• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8#define CLONE_VM	0x00000100	/* set if VM shared between processes */
9#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD	0x00010000	/* Same thread group? */
16#define CLONE_NEWNS	0x00020000	/* New namespace group? */
17#define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19#define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21#define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22#define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24#define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25#define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26#define CLONE_NEWIPC		0x08000000	/* New ipcs */
27#define CLONE_NEWUSER		0x10000000	/* New user namespace */
28#define CLONE_NEWPID		0x20000000	/* New pid namespace */
29#define CLONE_NEWNET		0x40000000	/* New network namespace */
30#define CLONE_IO		0x80000000	/* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL		0
36#define SCHED_FIFO		1
37#define SCHED_RR		2
38#define SCHED_BATCH		3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE		5
41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42#define SCHED_RESET_ON_FORK     0x40000000
43
44#ifdef __KERNEL__
45
46struct sched_param {
47	int sched_priority;
48};
49
50#include <asm/param.h>	/* for HZ */
51
52#include <linux/capability.h>
53#include <linux/threads.h>
54#include <linux/kernel.h>
55#include <linux/types.h>
56#include <linux/timex.h>
57#include <linux/jiffies.h>
58#include <linux/rbtree.h>
59#include <linux/thread_info.h>
60#include <linux/cpumask.h>
61#include <linux/errno.h>
62#include <linux/nodemask.h>
63#include <linux/mm_types.h>
64
65#include <asm/system.h>
66#include <asm/page.h>
67#include <asm/ptrace.h>
68#include <asm/cputime.h>
69
70#include <linux/smp.h>
71#include <linux/sem.h>
72#include <linux/signal.h>
73#include <linux/path.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/kobject.h>
92#include <linux/latencytop.h>
93#include <linux/cred.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio_list;
101struct fs_struct;
102struct perf_event_context;
103
104/*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110/*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 *    a load-average precision of 10 bits integer + 11 bits fractional
115 *  - if you want to count load-averages more often, you need more
116 *    precision, or rounding will get you. With 2-second counting freq,
117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
118 *    11 bit fractions.
119 */
120extern unsigned long avenrun[];		/* Load averages */
121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123#define FSHIFT		11		/* nr of bits of precision */
124#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
125#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
126#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
127#define EXP_5		2014		/* 1/exp(5sec/5min) */
128#define EXP_15		2037		/* 1/exp(5sec/15min) */
129
130#define CALC_LOAD(load,exp,n) \
131	load *= exp; \
132	load += n*(FIXED_1-exp); \
133	load >>= FSHIFT;
134
135extern unsigned long total_forks;
136extern int nr_threads;
137DECLARE_PER_CPU(unsigned long, process_counts);
138extern int nr_processes(void);
139extern unsigned long nr_running(void);
140extern unsigned long nr_uninterruptible(void);
141extern unsigned long nr_iowait(void);
142extern unsigned long nr_iowait_cpu(int cpu);
143extern unsigned long this_cpu_load(void);
144
145
146extern void calc_global_load(unsigned long ticks);
147
148extern unsigned long get_parent_ip(unsigned long addr);
149
150struct seq_file;
151struct cfs_rq;
152struct task_group;
153#ifdef CONFIG_SCHED_DEBUG
154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155extern void proc_sched_set_task(struct task_struct *p);
156extern void
157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158#else
159static inline void
160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161{
162}
163static inline void proc_sched_set_task(struct task_struct *p)
164{
165}
166static inline void
167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168{
169}
170#endif
171
172/*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182#define TASK_RUNNING		0
183#define TASK_INTERRUPTIBLE	1
184#define TASK_UNINTERRUPTIBLE	2
185#define __TASK_STOPPED		4
186#define __TASK_TRACED		8
187/* in tsk->exit_state */
188#define EXIT_ZOMBIE		16
189#define EXIT_DEAD		32
190/* in tsk->state again */
191#define TASK_DEAD		64
192#define TASK_WAKEKILL		128
193#define TASK_WAKING		256
194#define TASK_STATE_MAX		512
195
196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198extern char ___assert_task_state[1 - 2*!!(
199		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201/* Convenience macros for the sake of set_task_state */
202#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
204#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
205
206/* Convenience macros for the sake of wake_up */
207#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210/* get_task_state() */
211#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
212				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213				 __TASK_TRACED)
214
215#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
216#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
217#define task_is_dead(task)	((task)->exit_state != 0)
218#define task_is_stopped_or_traced(task)	\
219			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220#define task_contributes_to_load(task)	\
221				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222				 (task->flags & PF_FREEZING) == 0)
223
224#define __set_task_state(tsk, state_value)		\
225	do { (tsk)->state = (state_value); } while (0)
226#define set_task_state(tsk, state_value)		\
227	set_mb((tsk)->state, (state_value))
228
229/*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 *	set_current_state(TASK_UNINTERRUPTIBLE);
235 *	if (do_i_need_to_sleep())
236 *		schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240#define __set_current_state(state_value)			\
241	do { current->state = (state_value); } while (0)
242#define set_current_state(state_value)		\
243	set_mb(current->state, (state_value))
244
245/* Task command name length */
246#define TASK_COMM_LEN 16
247
248#include <linux/spinlock.h>
249
250/*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256extern rwlock_t tasklist_lock;
