• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/net/
1#ifndef __NET_SCHED_RED_H
2#define __NET_SCHED_RED_H
3
4#include <linux/types.h>
5#include <net/pkt_sched.h>
6#include <net/inet_ecn.h>
7#include <net/dsfield.h>
8
9/*	Random Early Detection (RED) algorithm.
10	=======================================
11
12	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
13	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
14
15	This file codes a "divisionless" version of RED algorithm
16	as written down in Fig.17 of the paper.
17
18	Short description.
19	------------------
20
21	When a new packet arrives we calculate the average queue length:
22
23	avg = (1-W)*avg + W*current_queue_len,
24
25	W is the filter time constant (chosen as 2^(-Wlog)), it controls
26	the inertia of the algorithm. To allow larger bursts, W should be
27	decreased.
28
29	if (avg > th_max) -> packet marked (dropped).
30	if (avg < th_min) -> packet passes.
31	if (th_min < avg < th_max) we calculate probability:
32
33	Pb = max_P * (avg - th_min)/(th_max-th_min)
34
35	and mark (drop) packet with this probability.
36	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
37	max_P should be small (not 1), usually 0.01..0.02 is good value.
38
39	max_P is chosen as a number, so that max_P/(th_max-th_min)
40	is a negative power of two in order arithmetics to contain
41	only shifts.
42
43
44	Parameters, settable by user:
45	-----------------------------
46
47	qth_min		- bytes (should be < qth_max/2)
48	qth_max		- bytes (should be at least 2*qth_min and less limit)
49	Wlog	       	- bits (<32) log(1/W).
50	Plog	       	- bits (<32)
51
52	Plog is related to max_P by formula:
53
54	max_P = (qth_max-qth_min)/2^Plog;
55
56	F.e. if qth_max=128K and qth_min=32K, then Plog=22
57	corresponds to max_P=0.02
58
59	Scell_log
60	Stab
61
62	Lookup table for log((1-W)^(t/t_ave).
63
64
65	NOTES:
66
67	Upper bound on W.
68	-----------------
69
70	If you want to allow bursts of L packets of size S,
71	you should choose W:
72
73	L + 1 - th_min/S < (1-(1-W)^L)/W
74
75	th_min/S = 32         th_min/S = 4
76
77	log(W)	L
78	-1	33
79	-2	35
80	-3	39
81	-4	46
82	-5	57
83	-6	75
84	-7	101
85	-8	135
86	-9	190
87	etc.
88 */
89
90#define RED_STAB_SIZE	256
91#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
92
93struct red_stats {
94	u32		prob_drop;	/* Early probability drops */
95	u32		prob_mark;	/* Early probability marks */
96	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
97	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
98	u32		pdrop;          /* Drops due to queue limits */
99	u32		other;          /* Drops due to drop() calls */
100	u32		backlog;
101};
102
103struct red_parms {
104	/* Parameters */
105	u32		qth_min;	/* Min avg length threshold: A scaled */
106	u32		qth_max;	/* Max avg length threshold: A scaled */
107	u32		Scell_max;
108	u32		Rmask;		/* Cached random mask, see red_rmask */
109	u8		Scell_log;
110	u8		Wlog;		/* log(W)		*/
111	u8		Plog;		/* random number bits	*/
112	u8		Stab[RED_STAB_SIZE];
113
114	/* Variables */
115	int		qcount;		/* Number of packets since last random
116					   number generation */
117	u32		qR;		/* Cached random number */
118
119	unsigned long	qavg;		/* Average queue length: A scaled */
120	psched_time_t	qidlestart;	/* Start of current idle period */
121};
122
123static inline u32 red_rmask(u8 Plog)
124{
125	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
126}
127
128static inline void red_set_parms(struct red_parms *p,
129				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
130				 u8 Scell_log, u8 *stab)
131{
132	/* Reset average queue length, the value is strictly bound
133	 * to the parameters below, reseting hurts a bit but leaving
134	 * it might result in an unreasonable qavg for a while. --TGR
135	 */
136	p->qavg		= 0;
137
138	p->qcount	= -1;
139	p->qth_min	= qth_min << Wlog;
140	p->qth_max	= qth_max << Wlog;
141	p->Wlog		= Wlog;
142	p->Plog		= Plog;
143	p->Rmask	= red_rmask(Plog);
144	p->Scell_log	= Scell_log;
145	p->Scell_max	= (255 << Scell_log);
146
147	memcpy(p->Stab, stab, sizeof(p->Stab));
148}
149
150static inline int red_is_idling(struct red_parms *p)
151{
152	return p->qidlestart != PSCHED_PASTPERFECT;
153}
154
155static inline void red_start_of_idle_period(struct red_parms *p)
156{
157	p->qidlestart = psched_get_time();
158}
159
160static inline void red_end_of_idle_period(struct red_parms *p)
161{
162	p->qidlestart = PSCHED_PASTPERFECT;
163}
164
165static inline void red_restart(struct red_parms *p)
166{
167	red_end_of_idle_period(p);
168	p->qavg = 0;
169	p->qcount = -1;
170}
171
172static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
173{
174	psched_time_t now;
175	long us_idle;
176	int  shift;
177
178	now = psched_get_time();
179	us_idle = psched_tdiff_bounded(now, p->qidlestart, p->Scell_max);
180
181	/*
182	 * The problem: ideally, average length queue recalcultion should
183	 * be done over constant clock intervals. This is too expensive, so
184	 * that the calculation is driven by outgoing packets.
