1/* auditfilter.c -- filtering of audit events
2 *
3 * Copyright 2003-2004 Red Hat, Inc.
4 * Copyright 2005 Hewlett-Packard Development Company, L.P.
5 * Copyright 2005 IBM Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 */
21
22#include <linux/kernel.h>
23#include <linux/audit.h>
24#include <linux/kthread.h>
25#include <linux/mutex.h>
26#include <linux/fs.h>
27#include <linux/namei.h>
28#include <linux/netlink.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/security.h>
32#include "audit.h"
33
34/*
35 * Locking model:
36 *
37 * audit_filter_mutex:
38 * 		Synchronizes writes and blocking reads of audit's filterlist
39 * 		data.  Rcu is used to traverse the filterlist and access
40 * 		contents of structs audit_entry, audit_watch and opaque
41 * 		LSM rules during filtering.  If modified, these structures
42 * 		must be copied and replace their counterparts in the filterlist.
43 * 		An audit_parent struct is not accessed during filtering, so may
44 * 		be written directly provided audit_filter_mutex is held.
45 */
46
47/* Audit filter lists, defined in <linux/audit.h> */
48struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
49	LIST_HEAD_INIT(audit_filter_list[0]),
50	LIST_HEAD_INIT(audit_filter_list[1]),
51	LIST_HEAD_INIT(audit_filter_list[2]),
52	LIST_HEAD_INIT(audit_filter_list[3]),
53	LIST_HEAD_INIT(audit_filter_list[4]),
54	LIST_HEAD_INIT(audit_filter_list[5]),
55#if AUDIT_NR_FILTERS != 6
56#error Fix audit_filter_list initialiser
57#endif
58};
59static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
60	LIST_HEAD_INIT(audit_rules_list[0]),
61	LIST_HEAD_INIT(audit_rules_list[1]),
62	LIST_HEAD_INIT(audit_rules_list[2]),
63	LIST_HEAD_INIT(audit_rules_list[3]),
64	LIST_HEAD_INIT(audit_rules_list[4]),
65	LIST_HEAD_INIT(audit_rules_list[5]),
66};
67
68DEFINE_MUTEX(audit_filter_mutex);
69
70static inline void audit_free_rule(struct audit_entry *e)
71{
72	int i;
73	struct audit_krule *erule = &e->rule;
74
75	/* some rules don't have associated watches */
76	if (erule->watch)
77		audit_put_watch(erule->watch);
78	if (erule->fields)
79		for (i = 0; i < erule->field_count; i++) {
80			struct audit_field *f = &erule->fields[i];
81			kfree(f->lsm_str);
82			security_audit_rule_free(f->lsm_rule);
83		}
84	kfree(erule->fields);
85	kfree(erule->filterkey);
86	kfree(e);
87}
88
89void audit_free_rule_rcu(struct rcu_head *head)
90{
91	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
92	audit_free_rule(e);
93}
94
95/* Initialize an audit filterlist entry. */
96static inline struct audit_entry *audit_init_entry(u32 field_count)
97{
98	struct audit_entry *entry;
99	struct audit_field *fields;
100
101	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102	if (unlikely(!entry))
103		return NULL;
104
105	fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
106	if (unlikely(!fields)) {
107		kfree(entry);
108		return NULL;
109	}
110	entry->rule.fields = fields;
111
112	return entry;
113}
114
115/* Unpack a filter field's string representation from user-space
116 * buffer. */
117char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
118{
119	char *str;
120
121	if (!*bufp || (len == 0) || (len > *remain))
122		return ERR_PTR(-EINVAL);
123
124	/* Of the currently implemented string fields, PATH_MAX
125	 * defines the longest valid length.