257extern spinlock_t mmlist_lock;
258
259struct task_struct;
260
261#ifdef CONFIG_PROVE_RCU
262extern int lockdep_tasklist_lock_is_held(void);
263#endif /* #ifdef CONFIG_PROVE_RCU */
264
265extern void sched_init(void);
266extern void sched_init_smp(void);
267extern asmlinkage void schedule_tail(struct task_struct *prev);
268extern void init_idle(struct task_struct *idle, int cpu);
269extern void init_idle_bootup_task(struct task_struct *idle);
270
271extern int runqueue_is_locked(int cpu);
272
273extern cpumask_var_t nohz_cpu_mask;
274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275extern void select_nohz_load_balancer(int stop_tick);
276extern int get_nohz_timer_target(void);
277#else
278static inline void select_nohz_load_balancer(int stop_tick) { }
279#endif
280
281/*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284extern void show_state_filter(unsigned long state_filter);
285
286static inline void show_state(void)
287{
288	show_state_filter(0);
289}
290
291extern void show_regs(struct pt_regs *);
292
293/*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300void io_schedule(void);
301long io_schedule_timeout(long timeout);
302
303extern void cpu_init (void);
304extern void trap_init(void);
305extern void update_process_times(int user);
306extern void scheduler_tick(void);
307
308extern void sched_show_task(struct task_struct *p);
309
310#ifdef CONFIG_LOCKUP_DETECTOR
311extern void touch_softlockup_watchdog(void);
312extern void touch_softlockup_watchdog_sync(void);
313extern void touch_all_softlockup_watchdogs(void);
314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315				  void __user *buffer,
316				  size_t *lenp, loff_t *ppos);
317extern unsigned int  softlockup_panic;
318extern int softlockup_thresh;
319#else
320static inline void touch_softlockup_watchdog(void)
321{
322}
323static inline void touch_softlockup_watchdog_sync(void)
324{
325}
326static inline void touch_all_softlockup_watchdogs(void)
327{
328}
329#endif
330
331#ifdef CONFIG_DETECT_HUNG_TASK
332extern unsigned int  sysctl_hung_task_panic;
333extern unsigned long sysctl_hung_task_check_count;
334extern unsigned long sysctl_hung_task_timeout_secs;
335extern unsigned long sysctl_hung_task_warnings;
336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337					 void __user *buffer,
338					 size_t *lenp, loff_t *ppos);
339#endif
340
341/* Attach to any functions which should be ignored in wchan output. */
342#define __sched		__attribute__((__section__(".sched.text")))
343
344/* Linker adds these: start and end of __sched functions */
345extern char __sched_text_start[], __sched_text_end[];
346
347/* Is this address in the __sched functions? */
348extern int in_sched_functions(unsigned long addr);
349
350#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
351extern signed long schedule_timeout(signed long timeout);
352extern signed long schedule_timeout_interruptible(signed long timeout);
353extern signed long schedule_timeout_killable(signed long timeout);
354extern signed long schedule_timeout_uninterruptible(signed long timeout);
355asmlinkage void schedule(void);
356extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358struct nsproxy;
359struct user_namespace;
360
361/*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373#define MAPCOUNT_ELF_CORE_MARGIN	(5)
374#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376extern int sysctl_max_map_count;
377
378#include <linux/aio.h>
379
380#ifdef CONFIG_MMU
381extern void arch_pick_mmap_layout(struct mm_struct *mm);
382extern unsigned long
383arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384		       unsigned long, unsigned long);
385extern unsigned long
386arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387			  unsigned long len, unsigned long pgoff,
388			  unsigned long flags);
389extern void arch_unmap_area(struct mm_struct *, unsigned long);
390extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391#else
392static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393#endif
394
395
396extern void set_dumpable(struct mm_struct *mm, int value);
397extern int get_dumpable(struct mm_struct *mm);
398
399/* mm flags */
400/* dumpable bits */
401#define MMF_DUMPABLE      0  /* core dump is permitted */
402#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
403
404#define MMF_DUMPABLE_BITS 2
405#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
406
407/* coredump filter bits */
408#define MMF_DUMP_ANON_PRIVATE	2
409#define MMF_DUMP_ANON_SHARED	3
410#define MMF_DUMP_MAPPED_PRIVATE	4
411#define MMF_DUMP_MAPPED_SHARED	5
412#define MMF_DUMP_ELF_HEADERS	6
413#define MMF_DUMP_HUGETLB_PRIVATE 7
414#define MMF_DUMP_HUGETLB_SHARED  8
415
416#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
417#define MMF_DUMP_FILTER_BITS	7
418#define MMF_DUMP_FILTER_MASK \
419	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
420#define MMF_DUMP_FILTER_DEFAULT \
421	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
422	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
423
424#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
425# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
426#else
427# define MMF_DUMP_MASK_DEFAULT_ELF	0
428#endif
429					/* leave room for more dump flags */
430#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
431
432#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
433
434struct sighand_struct {
435	atomic_t		count;
436	struct k_sigaction	action[_NSIG];
437	spinlock_t		siglock;
438	wait_queue_head_t	signalfd_wqh;
439};
440
441struct pacct_struct {
442	int			ac_flag;
443	long			ac_exitcode;
444	unsigned long		ac_mem;
445	cputime_t		ac_utime, ac_stime;
446	unsigned long		ac_minflt, ac_majflt;
447};
448
449struct cpu_itimer {
450	cputime_t expires;
451	cputime_t incr;
452	u32 error;
453	u32 incr_error;
454};
455
456/**
457 * struct task_cputime - collected CPU time counts
458 * @utime:		time spent in user mode, in &cputime_t units
459 * @stime:		time spent in kernel mode, in &cputime_t units
460 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
461 *
462 * This structure groups together three kinds of CPU time that are
463 * tracked for threads and thread groups.  Most things considering
464 * CPU time want to group these counts together and treat all three
465 * of them in parallel.