185	 * When the queue is idle we have to model this clock by hand.
186	 *
187	 * SF+VJ proposed to "generate":
188	 *
189	 *	m = idletime / (average_pkt_size / bandwidth)
190	 *
191	 * dummy packets as a burst after idle time, i.e.
192	 *
193	 * 	p->qavg *= (1-W)^m
194	 *
195	 * This is an apparently overcomplicated solution (f.e. we have to
196	 * precompute a table to make this calculation in reasonable time)
197	 * I believe that a simpler model may be used here,
198	 * but it is field for experiments.
199	 */
200
201	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
202
203	if (shift)
204		return p->qavg >> shift;
205	else {
206		/* Approximate initial part of exponent with linear function:
207		 *
208		 * 	(1-W)^m ~= 1-mW + ...
209		 *
210		 * Seems, it is the best solution to
211		 * problem of too coarse exponent tabulation.
212		 */
213		us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
214
215		if (us_idle < (p->qavg >> 1))
216			return p->qavg - us_idle;
217		else
218			return p->qavg >> 1;
219	}
220}
221
222static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
223						       unsigned int backlog)
224{
225	/*
226	 * NOTE: p->qavg is fixed point number with point at Wlog.
227	 * The formula below is equvalent to floating point
228	 * version:
229	 *
230	 * 	qavg = qavg*(1-W) + backlog*W;
231	 *
232	 * --ANK (980924)
233	 */
234	return p->qavg + (backlog - (p->qavg >> p->Wlog));
235}
236
237static inline unsigned long red_calc_qavg(struct red_parms *p,
238					  unsigned int backlog)
239{
240	if (!red_is_idling(p))
241		return red_calc_qavg_no_idle_time(p, backlog);
242	else
243		return red_calc_qavg_from_idle_time(p);
244}
245
246static inline u32 red_random(struct red_parms *p)
247{
248	return net_random() & p->Rmask;
249}
250
251static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
252{
253	/* The formula used below causes questions.
254
255	   OK. qR is random number in the interval 0..Rmask
256	   i.e. 0..(2^Plog). If we used floating point
257	   arithmetics, it would be: (2^Plog)*rnd_num,
258	   where rnd_num is less 1.
259
260	   Taking into account, that qavg have fixed
261	   point at Wlog, and Plog is related to max_P by
262	   max_P = (qth_max-qth_min)/2^Plog; two lines
263	   below have the following floating point equivalent:
264
265	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
266
267	   Any questions? --ANK (980924)
268	 */
269	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
270}
271
272enum {
273	RED_BELOW_MIN_THRESH,
274	RED_BETWEEN_TRESH,
275	RED_ABOVE_MAX_TRESH,
276};
277
278static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
279{
280	if (qavg < p->qth_min)
281		return RED_BELOW_MIN_THRESH;
282	else if (qavg >= p->qth_max)
283		return RED_ABOVE_MAX_TRESH;
284	else
285		return RED_BETWEEN_TRESH;
286}
287
288enum {
289	RED_DONT_MARK,
290	RED_PROB_MARK,
291	RED_HARD_MARK,
292};
293
294static inline int red_action(struct red_parms *p, unsigned long qavg)
295{
296	switch (red_cmp_thresh(p, qavg)) {
297		case RED_BELOW_MIN_THRESH:
298			p->qcount = -1;
299			return RED_DONT_MARK;
300
301		case RED_BETWEEN_TRESH:
302			if (++p->qcount) {
303				if (red_mark_probability(p, qavg)) {
304					p->qcount = 0;
305					p->qR = red_random(p);
306					return RED_PROB_MARK;
307				}
308			} else
309				p->qR = red_random(p);
310
311			return RED_DONT_MARK;
312
313		case RED_ABOVE_MAX_TRESH:
314			p->qcount = -1;
315			return RED_HARD_MARK;
316	}
317
318	BUG();
319	return RED_DONT_MARK;
320}
321
322#endif
323