126	 */
127	if (len > PATH_MAX)
128		return ERR_PTR(-ENAMETOOLONG);
129
130	str = kmalloc(len + 1, GFP_KERNEL);
131	if (unlikely(!str))
132		return ERR_PTR(-ENOMEM);
133
134	memcpy(str, *bufp, len);
135	str[len] = 0;
136	*bufp += len;
137	*remain -= len;
138
139	return str;
140}
141
142/* Translate an inode field to kernel respresentation. */
143static inline int audit_to_inode(struct audit_krule *krule,
144				 struct audit_field *f)
145{
146	if (krule->listnr != AUDIT_FILTER_EXIT ||
147	    krule->watch || krule->inode_f || krule->tree ||
148	    (f->op != Audit_equal && f->op != Audit_not_equal))
149		return -EINVAL;
150
151	krule->inode_f = f;
152	return 0;
153}
154
155static __u32 *classes[AUDIT_SYSCALL_CLASSES];
156
157int __init audit_register_class(int class, unsigned *list)
158{
159	__u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
160	if (!p)
161		return -ENOMEM;
162	while (*list != ~0U) {
163		unsigned n = *list++;
164		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
165			kfree(p);
166			return -EINVAL;
167		}
168		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
169	}
170	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
171		kfree(p);
172		return -EINVAL;
173	}
174	classes[class] = p;
175	return 0;
176}
177
178int audit_match_class(int class, unsigned syscall)
179{
180	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
181		return 0;
182	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
183		return 0;
184	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
185}
186
187#ifdef CONFIG_AUDITSYSCALL
188static inline int audit_match_class_bits(int class, u32 *mask)
189{
190	int i;
191
192	if (classes[class]) {
193		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
194			if (mask[i] & classes[class][i])
195				return 0;
196	}
197	return 1;
198}
199
200static int audit_match_signal(struct audit_entry *entry)
201{
202	struct audit_field *arch = entry->rule.arch_f;
203
204	if (!arch) {
205		/* When arch is unspecified, we must check both masks on biarch
206		 * as syscall number alone is ambiguous. */
207		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
208					       entry->rule.mask) &&
209			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
210					       entry->rule.mask));
211	}
212
213	switch(audit_classify_arch(arch->val)) {
214	case 0: /* native */
215		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216					       entry->rule.mask));
217	case 1: /* 32bit on biarch */
218		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
219					       entry->rule.mask));
220	default:
221		return 1;
222	}
223}
224#endif
225
226/* Common user-space to kernel rule translation. */
227static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
228{
229	unsigned listnr;
230	struct audit_entry *entry;
231	int i, err;
232
233	err = -EINVAL;
234	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
235	switch(listnr) {
236	default:
237		goto exit_err;
238	case AUDIT_FILTER_USER:
239	case AUDIT_FILTER_TYPE:
240#ifdef CONFIG_AUDITSYSCALL
241	case AUDIT_FILTER_ENTRY:
242	case AUDIT_FILTER_EXIT:
243	case AUDIT_FILTER_TASK:
244#endif
245		;
246	}
247	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
248		printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
249		goto exit_err;
250	}
251	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
252		goto exit_err;
253	if (rule->field_count > AUDIT_MAX_FIELDS)
254		goto exit_err;
255
256	err = -ENOMEM;
257	entry = audit_init_entry(rule->field_count);
258	if (!entry)
259		goto exit_err;
260
261	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
262	entry->rule.listnr = listnr;
263	entry->rule.action = rule->action;
264	entry->rule.field_count = rule->field_count;
265
266	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
267		entry->rule.mask[i] = rule->mask[i];
268
269	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
270		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
271		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
272		__u32 *class;
273
274		if (!(*p & AUDIT_BIT(bit)))
275			continue;
276		*p &= ~AUDIT_BIT(bit);
277		class = classes[i];
278		if (class) {
279			int j;
280			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
281				entry->rule.mask[j] |= class[j];
282		}
283	}
284
285	return entry;
286
287exit_err:
288	return ERR_PTR(err);
289}
290
291static u32 audit_ops[] =
292{
293	[Audit_equal] = AUDIT_EQUAL,
294	[Audit_not_equal] = AUDIT_NOT_EQUAL,
295	[Audit_bitmask] = AUDIT_BIT_MASK,
296	[Audit_bittest] = AUDIT_BIT_TEST,
297	[Audit_lt] = AUDIT_LESS_THAN,
298	[Audit_gt] = AUDIT_GREATER_THAN,
299	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
300	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
301};
302
303static u32 audit_to_op(u32 op)
304{
305	u32 n;
306	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
307		;
308	return n;
309}
310
311
312/* Translate struct audit_rule to kernel's rule respresentation.
313 * Exists for backward compatibility with userspace. */
314static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
315{
316	struct audit_entry *entry;
317	int err = 0;
318	int i;
319
320	entry = audit_to_entry_common(rule);
321	if (IS_ERR(entry))
322		goto exit_nofree;
323
324	for (i = 0; i < rule->field_count; i++) {
325		struct audit_field *f = &entry->rule.fields[i];
326		u32 n;
327
328		n = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
329
330		/* Support for legacy operators where
331		 * AUDIT_NEGATE bit signifies != and otherwise assumes == */
332		if (n & AUDIT_NEGATE)
333			f->op = Audit_not_equal;
334		else if (!n)
335			f->op = Audit_equal;
336		else
337			f->op = audit_to_op(n);
338
339		entry->rule.vers_ops = (n & AUDIT_OPERATORS) ? 2 : 1;