466 */
467struct task_cputime {
468	cputime_t utime;
469	cputime_t stime;
470	unsigned long long sum_exec_runtime;
471};
472/* Alternate field names when used to cache expirations. */
473#define prof_exp	stime
474#define virt_exp	utime
475#define sched_exp	sum_exec_runtime
476
477#define INIT_CPUTIME	\
478	(struct task_cputime) {					\
479		.utime = cputime_zero,				\
480		.stime = cputime_zero,				\
481		.sum_exec_runtime = 0,				\
482	}
483
484/*
485 * Disable preemption until the scheduler is running.
486 * Reset by start_kernel()->sched_init()->init_idle().
487 *
488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
489 * before the scheduler is active -- see should_resched().
490 */
491#define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
492
493/**
494 * struct thread_group_cputimer - thread group interval timer counts
495 * @cputime:		thread group interval timers.
496 * @running:		non-zero when there are timers running and
497 * 			@cputime receives updates.
498 * @lock:		lock for fields in this struct.
499 *
500 * This structure contains the version of task_cputime, above, that is
501 * used for thread group CPU timer calculations.
502 */
503struct thread_group_cputimer {
504	struct task_cputime cputime;
505	int running;
506	spinlock_t lock;
507};
508
509/*
510 * NOTE! "signal_struct" does not have it's own
511 * locking, because a shared signal_struct always
512 * implies a shared sighand_struct, so locking
513 * sighand_struct is always a proper superset of
514 * the locking of signal_struct.
515 */
516struct signal_struct {
517	atomic_t		sigcnt;
518	atomic_t		live;
519	int			nr_threads;
520
521	wait_queue_head_t	wait_chldexit;	/* for wait4() */
522
523	/* current thread group signal load-balancing target: */
524	struct task_struct	*curr_target;
525
526	/* shared signal handling: */
527	struct sigpending	shared_pending;
528
529	/* thread group exit support */
530	int			group_exit_code;
531	/* overloaded:
532	 * - notify group_exit_task when ->count is equal to notify_count
533	 * - everyone except group_exit_task is stopped during signal delivery
534	 *   of fatal signals, group_exit_task processes the signal.
535	 */
536	int			notify_count;
537	struct task_struct	*group_exit_task;
538
539	/* thread group stop support, overloads group_exit_code too */
540	int			group_stop_count;
541	unsigned int		flags; /* see SIGNAL_* flags below */
542
543	/* POSIX.1b Interval Timers */
544	struct list_head posix_timers;
545
546	/* ITIMER_REAL timer for the process */
547	struct hrtimer real_timer;
548	struct pid *leader_pid;
549	ktime_t it_real_incr;
550
551	/*
552	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
553	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
554	 * values are defined to 0 and 1 respectively
555	 */
556	struct cpu_itimer it[2];
557
558	/*
559	 * Thread group totals for process CPU timers.
560	 * See thread_group_cputimer(), et al, for details.
561	 */
562	struct thread_group_cputimer cputimer;
563
564	/* Earliest-expiration cache. */
565	struct task_cputime cputime_expires;
566
567	struct list_head cpu_timers[3];
568
569	struct pid *tty_old_pgrp;
570
571	/* boolean value for session group leader */
572	int leader;
573
574	struct tty_struct *tty; /* NULL if no tty */
575
576	/*
577	 * Cumulative resource counters for dead threads in the group,
578	 * and for reaped dead child processes forked by this group.
579	 * Live threads maintain their own counters and add to these
580	 * in __exit_signal, except for the group leader.
581	 */
582	cputime_t utime, stime, cutime, cstime;
583	cputime_t gtime;
584	cputime_t cgtime;
585#ifndef CONFIG_VIRT_CPU_ACCOUNTING
586	cputime_t prev_utime, prev_stime;
587#endif
588	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
589	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
590	unsigned long inblock, oublock, cinblock, coublock;
591	unsigned long maxrss, cmaxrss;
592	struct task_io_accounting ioac;
593
594	/*
595	 * Cumulative ns of schedule CPU time fo dead threads in the
596	 * group, not including a zombie group leader, (This only differs
597	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
598	 * other than jiffies.)
599	 */
600	unsigned long long sum_sched_runtime;
601
602	/*
603	 * We don't bother to synchronize most readers of this at all,
604	 * because there is no reader checking a limit that actually needs
605	 * to get both rlim_cur and rlim_max atomically, and either one
606	 * alone is a single word that can safely be read normally.
607	 * getrlimit/setrlimit use task_lock(current->group_leader) to
608	 * protect this instead of the siglock, because they really
609	 * have no need to disable irqs.
610	 */
611	struct rlimit rlim[RLIM_NLIMITS];
612
613#ifdef CONFIG_BSD_PROCESS_ACCT
614	struct pacct_struct pacct;	/* per-process accounting information */
615#endif
616#ifdef CONFIG_TASKSTATS
617	struct taskstats *stats;
618#endif
619#ifdef CONFIG_AUDIT
620	unsigned audit_tty;
621	struct tty_audit_buf *tty_audit_buf;
622#endif
623
624	int oom_adj;		/* OOM kill score adjustment (bit shift) */
625	int oom_score_adj;	/* OOM kill score adjustment */
626};
627
628/* Context switch must be unlocked if interrupts are to be enabled */
629#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
630# define __ARCH_WANT_UNLOCKED_CTXSW
631#endif
632
633/*
634 * Bits in flags field of signal_struct.
635 */
636#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
637#define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
638#define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
639#define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
640/*
641 * Pending notifications to parent.
642 */
643#define SIGNAL_CLD_STOPPED	0x00000010
644#define SIGNAL_CLD_CONTINUED	0x00000020
645#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646
647#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
648
649/* If true, all threads except ->group_exit_task have pending SIGKILL */
650static inline int signal_group_exit(const struct signal_struct *sig)
651{
652	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
653		(sig->group_exit_task != NULL);
654}
655
656/*
657 * Some day this will be a full-fledged user tracking system..
