroup_link *link;
4774	struct css_set *cg;
4775
4776	read_lock(&css_set_lock);
4777	rcu_read_lock();
4778	cg = rcu_dereference(current->cgroups);
4779	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4780		struct cgroup *c = link->cgrp;
4781		const char *name;
4782
4783		if (c->dentry)
4784			name = c->dentry->d_name.name;
4785		else
4786			name = "?";
4787		seq_printf(seq, "Root %d group %s\n",
4788			   c->root->hierarchy_id, name);
4789	}
4790	rcu_read_unlock();
4791	read_unlock(&css_set_lock);
4792	return 0;
4793}
4794
4795#define MAX_TASKS_SHOWN_PER_CSS 25
4796static int cgroup_css_links_read(struct cgroup *cont,
4797				 struct cftype *cft,
4798				 struct seq_file *seq)
4799{
4800	struct cg_cgroup_link *link;
4801
4802	read_lock(&css_set_lock);
4803	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4804		struct css_set *cg = link->cg;
4805		struct task_struct *task;
4806		int count = 0;
4807		seq_printf(seq, "css_set %p\n", cg);
4808		list_for_each_entry(task, &cg->tasks, cg_list) {
4809			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4810				seq_puts(seq, "  ...\n");
4811				break;
4812			} else {
4813				seq_printf(seq, "  task %d\n",
4814					   task_pid_vnr(task));
4815			}
4816		}
4817	}
4818	read_unlock(&css_set_lock);
4819	return 0;
4820}
4821
4822static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4823{
4824	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4825}
4826
4827static struct cftype debug_files[] =  {
4828	{
4829		.name = "cgroup_refcount",
4830		.read_u64 = cgroup_refcount_read,
4831	},
4832	{
4833		.name = "taskcount",
4834		.read_u64 = debug_taskcount_read,
4835	},
4836
4837	{
4838		.name = "current_css_set",
4839		.read_u64 = current_css_set_read,
4840	},
4841
4842	{
4843		.name = "current_css_set_refcount",
4844		.read_u64 = current_css_set_refcount_read,
4845	},
4846
4847	{
4848		.name = "current_css_set_cg_links",
4849		.read_seq_string = current_css_set_cg_links_read,
4850	},
4851
4852	{
4853		.name = "cgroup_css_links",
4854		.read_seq_string = cgroup_css_links_read,
4855	},
4856
4857	{
4858		.name = "releasable",
4859		.read_u64 = releasable_read,
4860	},
4861};
4862
4863static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4864{
4865	return cgroup_add_files(cont, ss, debug_files,
4866				ARRAY_SIZE(debug_files));
4867}
4868
4869struct cgroup_subsys debug_subsys = {
4870	.name = "debug",
4871	.create = debug_create,
4872	.destroy = debug_destroy,
4873	.populate = debug_populate,
4874	.subsys_id = debug_subsys_id,
4875};
4876#endif /* CONFIG_CGROUP_DEBUG */
4877