340
341		f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
342		f->val = rule->values[i];
343
344		err = -EINVAL;
345		if (f->op == Audit_bad)
346			goto exit_free;
347
348		switch(f->type) {
349		default:
350			goto exit_free;
351		case AUDIT_PID:
352		case AUDIT_UID:
353		case AUDIT_EUID:
354		case AUDIT_SUID:
355		case AUDIT_FSUID:
356		case AUDIT_GID:
357		case AUDIT_EGID:
358		case AUDIT_SGID:
359		case AUDIT_FSGID:
360		case AUDIT_LOGINUID:
361		case AUDIT_PERS:
362		case AUDIT_MSGTYPE:
363		case AUDIT_PPID:
364		case AUDIT_DEVMAJOR:
365		case AUDIT_DEVMINOR:
366		case AUDIT_EXIT:
367		case AUDIT_SUCCESS:
368			/* bit ops are only useful on syscall args */
369			if (f->op == Audit_bitmask || f->op == Audit_bittest)
370				goto exit_free;
371			break;
372		case AUDIT_ARG0:
373		case AUDIT_ARG1:
374		case AUDIT_ARG2:
375		case AUDIT_ARG3:
376			break;
377		/* arch is only allowed to be = or != */
378		case AUDIT_ARCH:
379			if (f->op != Audit_not_equal && f->op != Audit_equal)
380				goto exit_free;
381			entry->rule.arch_f = f;
382			break;
383		case AUDIT_PERM:
384			if (f->val & ~15)
385				goto exit_free;
386			break;
387		case AUDIT_FILETYPE:
388			if ((f->val & ~S_IFMT) > S_IFMT)
389				goto exit_free;
390			break;
391		case AUDIT_INODE:
392			err = audit_to_inode(&entry->rule, f);
393			if (err)
394				goto exit_free;
395			break;
396		}
397	}
398
399	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
400		entry->rule.inode_f = NULL;
401
402exit_nofree:
403	return entry;
404
405exit_free:
406	audit_free_rule(entry);
407	return ERR_PTR(err);
408}
409
410/* Translate struct audit_rule_data to kernel's rule respresentation. */
411static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
412					       size_t datasz)
413{
414	int err = 0;
415	struct audit_entry *entry;
416	void *bufp;
417	size_t remain = datasz - sizeof(struct audit_rule_data);
418	int i;
419	char *str;
420
421	entry = audit_to_entry_common((struct audit_rule *)data);
422	if (IS_ERR(entry))
423		goto exit_nofree;
424
425	bufp = data->buf;
426	entry->rule.vers_ops = 2;
427	for (i = 0; i < data->field_count; i++) {
428		struct audit_field *f = &entry->rule.fields[i];
429
430		err = -EINVAL;
431
432		f->op = audit_to_op(data->fieldflags[i]);
433		if (f->op == Audit_bad)
434			goto exit_free;
435
436		f->type = data->fields[i];
437		f->val = data->values[i];
438		f->lsm_str = NULL;
439		f->lsm_rule = NULL;
440		switch(f->type) {
441		case AUDIT_PID:
442		case AUDIT_UID:
443		case AUDIT_EUID:
444		case AUDIT_SUID:
445		case AUDIT_FSUID:
446		case AUDIT_GID:
447		case AUDIT_EGID:
448		case AUDIT_SGID:
449		case AUDIT_FSGID:
450		case AUDIT_LOGINUID:
451		case AUDIT_PERS:
452		case AUDIT_MSGTYPE:
453		case AUDIT_PPID:
454		case AUDIT_DEVMAJOR:
455		case AUDIT_DEVMINOR:
456		case AUDIT_EXIT:
457		case AUDIT_SUCCESS:
458		case AUDIT_ARG0:
459		case AUDIT_ARG1:
460		case AUDIT_ARG2:
461		case AUDIT_ARG3:
462			break;
463		case AUDIT_ARCH:
464			entry->rule.arch_f = f;
465			break;
466		case AUDIT_SUBJ_USER:
467		case AUDIT_SUBJ_ROLE:
468		case AUDIT_SUBJ_TYPE:
469		case AUDIT_SUBJ_SEN:
470		case AUDIT_SUBJ_CLR:
471		case AUDIT_OBJ_USER:
472		case AUDIT_OBJ_ROLE:
473		case AUDIT_OBJ_TYPE:
474		case AUDIT_OBJ_LEV_LOW:
475		case AUDIT_OBJ_LEV_HIGH:
476			str = audit_unpack_string(&bufp, &remain, f->val);
477			if (IS_ERR(str))
478				goto exit_free;
479			entry->rule.buflen += f->val;
480
481			err = security_audit_rule_init(f->type, f->op, str,
482						       (void **)&f->lsm_rule);
483			/* Keep currently invalid fields around in case they
484			 * become valid after a policy reload. */
485			if (err == -EINVAL) {
486				printk(KERN_WARNING "audit rule for LSM "
487				       "\'%s\' is invalid\n",  str);
488				err = 0;
489			}
490			if (err) {
491				kfree(str);
492				goto exit_free;
493			} else
494				f->lsm_str = str;
495			break;
496		case AUDIT_WATCH:
497			str = audit_unpack_string(&bufp, &remain, f->val);
498			if (IS_ERR(str))
499				goto exit_free;
500			entry->rule.buflen += f->val;
501
502			err = audit_to_watch(&entry->rule, str, f->val, f->op);
503			if (err) {
504				kfree(str);
505				goto exit_free;
506			}
507			break;
508		case AUDIT_DIR:
509			str = audit_unpack_string(&bufp, &remain, f->val);
510			if (IS_ERR(str))
511				goto exit_free;
512			entry->rule.buflen += f->val;
513
514			err = audit_make_tree(&entry->rule, str, f->op);
515			kfree(str);
516			if (err)
517				goto exit_free;
518			break;
519		case AUDIT_INODE:
520			err = audit_to_inode(&entry->rule, f);
521			if (err)
522				goto exit_free;
523			break;
524		case AUDIT_FILTERKEY:
525			err = -EINVAL;
526			if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
527				goto exit_free;
528			str = audit_unpack_string(&bufp, &remain, f->val);
529			if (IS_ERR(str))
530				goto exit_free;
531			entry->rule.buflen += f->val;
532			entry->rule.filterkey = str;
533			break;
534		case AUDIT_PERM:
535			if (f->val & ~15)
536				goto exit_free;
537			break;
538		case AUDIT_FILETYPE:
539			if ((f->val & ~S_IFMT) > S_IFMT)
540				goto exit_free;
541			break;
542		default:
543			goto exit_free;
544		}
545	}
546
547	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
548		entry->rule.inode_f = NULL;
549
550exit_nofree:
551	return entry;
552
553exit_free:
554	audit_free_rule(entry);
555	return ERR_PTR(err);
556}
557
558/* Pack a filter field's string representation into data block. */
559static inline size_t audit_pack_string(void **bufp, const char *str)
560{
561	size_t len = strlen(str);
562
563	memcpy(*bufp, str, len);
564	*bufp += len;
565
566	return len;
567}
568
569/* Translate kernel rule respresentation to struct audit_rule.