658 */
659struct user_struct {
660	atomic_t __count;	/* reference count */
661	atomic_t processes;	/* How many processes does this user have? */
662	atomic_t files;		/* How many open files does this user have? */
663	atomic_t sigpending;	/* How many pending signals does this user have? */
664#ifdef CONFIG_INOTIFY_USER
665	atomic_t inotify_watches; /* How many inotify watches does this user have? */
666	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
667#endif
668#ifdef CONFIG_EPOLL
669	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
670#endif
671#ifdef CONFIG_POSIX_MQUEUE
672	/* protected by mq_lock	*/
673	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
674#endif
675	unsigned long locked_shm; /* How many pages of mlocked shm ? */
676
677#ifdef CONFIG_KEYS
678	struct key *uid_keyring;	/* UID specific keyring */
679	struct key *session_keyring;	/* UID's default session keyring */
680#endif
681
682	/* Hash table maintenance information */
683	struct hlist_node uidhash_node;
684	uid_t uid;
685	struct user_namespace *user_ns;
686
687#ifdef CONFIG_PERF_EVENTS
688	atomic_long_t locked_vm;
689#endif
690};
691
692extern int uids_sysfs_init(void);
693
694extern struct user_struct *find_user(uid_t);
695
696extern struct user_struct root_user;
697#define INIT_USER (&root_user)
698
699
700struct backing_dev_info;
701struct reclaim_state;
702
703#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704struct sched_info {
705	/* cumulative counters */
706	unsigned long pcount;	      /* # of times run on this cpu */
707	unsigned long long run_delay; /* time spent waiting on a runqueue */
708
709	/* timestamps */
710	unsigned long long last_arrival,/* when we last ran on a cpu */
711			   last_queued;	/* when we were last queued to run */
712#ifdef CONFIG_SCHEDSTATS
713	/* BKL stats */
714	unsigned int bkl_count;
715#endif
716};
717#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
718
719#ifdef CONFIG_TASK_DELAY_ACCT
720struct task_delay_info {
721	spinlock_t	lock;
722	unsigned int	flags;	/* Private per-task flags */
723
724
725	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
726	u64 blkio_delay;	/* wait for sync block io completion */
727	u64 swapin_delay;	/* wait for swapin block io completion */
728	u32 blkio_count;	/* total count of the number of sync block */
729				/* io operations performed */
730	u32 swapin_count;	/* total count of the number of swapin block */
731				/* io operations performed */
732
733	struct timespec freepages_start, freepages_end;
734	u64 freepages_delay;	/* wait for memory reclaim */
735	u32 freepages_count;	/* total count of memory reclaim */
736};
737#endif	/* CONFIG_TASK_DELAY_ACCT */
738
739static inline int sched_info_on(void)
740{
741#ifdef CONFIG_SCHEDSTATS
742	return 1;
743#elif defined(CONFIG_TASK_DELAY_ACCT)
744	extern int delayacct_on;
745	return delayacct_on;
746#else
747	return 0;
748#endif
749}
750
751enum cpu_idle_type {
752	CPU_IDLE,
753	CPU_NOT_IDLE,
754	CPU_NEWLY_IDLE,
755	CPU_MAX_IDLE_TYPES
756};
757
758/*
759 * sched-domains (multiprocessor balancing) declarations:
760 */
761
762/*
763 * Increase resolution of nice-level calculations:
764 */
765#define SCHED_LOAD_SHIFT	10
766#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
767
768#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
769
770#ifdef CONFIG_SMP
771#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
772#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
773#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
774#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
775#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
776#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
777#define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
778#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
779#define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
780#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
781#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
782#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
783#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
784
785enum powersavings_balance_level {
786	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
787	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
788					 * first for long running threads
789					 */
790	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
791					 * cpu package for power savings
792					 */
793	MAX_POWERSAVINGS_BALANCE_LEVELS
794};
795
796extern int sched_mc_power_savings, sched_smt_power_savings;
797
798static inline int sd_balance_for_mc_power(void)
799{
800	if (sched_smt_power_savings)
801		return SD_POWERSAVINGS_BALANCE;
802
803	if (!sched_mc_power_savings)
804		return SD_PREFER_SIBLING;
805
806	return 0;
807}
808
809static inline int sd_balance_for_package_power(void)
810{
811	if (sched_mc_power_savings | sched_smt_power_savings)
812		return SD_POWERSAVINGS_BALANCE;
813
814	return SD_PREFER_SIBLING;
815}
816
817extern int __weak arch_sd_sibiling_asym_packing(void);
818
819/*
820 * Optimise SD flags for power savings:
821 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
822 * Keep default SD flags if sched_{smt,mc}_power_saving=0
823 */
824
825static inline int sd_power_saving_flags(void)
826{
827	if (sched_mc_power_savings | sched_smt_power_savings)
828		return SD_BALANCE_NEWIDLE;
829
830	return 0;
831}
832
833struct sched_group {
834	struct sched_group *next;	/* Must be a circular list */
835
836	/*
837	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
838	 * single CPU.
839	 */
840	unsigned int cpu_power, cpu_power_orig;
841
842	/*
843	 * The CPUs this group covers.