570 * Exists for backward compatibility with userspace. */
571static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
572{
573	struct audit_rule *rule;
574	int i;
575
576	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
577	if (unlikely(!rule))
578		return NULL;
579
580	rule->flags = krule->flags | krule->listnr;
581	rule->action = krule->action;
582	rule->field_count = krule->field_count;
583	for (i = 0; i < rule->field_count; i++) {
584		rule->values[i] = krule->fields[i].val;
585		rule->fields[i] = krule->fields[i].type;
586
587		if (krule->vers_ops == 1) {
588			if (krule->fields[i].op == Audit_not_equal)
589				rule->fields[i] |= AUDIT_NEGATE;
590		} else {
591			rule->fields[i] |= audit_ops[krule->fields[i].op];
592		}
593	}
594	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
595
596	return rule;
597}
598
599/* Translate kernel rule respresentation to struct audit_rule_data. */
600static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
601{
602	struct audit_rule_data *data;
603	void *bufp;
604	int i;
605
606	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
607	if (unlikely(!data))
608		return NULL;
609	memset(data, 0, sizeof(*data));
610
611	data->flags = krule->flags | krule->listnr;
612	data->action = krule->action;
613	data->field_count = krule->field_count;
614	bufp = data->buf;
615	for (i = 0; i < data->field_count; i++) {
616		struct audit_field *f = &krule->fields[i];
617
618		data->fields[i] = f->type;
619		data->fieldflags[i] = audit_ops[f->op];
620		switch(f->type) {
621		case AUDIT_SUBJ_USER:
622		case AUDIT_SUBJ_ROLE:
623		case AUDIT_SUBJ_TYPE:
624		case AUDIT_SUBJ_SEN:
625		case AUDIT_SUBJ_CLR:
626		case AUDIT_OBJ_USER:
627		case AUDIT_OBJ_ROLE:
628		case AUDIT_OBJ_TYPE:
629		case AUDIT_OBJ_LEV_LOW:
630		case AUDIT_OBJ_LEV_HIGH:
631			data->buflen += data->values[i] =
632				audit_pack_string(&bufp, f->lsm_str);
633			break;
634		case AUDIT_WATCH:
635			data->buflen += data->values[i] =
636				audit_pack_string(&bufp,
637						  audit_watch_path(krule->watch));
638			break;
639		case AUDIT_DIR:
640			data->buflen += data->values[i] =
641				audit_pack_string(&bufp,
642						  audit_tree_path(krule->tree));
643			break;
644		case AUDIT_FILTERKEY:
645			data->buflen += data->values[i] =
646				audit_pack_string(&bufp, krule->filterkey);
647			break;
648		default:
649			data->values[i] = f->val;
650		}
651	}
652	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
653
654	return data;
655}
656
657/* Compare two rules in kernel format.  Considered success if rules
658 * don't match. */
659static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
660{
661	int i;
662
663	if (a->flags != b->flags ||
664	    a->listnr != b->listnr ||
665	    a->action != b->action ||
666	    a->field_count != b->field_count)
667		return 1;
668
669	for (i = 0; i < a->field_count; i++) {
670		if (a->fields[i].type != b->fields[i].type ||
671		    a->fields[i].op != b->fields[i].op)
672			return 1;
673
674		switch(a->fields[i].type) {
675		case AUDIT_SUBJ_USER:
676		case AUDIT_SUBJ_ROLE:
677		case AUDIT_SUBJ_TYPE:
678		case AUDIT_SUBJ_SEN:
679		case AUDIT_SUBJ_CLR:
680		case AUDIT_OBJ_USER:
681		case AUDIT_OBJ_ROLE:
682		case AUDIT_OBJ_TYPE:
683		case AUDIT_OBJ_LEV_LOW:
684		case AUDIT_OBJ_LEV_HIGH:
685			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
686				return 1;
687			break;
688		case AUDIT_WATCH:
689			if (strcmp(audit_watch_path(a->watch),
690				   audit_watch_path(b->watch)))
691				return 1;
692			break;
693		case AUDIT_DIR:
694			if (strcmp(audit_tree_path(a->tree),
695				   audit_tree_path(b->tree)))
696				return 1;
697			break;
698		case AUDIT_FILTERKEY:
699			/* both filterkeys exist based on above type compare */
700			if (strcmp(a->filterkey, b->filterkey))
701				return 1;
702			break;
703		default:
704			if (a->fields[i].val != b->fields[i].val)
705				return 1;
706		}
707	}
708
709	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
710		if (a->mask[i] != b->mask[i])
711			return 1;
712
713	return 0;
714}
715
716/* Duplicate LSM field information.  The lsm_rule is opaque, so must be
717 * re-initialized. */
718static inline int audit_dupe_lsm_field(struct audit_field *df,
719					   struct audit_field *sf)
720{
721	int ret = 0;
722	char *lsm_str;
723
724	/* our own copy of lsm_str */
725	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
726	if (unlikely(!lsm_str))
727		return -ENOMEM;
728	df->lsm_str = lsm_str;
729
730	/* our own (refreshed) copy of lsm_rule */
731	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
732				       (void **)&df->lsm_rule);
733	/* Keep currently invalid fields around in case they
734	 * become valid after a policy reload. */
735	if (ret == -EINVAL) {
736		printk(KERN_WARNING "audit rule for LSM \'%s\' is "
737		       "invalid\n", df->lsm_str);
738		ret = 0;
739	}
740
741	return ret;
742}
743
744/* Duplicate an audit rule.  This will be a deep copy with the exception
745 * of the watch - that pointer is carried over.  The LSM specific fields
746 * will be updated in the copy.  The point is to be able to replace the old
747 * rule with the new rule in the filterlist, then free the old rule.
748 * The rlist element is undefined; list manipulations are handled apart from
749 * the initial copy. */
750struct audit_entry *audit_dupe_rule(struct audit_krule *old)
751{
752	u32 fcount = old->field_count;
753	struct audit_entry *entry;
754	struct audit_krule *new;
755	char *fk;
756	int i, err = 0;
757
758	entry = audit_init_entry(fcount);
759	if (unlikely(!entry))
760		return ERR_PTR(-ENOMEM);
761
762	new = &entry->rule;
763	new->vers_ops = old->vers_ops;
764	new->flags = old->flags;
765	new->listnr = old->listnr;
766	new->action = old->action;
767	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
768		new->mask[i] = old->mask[i];
769	new->prio = old->prio;
770	new->buflen = old->buflen;
771	new->inode_f = old->inode_f;
772	new->field_count = old->field_count;
773
774	/*
775	 * note that we are OK with not refcounting here; audit_match_tree()
776	 * never dereferences tree and we can't get false positives there
777	 * since we'd have to have rule gone from the list *and* removed
778	 * before the chunks found by lookup had been allocated, i.e. before
779	 * the beginning of list scan.
780	 */
781	new->tree = old->tree;
782	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
783
784	/* deep copy this information, updating the lsm_rule fields, because
785	 * the originals will all be freed when the old rule is freed. */
786	for (i = 0; i < fcount; i++) {
787		switch (new->fields[i].type) {
788		case AUDIT_SUBJ_USER:
789		case AUDIT_SUBJ_ROLE:
790		case AUDIT_SUBJ_TYPE:
791		case AUDIT_SUBJ_SEN:
792		case AUDIT_SUBJ_CLR:
793		case AUDIT_OBJ_USER:
794		case AUDIT_OBJ_ROLE:
795		case AUDIT_OBJ_TYPE:
796		case AUDIT_OBJ_LEV_LOW:
797		case AUDIT_OBJ_LEV_HIGH:
798			err = audit_dupe_lsm_field(&new->fields[i],
799						       &old->fields[i]);
800			break;
801		case AUDIT_FILTERKEY:
802			fk = kstrdup(old->filterkey, GFP_KERNEL);
803			if (unlikely(!fk))
804				err = -ENOMEM;
805			else
806				new->filterkey = fk;
807		}
808		if (err) {
809			audit_free_rule(entry);
810			return ERR_PTR(err);
811		}
812	}
813
814	if (old->watch) {
815		audit_get_watch(old->watch);
816		new->watch = old->watch;
817	}
818
819	return entry;
820}
821
822/* Find an existing audit rule.