844	 *
845	 * NOTE: this field is variable length. (Allocated dynamically
846	 * by attaching extra space to the end of the structure,
847	 * depending on how many CPUs the kernel has booted up with)
848	 *
849	 * It is also be embedded into static data structures at build
850	 * time. (See 'struct static_sched_group' in kernel/sched.c)
851	 */
852	unsigned long cpumask[0];
853};
854
855static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
856{
857	return to_cpumask(sg->cpumask);
858}
859
860enum sched_domain_level {
861	SD_LV_NONE = 0,
862	SD_LV_SIBLING,
863	SD_LV_MC,
864	SD_LV_CPU,
865	SD_LV_NODE,
866	SD_LV_ALLNODES,
867	SD_LV_MAX
868};
869
870struct sched_domain_attr {
871	int relax_domain_level;
872};
873
874#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
875	.relax_domain_level = -1,			\
876}
877
878struct sched_domain {
879	/* These fields must be setup */
880	struct sched_domain *parent;	/* top domain must be null terminated */
881	struct sched_domain *child;	/* bottom domain must be null terminated */
882	struct sched_group *groups;	/* the balancing groups of the domain */
883	unsigned long min_interval;	/* Minimum balance interval ms */
884	unsigned long max_interval;	/* Maximum balance interval ms */
885	unsigned int busy_factor;	/* less balancing by factor if busy */
886	unsigned int imbalance_pct;	/* No balance until over watermark */
887	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
888	unsigned int busy_idx;
889	unsigned int idle_idx;
890	unsigned int newidle_idx;
891	unsigned int wake_idx;
892	unsigned int forkexec_idx;
893	unsigned int smt_gain;
894	int flags;			/* See SD_* */
895	enum sched_domain_level level;
896
897	/* Runtime fields. */
898	unsigned long last_balance;	/* init to jiffies. units in jiffies */
899	unsigned int balance_interval;	/* initialise to 1. units in ms. */
900	unsigned int nr_balance_failed; /* initialise to 0 */
901
902	u64 last_update;
903
904#ifdef CONFIG_SCHEDSTATS
905	/* load_balance() stats */
906	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
907	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
908	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
909	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
910	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
911	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
912	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
913	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
914
915	/* Active load balancing */
916	unsigned int alb_count;
917	unsigned int alb_failed;
918	unsigned int alb_pushed;
919
920	/* SD_BALANCE_EXEC stats */
921	unsigned int sbe_count;
922	unsigned int sbe_balanced;
923	unsigned int sbe_pushed;
924
925	/* SD_BALANCE_FORK stats */
926	unsigned int sbf_count;
927	unsigned int sbf_balanced;
928	unsigned int sbf_pushed;
929
930	/* try_to_wake_up() stats */
931	unsigned int ttwu_wake_remote;
932	unsigned int ttwu_move_affine;
933	unsigned int ttwu_move_balance;
934#endif
935#ifdef CONFIG_SCHED_DEBUG
936	char *name;
937#endif
938
939	unsigned int span_weight;
940	/*
941	 * Span of all CPUs in this domain.
942	 *
943	 * NOTE: this field is variable length. (Allocated dynamically
944	 * by attaching extra space to the end of the structure,
945	 * depending on how many CPUs the kernel has booted up with)
946	 *
947	 * It is also be embedded into static data structures at build
948	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
949	 */
950	unsigned long span[0];
951};
952
953static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
954{
955	return to_cpumask(sd->span);
956}
957
958extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
959				    struct sched_domain_attr *dattr_new);
960
961/* Allocate an array of sched domains, for partition_sched_domains(). */
962cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
963void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
964
965/* Test a flag in parent sched domain */
966static inline int test_sd_parent(struct sched_domain *sd, int flag)
967{
968	if (sd->parent && (sd->parent->flags & flag))
969		return 1;
970
971	return 0;
972}
973
974unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
975unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
976
977#else /* CONFIG_SMP */
978
979struct sched_domain_attr;
980
981static inline void
982partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
983			struct sched_domain_attr *dattr_new)
984{
985}
986#endif	/* !CONFIG_SMP */
987
988
989struct io_context;			/* See blkdev.h */
990
991
992#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
993extern void prefetch_stack(struct task_struct *t);
994#else
995static inline void prefetch_stack(struct task_struct *t) { }
996#endif
997
998struct audit_context;		/* See audit.c */
999struct mempolicy;
1000struct pipe_inode_info;
1001struct uts_namespace;
1002
1003struct rq;
1004struct sched_domain;
1005
1006/*
1007 * wake flags
1008 */
1009#define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1010#define WF_FORK		0x02		/* child wakeup after fork */
1011
1012#define ENQUEUE_WAKEUP		1
1013#define ENQUEUE_WAKING		2
1014#define ENQUEUE_HEAD		4
1015
1016#define DEQUEUE_SLEEP		1
1017
1018struct sched_class {
1019	const struct sched_class *next;
1020
1021	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1022	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1023	void (*yield_task) (struct rq *rq);
1024
1025	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1026
1027	struct task_struct * (*pick_next_task) (struct rq *rq);
1028	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1029
1030#ifdef CONFIG_SMP
1031	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1032			       int sd_flag, int flags);
1033
1034	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1035	void (*post_schedule) (struct rq *this_rq);
1036	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1037	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1038