823 * Caller must hold audit_filter_mutex to prevent stale rule data. */
824static struct audit_entry *audit_find_rule(struct audit_entry *entry,
825					   struct list_head **p)
826{
827	struct audit_entry *e, *found = NULL;
828	struct list_head *list;
829	int h;
830
831	if (entry->rule.inode_f) {
832		h = audit_hash_ino(entry->rule.inode_f->val);
833		*p = list = &audit_inode_hash[h];
834	} else if (entry->rule.watch) {
835		/* we don't know the inode number, so must walk entire hash */
836		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
837			list = &audit_inode_hash[h];
838			list_for_each_entry(e, list, list)
839				if (!audit_compare_rule(&entry->rule, &e->rule)) {
840					found = e;
841					goto out;
842				}
843		}
844		goto out;
845	} else {
846		*p = list = &audit_filter_list[entry->rule.listnr];
847	}
848
849	list_for_each_entry(e, list, list)
850		if (!audit_compare_rule(&entry->rule, &e->rule)) {
851			found = e;
852			goto out;
853		}
854
855out:
856	return found;
857}
858
859static u64 prio_low = ~0ULL/2;
860static u64 prio_high = ~0ULL/2 - 1;
861
862/* Add rule to given filterlist if not a duplicate. */
863static inline int audit_add_rule(struct audit_entry *entry)
864{
865	struct audit_entry *e;
866	struct audit_watch *watch = entry->rule.watch;
867	struct audit_tree *tree = entry->rule.tree;
868	struct list_head *list;
869	int err;
870#ifdef CONFIG_AUDITSYSCALL
871	int dont_count = 0;
872
873	/* If either of these, don't count towards total */
874	if (entry->rule.listnr == AUDIT_FILTER_USER ||
875		entry->rule.listnr == AUDIT_FILTER_TYPE)
876		dont_count = 1;
877#endif
878
879	mutex_lock(&audit_filter_mutex);
880	e = audit_find_rule(entry, &list);
881	if (e) {
882		mutex_unlock(&audit_filter_mutex);
883		err = -EEXIST;
884		/* normally audit_add_tree_rule() will free it on failure */
885		if (tree)
886			audit_put_tree(tree);
887		goto error;
888	}
889
890	if (watch) {
891		/* audit_filter_mutex is dropped and re-taken during this call */
892		err = audit_add_watch(&entry->rule, &list);
893		if (err) {
894			mutex_unlock(&audit_filter_mutex);
895			goto error;
896		}
897	}
898	if (tree) {
899		err = audit_add_tree_rule(&entry->rule);
900		if (err) {
901			mutex_unlock(&audit_filter_mutex);
902			goto error;
903		}
904	}
905
906	entry->rule.prio = ~0ULL;
907	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
908		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
909			entry->rule.prio = ++prio_high;
910		else
911			entry->rule.prio = --prio_low;
912	}
913
914	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
915		list_add(&entry->rule.list,
916			 &audit_rules_list[entry->rule.listnr]);
917		list_add_rcu(&entry->list, list);
918		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
919	} else {
920		list_add_tail(&entry->rule.list,
921			      &audit_rules_list[entry->rule.listnr]);
922		list_add_tail_rcu(&entry->list, list);
923	}
924#ifdef CONFIG_AUDITSYSCALL
925	if (!dont_count)
926		audit_n_rules++;
927
928	if (!audit_match_signal(entry))
929		audit_signals++;
930#endif
931	mutex_unlock(&audit_filter_mutex);
932
933 	return 0;
934
935error:
936	if (watch)
937		audit_put_watch(watch); /* tmp watch, matches initial get */
938	return err;
939}
940
941/* Remove an existing rule from filterlist. */
942static inline int audit_del_rule(struct audit_entry *entry)
943{
944	struct audit_entry  *e;
945	struct audit_watch *watch = entry->rule.watch;
946	struct audit_tree *tree = entry->rule.tree;
947	struct list_head *list;
948	int ret = 0;
949#ifdef CONFIG_AUDITSYSCALL
950	int dont_count = 0;
951
952	/* If either of these, don't count towards total */
953	if (entry->rule.listnr == AUDIT_FILTER_USER ||
954		entry->rule.listnr == AUDIT_FILTER_TYPE)
955		dont_count = 1;
956#endif
957
958	mutex_lock(&audit_filter_mutex);
959	e = audit_find_rule(entry, &list);
960	if (!e) {
961		mutex_unlock(&audit_filter_mutex);
962		ret = -ENOENT;
963		goto out;
964	}
965
966	if (e->rule.watch)
967		audit_remove_watch_rule(&e->rule);
968
969	if (e->rule.tree)
970		audit_remove_tree_rule(&e->rule);
971
972	list_del_rcu(&e->list);
973	list_del(&e->rule.list);
974	call_rcu(&e->rcu, audit_free_rule_rcu);
975
976#ifdef CONFIG_AUDITSYSCALL
977	if (!dont_count)
978		audit_n_rules--;
979
980	if (!audit_match_signal(entry))
981		audit_signals--;
982#endif
983	mutex_unlock(&audit_filter_mutex);
984
985out:
986	if (watch)
987		audit_put_watch(watch); /* match initial get */
988	if (tree)
989		audit_put_tree(tree);	/* that's the temporary one */
990
991	return ret;
992}
993
994/* List rules using struct audit_rule.  Exists for backward
995 * compatibility with userspace. */
996static void audit_list(int pid, int seq, struct sk_buff_head *q)
997{
998	struct sk_buff *skb;
999	struct audit_krule *r;
1000	int i;
1001
1002	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1003	 * iterator to sync with list writers. */
1004	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1005		list_for_each_entry(r, &audit_rules_list[i], list) {
1006			struct audit_rule *rule;
1007
1008			rule = audit_krule_to_rule(r);
1009			if (unlikely(!rule))
1010				break;
1011			skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1012					 rule, sizeof(*rule));
1013			if (skb)
1014				skb_queue_tail(q, skb);
1015			kfree(rule);
1016		}
1017	}
1018	skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1019	if (skb)
1020		skb_queue_tail(q, skb);
1021}
1022
1023/* List rules using struct audit_rule_data. */
1024static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1025{
1026	struct sk_buff *skb;
1027	struct audit_krule *r;
1028	int i;
1029
1030	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1031	 * iterator to sync with list writers. */
1032	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1033		list_for_each_entry(r, &audit_rules_list[i], list) {
1034			struct audit_rule_data *data;
1035
1036			data = audit_krule_to_data(r);
1037			if (unlikely(!data))
1038				break;
1039			skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1040					 data, sizeof(*data) + data->buflen);
1041			if (skb)
1042				skb_queue_tail(q, skb);
1043			kfree(data);
1044		}
1045	}
1046	skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1047	if (skb)
1048		skb_queue_tail(q, skb);
1049}
1050
1051/* Log rule additions and removals */
1052static void audit_log_rule_change(uid_t loginuid, u32 sessionid, u32 sid,
1053				  char *action, struct audit_krule *rule,
1054				  int res)
1055{
1056	struct audit_buffer *ab;
1057
1058	if (!audit_enabled)
1059		return;
1060
1061	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1062	if (!ab)
1063		return;
1064	audit_log_format(ab, "auid=%u ses=%u", loginuid, sessionid);
1065	if (sid) {
1066		char *ctx = NULL;
1067		u32 len;
1068		if (security_secid_to_secctx(sid, &ctx, &len))
1069			audit_log_format(ab, " ssid=%u", sid);
1070		else {
1071			audit_log_format(ab, " subj=%s", ctx);
1072			security_release_secctx(ctx, len);
1073		}
1074	}
1075	audit_log_format(ab, " op=");
1076	audit_log_string(ab, action);
1077	audit_log_key(ab, rule->filterkey);
1078	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1079	audit_log_end(ab);
1080}
1081
1082/**
1083 * audit_receive_filter - apply all rules to the specified message type
1084 * @type: audit message type
1085 * @pid: target pid for netlink audit messages
1086 * @uid: target uid for netlink audit messages
1087 * @seq: netlink audit message sequence (serial) number
1088 * @data: payload data
1089 * @datasz: size of payload data
1090 * @loginuid: loginuid of sender
1091 * @sessionid: sessionid for netlink audit message
1092 * @sid: SE Linux Security ID of sender
1093 */
1094int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1095			 size_t datasz, uid_t loginuid, u32 sessionid, u32 sid)
1096{
1097	struct task_struct *tsk;
1098	struct audit_netlink_list *dest;
1099	int err = 0;
1100	struct audit_entry *entry;
1101
1102	switch (type) {
1103	case AUDIT_LIST:
1104	case AUDIT_LIST_RULES:
1105		/* We can't just spew out the rules here because we might fill
1106		 * the available socket buffer space and deadlock waiting for
1107		 * auditctl to read from it... which isn't ever going to
1108		 * happen if we're actually running in the context of auditctl
1109		 * trying to _send_ the stuff */
1110
1111		dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1112		if (!dest)
1113			return -ENOMEM;
1114		dest->pid = pid;
1115		skb_queue_head_init(&dest->q);
1116
1117		mutex_lock(&audit_filter_mutex);
1118		if (type == AUDIT_LIST)
1119			audit_list(pid, seq, &dest->q);
1120		else
1121			audit_list_rules(pid, seq, &dest->q);
1122		mutex_unlock(&audit_filter_mutex);
1123
1124		tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1125		if (IS_ERR(tsk)) {
1126			skb_queue_purge(&dest->q);
1127			kfree(dest);
1128			err = PTR_ERR(tsk);
1129		}
1130		break;
1131	case AUDIT_ADD:
1132	case AUDIT_ADD_RULE:
1133		if (type == AUDIT_ADD)
1134			entry = audit_rule_to_entry(data);
1135		else
1136			entry = audit_data_to_entry(data, datasz);
1137		if (IS_ERR(entry))
1138			return PTR_ERR(entry);
1139
1140		err = audit_add_rule(entry);
1141		audit_log_rule_change(loginuid, sessionid, sid, "add rule",
1142				      &entry->rule, !err);
1143
1144		if (err)
1145			audit_free_rule(entry);
1146		break;
1147	case AUDIT_DEL:
1148	case AUDIT_DEL_RULE:
1149		if (type == AUDIT_DEL)
1150			entry = audit_rule_to_entry(data);
1151		else
1152			entry = audit_data_to_entry(data, datasz);
1153		if (IS_ERR(entry))
1154			return PTR_ERR(entry);
1155
1156		err = audit_del_rule(entry);
1157		audit_log_rule_change(loginuid, sessionid, sid, "remove rule",
1158				      &entry->rule, !err);
1159
1160		audit_free_rule(entry);
1161		break;
1162	default:
1163		return -EINVAL;
1164	}
1165
1166	return err;
1167}
1168
1169int audit_comparator(u32 left, u32 op, u32 right)
1170{
1171	switch (op) {
1172	case Audit_equal:
1173		return (left == right);
1174	case Audit_not_equal:
1175		return (left != right);