1039	void (*set_cpus_allowed)(struct task_struct *p,
1040				 const struct cpumask *newmask);
1041
1042	void (*rq_online)(struct rq *rq);
1043	void (*rq_offline)(struct rq *rq);
1044#endif
1045
1046	void (*set_curr_task) (struct rq *rq);
1047	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1048	void (*task_fork) (struct task_struct *p);
1049
1050	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1051			       int running);
1052	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1053			     int running);
1054	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1055			     int oldprio, int running);
1056
1057	unsigned int (*get_rr_interval) (struct rq *rq,
1058					 struct task_struct *task);
1059
1060#ifdef CONFIG_FAIR_GROUP_SCHED
1061	void (*moved_group) (struct task_struct *p, int on_rq);
1062#endif
1063};
1064
1065struct load_weight {
1066	unsigned long weight, inv_weight;
1067};
1068
1069#ifdef CONFIG_SCHEDSTATS
1070struct sched_statistics {
1071	u64			wait_start;
1072	u64			wait_max;
1073	u64			wait_count;
1074	u64			wait_sum;
1075	u64			iowait_count;
1076	u64			iowait_sum;
1077
1078	u64			sleep_start;
1079	u64			sleep_max;
1080	s64			sum_sleep_runtime;
1081
1082	u64			block_start;
1083	u64			block_max;
1084	u64			exec_max;
1085	u64			slice_max;
1086
1087	u64			nr_migrations_cold;
1088	u64			nr_failed_migrations_affine;
1089	u64			nr_failed_migrations_running;
1090	u64			nr_failed_migrations_hot;
1091	u64			nr_forced_migrations;
1092
1093	u64			nr_wakeups;
1094	u64			nr_wakeups_sync;
1095	u64			nr_wakeups_migrate;
1096	u64			nr_wakeups_local;
1097	u64			nr_wakeups_remote;
1098	u64			nr_wakeups_affine;
1099	u64			nr_wakeups_affine_attempts;
1100	u64			nr_wakeups_passive;
1101	u64			nr_wakeups_idle;
1102};
1103#endif
1104
1105struct sched_entity {
1106	struct load_weight	load;		/* for load-balancing */
1107	struct rb_node		run_node;
1108	struct list_head	group_node;
1109	unsigned int		on_rq;
1110
1111	u64			exec_start;
1112	u64			sum_exec_runtime;
1113	u64			vruntime;
1114	u64			prev_sum_exec_runtime;
1115
1116	u64			nr_migrations;
1117
1118#ifdef CONFIG_SCHEDSTATS
1119	struct sched_statistics statistics;
1120#endif
1121
1122#ifdef CONFIG_FAIR_GROUP_SCHED
1123	struct sched_entity	*parent;
1124	/* rq on which this entity is (to be) queued: */
1125	struct cfs_rq		*cfs_rq;
1126	/* rq "owned" by this entity/group: */
1127	struct cfs_rq		*my_q;
1128#endif
1129};
1130
1131struct sched_rt_entity {
1132	struct list_head run_list;
1133	unsigned long timeout;
1134	unsigned int time_slice;
1135	int nr_cpus_allowed;
1136
1137	struct sched_rt_entity *back;
1138#ifdef CONFIG_RT_GROUP_SCHED
1139	struct sched_rt_entity	*parent;
1140	/* rq on which this entity is (to be) queued: */
1141	struct rt_rq		*rt_rq;
1142	/* rq "owned" by this entity/group: */
1143	struct rt_rq		*my_q;
1144#endif
1145};
1146
1147struct rcu_node;
1148
1149struct task_struct {
1150	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1151	void *stack;
1152	atomic_t usage;
1153	unsigned int flags;	/* per process flags, defined below */
1154	unsigned int ptrace;
1155
1156	int lock_depth;		/* BKL lock depth */
1157
1158#ifdef CONFIG_SMP
1159#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1160	int oncpu;
1161#endif
1162#endif
1163
1164	int prio, static_prio, normal_prio;
1165	unsigned int rt_priority;
1166	const struct sched_class *sched_class;
1167	struct sched_entity se;
1168	struct sched_rt_entity rt;
1169
1170#ifdef CONFIG_PREEMPT_NOTIFIERS
1171	/* list of struct preempt_notifier: */
1172	struct hlist_head preempt_notifiers;
1173#endif
1174
1175	/*
1176	 * fpu_counter contains the number of consecutive context switches
1177	 * that the FPU is used. If this is over a threshold, the lazy fpu
1178	 * saving becomes unlazy to save the trap. This is an unsigned char
1179	 * so that after 256 times the counter wraps and the behavior turns
1180	 * lazy again; this to deal with bursty apps that only use FPU for
1181	 * a short time
1182	 */
1183	unsigned char fpu_counter;
1184#ifdef CONFIG_BLK_DEV_IO_TRACE
1185	unsigned int btrace_seq;
1186#endif
1187
1188	unsigned int policy;
1189	cpumask_t cpus_allowed;
1190
1191#ifdef CONFIG_TREE_PREEMPT_RCU
1192	int rcu_read_lock_nesting;
1193	char rcu_read_unlock_special;
1194	struct rcu_node *rcu_blocked_node;
1195	struct list_head rcu_node_entry;
1196#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1197
1198#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1199	struct sched_info sched_info;
1200#endif
1201
1202	struct list_head tasks;
1203	struct plist_node pushable_tasks;
1204
1205	struct mm_struct *mm, *active_mm;
1206#if defined(SPLIT_RSS_COUNTING)
1207	struct task_rss_stat	rss_stat;
1208#endif
1209/* task state */
1210	int exit_state;
1211	int exit_code, exit_signal;
1212	int pdeath_signal;  /*  The signal sent when the parent dies  */
1213	/* ??? */
1214	unsigned int personality;
1215	unsigned did_exec:1;
1216	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1217				 * execve */
1218	unsigned in_iowait:1;
1219
1220
1221	/* Revert to default priority/policy when forking */
1222	unsigned sched_reset_on_fork:1;
1223
1224	pid_t pid;
1225	pid_t tgid;
1226
1227#ifdef CONFIG_CC_STACKPROTECTOR
1228	/* Canary value for the -fstack-protector gcc feature */
1229	unsigned long stack_canary;
1230#endif
1231
1232	/*
1233	 * pointers to (original) parent process, youngest child, younger sibling,
1234	 * older sibling, respectively.  (p->father can be replaced with
1235	 * p->real_parent->pid)
1236	 */
1237	struct task_struct *real_parent; /* real parent process */
1238	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1239	/*
1240	 * children/sibling forms the list of my natural children
1241	 */
1242	struct list_head children;	/* list of my children */
1243	struct list_head sibling;	/* linkage in my parent's children list */
1244	struct task_struct *group_leader;	/* threadgroup leader */
1245
1246	/*
1247	 * ptraced is the list of tasks this task is using ptrace on.
1248	 * This includes both natural children and PTRACE_ATTACH targets.
1249	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1250	 */
1251	struct list_head ptraced;
1252	struct list_head ptrace_entry;
1253
1254	/* PID/PID hash table linkage. */
1255	struct pid_link pids[PIDTYPE_MAX];
1256	struct list_head thread_group;
1257
1258	struct completion *vfork_done;		/* for vfork() */
1259	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1260	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1261
1262	cputime_t utime, stime, utimescaled, stimescaled;
1263	cputime_t gtime;
1264#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1265	cputime_t prev_utime, prev_stime;
1266#endif
1267	unsigned long nvcsw, nivcsw; /* context switch counts */
1268	struct timespec start_time; 		/* monotonic time */
1269	struct timespec real_start_time;	/* boot based time */
1270/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1271	unsigned long min_flt, maj_flt;
1272
1273	struct task_cputime cputime_expires;
1274	struct list_head cpu_timers[3];
1275
1276/* process credentials */
1277	const struct cred *real_cred;	/* objective and real subjective task
1278					 * credentials (COW) */
1279	const struct cred *cred;	/* effective (overridable) subjective task
1280					 * credentials (COW) */
1281	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1282					 * credential calculations
1283					 * (notably. ptrace) */
1284	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1285
1286	char comm[TASK_COMM_LEN]; /* executable name excluding path
1287				     - access with [gs]et_task_comm (which lock
1288				       it with task_lock())
1289				     - initialized normally by setup_new_exec */
1290/* file system info */
1291	int link_count, total_link_count;
1292#ifdef CONFIG_SYSVIPC
1293/* ipc stuff */
1294	struct sysv_sem sysvsem;
1295#endif
1296#ifdef CONFIG_DETECT_HUNG_TASK
1297/* hung task detection */
1298	unsigned long last_switch_count;
1299#endif
1300/* CPU-specific state of this task */
1301	struct thread_struct thread;
1302/* filesystem information */
1303	struct fs_struct *fs;
1304/* open file information */
1305	struct files_struct *files;
1306/* namespaces */
1307	struct nsproxy *nsproxy;
1308/* signal handlers */
1309	struct signal_struct *signal;
1310	struct sighand_struct *sighand;
1311
1312	sigset_t blocked, real_blocked;
1313	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1314	struct sigpending pending;
1315
1316	unsigned long sas_ss_sp;
1317	size_t sas_ss_size;
1318	int (*notifier)(void *priv);
1319	void *notifier_data;
1320	sigset_t *notifier_mask;
1321	struct audit_context *audit_context;
1322#ifdef CONFIG_AUDITSYSCALL
1323	uid_t loginuid;
1324	unsigned int sessionid;
1325#endif
1326	seccomp_t seccomp;
1327
1328/* Thread group tracking */
1329   	u32 parent_exec_id;
1330   	u32 self_exec_id;
1331/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1332 * mempolicy */
1333	spinlock_t alloc_lock;
1334
1335#ifdef CONFIG_GENERIC_HARDIRQS
1336	/* IRQ handler threads */
1337	struct irqaction *irqaction;
1338#endif
1339
1340	/* Protection of the PI data structures: */
1341	raw_spinlock_t pi_lock;
1342
1343#ifdef CONFIG_RT_MUTEXES
1344	/* PI waiters blocked on a rt_mutex held by this task */
1345	struct plist_head pi_waiters;
1346	/* Deadlock detection and priority inheritance handling */
1347	struct rt_mutex_waiter *pi_blocked_on;
1348#endif
1349
1350#ifdef CONFIG_DEBUG_MUTEXES
1351	/* mutex deadlock detection */
1352	struct mutex_waiter *blocked_on;
1353#endif
1354#ifdef CONFIG_TRACE_IRQFLAGS
1355	unsigned int irq_events;
1356	unsigned long hardirq_enable_ip;
1357	unsigned long hardirq_disable_ip;
1358	unsigned int hardirq_enable_event;
1359	unsigned int hardirq_disable_event;
1360	int hardirqs_enabled;
1361	int hardirq_context;
1362	unsigned long softirq_disable_ip;
1363	unsigned long softirq_enable_ip;
1364	unsigned int softirq_disable_event;
1365	unsigned int softirq_enable_event;
1366	int softirqs_enabled;
1367	int softirq_context;
1368#endif
1369#ifdef CONFIG_LOCKDEP
1370# define MAX_LOCK_DEPTH 48UL
1371	u64 curr_chain_key;
1372	int lockdep_depth;
1373	unsigned int lockdep_recursion;
1374	struct held_lock held_locks[MAX_LOCK_DEPTH];
1375	gfp_t lockdep_reclaim_gfp;
1376#endif
1377
1378/* journalling filesystem info */
1379	void *journal_info;
1380
1381/* stacked block device info */
1382	struct bio_list *bio_list;
1383
1384/* VM state */
1385	struct reclaim_state *reclaim_state;
1386
1387	struct backing_dev_info *backing_dev_info;
1388
1389	struct io_context *io_context;
1390
1391	unsigned long ptrace_message;
1392	siginfo_t *last_siginfo; /* For ptrace use.  */
1393	struct task_io_accounting ioac;
1394#if defined(CONFIG_TASK_XACCT)
1395	u64 acct_rss_mem1;	/* accumulated rss usage */
1396	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1397	cputime_t acct_timexpd;	/* stime + utime since last update */
1398#endif
1399#ifdef CONFIG_CPUSETS
1400	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1401	int mems_allowed_change_disable;