1176	case Audit_lt:
1177		return (left < right);
1178	case Audit_le:
1179		return (left <= right);
1180	case Audit_gt:
1181		return (left > right);
1182	case Audit_ge:
1183		return (left >= right);
1184	case Audit_bitmask:
1185		return (left & right);
1186	case Audit_bittest:
1187		return ((left & right) == right);
1188	default:
1189		BUG();
1190		return 0;
1191	}
1192}
1193
1194/* Compare given dentry name with last component in given path,
1195 * return of 0 indicates a match. */
1196int audit_compare_dname_path(const char *dname, const char *path,
1197			     int *dirlen)
1198{
1199	int dlen, plen;
1200	const char *p;
1201
1202	if (!dname || !path)
1203		return 1;
1204
1205	dlen = strlen(dname);
1206	plen = strlen(path);
1207	if (plen < dlen)
1208		return 1;
1209
1210	/* disregard trailing slashes */
1211	p = path + plen - 1;
1212	while ((*p == '/') && (p > path))
1213		p--;
1214
1215	/* find last path component */
1216	p = p - dlen + 1;
1217	if (p < path)
1218		return 1;
1219	else if (p > path) {
1220		if (*--p != '/')
1221			return 1;
1222		else
1223			p++;
1224	}
1225
1226	/* return length of path's directory component */
1227	if (dirlen)
1228		*dirlen = p - path;
1229	return strncmp(p, dname, dlen);
1230}
1231
1232static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1233				   struct audit_krule *rule,
1234				   enum audit_state *state)
1235{
1236	int i;
1237
1238	for (i = 0; i < rule->field_count; i++) {
1239		struct audit_field *f = &rule->fields[i];
1240		int result = 0;
1241
1242		switch (f->type) {
1243		case AUDIT_PID:
1244			result = audit_comparator(cb->creds.pid, f->op, f->val);
1245			break;
1246		case AUDIT_UID:
1247			result = audit_comparator(cb->creds.uid, f->op, f->val);
1248			break;
1249		case AUDIT_GID:
1250			result = audit_comparator(cb->creds.gid, f->op, f->val);
1251			break;
1252		case AUDIT_LOGINUID:
1253			result = audit_comparator(cb->loginuid, f->op, f->val);
1254			break;
1255		}
1256
1257		if (!result)
1258			return 0;
1259	}
1260	switch (rule->action) {
1261	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1262	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1263	}
1264	return 1;
1265}
1266
1267int audit_filter_user(struct netlink_skb_parms *cb)
1268{
1269	enum audit_state state = AUDIT_DISABLED;
1270	struct audit_entry *e;
1271	int ret = 1;
1272
1273	rcu_read_lock();
1274	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1275		if (audit_filter_user_rules(cb, &e->rule, &state)) {
1276			if (state == AUDIT_DISABLED)
1277				ret = 0;
1278			break;
1279		}
1280	}
1281	rcu_read_unlock();
1282
1283	return ret; /* Audit by default */
1284}
1285
1286int audit_filter_type(int type)
1287{
1288	struct audit_entry *e;
1289	int result = 0;
1290
1291	rcu_read_lock();
1292	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1293		goto unlock_and_return;
1294
1295	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1296				list) {
1297		int i;
1298		for (i = 0; i < e->rule.field_count; i++) {
1299			struct audit_field *f = &e->rule.fields[i];
1300			if (f->type == AUDIT_MSGTYPE) {
1301				result = audit_comparator(type, f->op, f->val);
1302				if (!result)
1303					break;
1304			}
1305		}
1306		if (result)
1307			goto unlock_and_return;
1308	}
1309unlock_and_return:
1310	rcu_read_unlock();
1311	return result;
1312}
1313
1314static int update_lsm_rule(struct audit_krule *r)
1315{
1316	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1317	struct audit_entry *nentry;
1318	int err = 0;
1319
1320	if (!security_audit_rule_known(r))
1321		return 0;
1322
1323	nentry = audit_dupe_rule(r);
1324	if (IS_ERR(nentry)) {
1325		/* save the first error encountered for the
1326		 * return value */
1327		err = PTR_ERR(nentry);
1328		audit_panic("error updating LSM filters");
1329		if (r->watch)
1330			list_del(&r->rlist);
1331		list_del_rcu(&entry->list);
1332		list_del(&r->list);
1333	} else {
1334		if (r->watch || r->tree)
1335			list_replace_init(&r->rlist, &nentry->rule.rlist);
1336		list_replace_rcu(&entry->list, &nentry->list);
1337		list_replace(&r->list, &nentry->rule.list);
1338	}
1339	call_rcu(&entry->rcu, audit_free_rule_rcu);
1340
1341	return err;
1342}
1343
1344/* This function will re-initialize the lsm_rule field of all applicable rules.
1345 * It will traverse the filter lists serarching for rules that contain LSM
1346 * specific filter fields.  When such a rule is found, it is copied, the
1347 * LSM field is re-initialized, and the old rule is replaced with the
1348 * updated rule. */
1349int audit_update_lsm_rules(void)
1350{
1351	struct audit_krule *r, *n;
1352	int i, err = 0;
1353
1354	/* audit_filter_mutex synchronizes the writers */
1355	mutex_lock(&audit_filter_mutex);
1356
1357	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1358		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1359			int res = update_lsm_rule(r);
1360			if (!err)
1361				err = res;
1362		}
1363	}
1364	mutex_unlock(&audit_filter_mutex);
1365
1366	return err;
1367}
1368