1402	int cpuset_mem_spread_rotor;
1403	int cpuset_slab_spread_rotor;
1404#endif
1405#ifdef CONFIG_CGROUPS
1406	/* Control Group info protected by css_set_lock */
1407	struct css_set *cgroups;
1408	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1409	struct list_head cg_list;
1410#endif
1411#ifdef CONFIG_FUTEX
1412	struct robust_list_head __user *robust_list;
1413#ifdef CONFIG_COMPAT
1414	struct compat_robust_list_head __user *compat_robust_list;
1415#endif
1416	struct list_head pi_state_list;
1417	struct futex_pi_state *pi_state_cache;
1418#endif
1419#ifdef CONFIG_PERF_EVENTS
1420	struct perf_event_context *perf_event_ctxp;
1421	struct mutex perf_event_mutex;
1422	struct list_head perf_event_list;
1423#endif
1424#ifdef CONFIG_NUMA
1425	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1426	short il_next;
1427#endif
1428	atomic_t fs_excl;	/* holding fs exclusive resources */
1429	struct rcu_head rcu;
1430
1431	/*
1432	 * cache last used pipe for splice
1433	 */
1434	struct pipe_inode_info *splice_pipe;
1435#ifdef	CONFIG_TASK_DELAY_ACCT
1436	struct task_delay_info *delays;
1437#endif
1438#ifdef CONFIG_FAULT_INJECTION
1439	int make_it_fail;
1440#endif
1441	struct prop_local_single dirties;
1442#ifdef CONFIG_LATENCYTOP
1443	int latency_record_count;
1444	struct latency_record latency_record[LT_SAVECOUNT];
1445#endif
1446	/*
1447	 * time slack values; these are used to round up poll() and
1448	 * select() etc timeout values. These are in nanoseconds.
1449	 */
1450	unsigned long timer_slack_ns;
1451	unsigned long default_timer_slack_ns;
1452
1453	struct list_head	*scm_work_list;
1454#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1455	/* Index of current stored address in ret_stack */
1456	int curr_ret_stack;
1457	/* Stack of return addresses for return function tracing */
1458	struct ftrace_ret_stack	*ret_stack;
1459	/* time stamp for last schedule */
1460	unsigned long long ftrace_timestamp;
1461	/*
1462	 * Number of functions that haven't been traced
1463	 * because of depth overrun.
1464	 */
1465	atomic_t trace_overrun;
1466	/* Pause for the tracing */
1467	atomic_t tracing_graph_pause;
1468#endif
1469#ifdef CONFIG_TRACING
1470	/* state flags for use by tracers */
1471	unsigned long trace;
1472	/* bitmask of trace recursion */
1473	unsigned long trace_recursion;
1474#endif /* CONFIG_TRACING */
1475#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1476	struct memcg_batch_info {
1477		int do_batch;	/* incremented when batch uncharge started */
1478		struct mem_cgroup *memcg; /* target memcg of uncharge */
1479		unsigned long bytes; 		/* uncharged usage */
1480		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1481	} memcg_batch;
1482#endif
1483};
1484
1485/* Future-safe accessor for struct task_struct's cpus_allowed. */
1486#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1487
1488/*
1489 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1490 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1491 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1492 * values are inverted: lower p->prio value means higher priority.
1493 *
1494 * The MAX_USER_RT_PRIO value allows the actual maximum
1495 * RT priority to be separate from the value exported to
1496 * user-space.  This allows kernel threads to set their
1497 * priority to a value higher than any user task. Note:
1498 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1499 */
1500
1501#define MAX_USER_RT_PRIO	100
1502#define MAX_RT_PRIO		MAX_USER_RT_PRIO
1503
1504#define MAX_PRIO		(MAX_RT_PRIO + 40)
1505#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1506
1507static inline int rt_prio(int prio)
1508{
1509	if (unlikely(prio < MAX_RT_PRIO))
1510		return 1;
1511	return 0;
1512}
1513
1514static inline int rt_task(struct task_struct *p)
1515{
1516	return rt_prio(p->prio);
1517}
1518
1519static inline struct pid *task_pid(struct task_struct *task)
1520{
1521	return task->pids[PIDTYPE_PID].pid;
1522}
1523
1524static inline struct pid *task_tgid(struct task_struct *task)
1525{
1526	return task->group_leader->pids[PIDTYPE_PID].pid;
1527}
1528
1529/*
1530 * Without tasklist or rcu lock it is not safe to dereference
1531 * the result of task_pgrp/task_session even if task == current,
1532 * we can race with another thread doing sys_setsid/sys_setpgid.
1533 */
1534static inline struct pid *task_pgrp(struct task_struct *task)
1535{
1536	return task->group_leader->pids[PIDTYPE_PGID].pid;
1537}
1538
1539static inline struct pid *task_session(struct task_struct *task)
1540{
1541	return task->group_leader->pids[PIDTYPE_SID].pid;
1542}
1543
1544struct pid_namespace;
1545
1546/*
1547 * the helpers to get the task's different pids as they are seen
1548 * from various namespaces
1549 *
1550 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1551 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1552 *                     current.
1553 * task_xid_nr_ns()  : id seen from the ns specified;
1554 *
1555 * set_task_vxid()   : assigns a virtual id to a task;
1556 *
1557 * see also pid_nr() etc in include/linux/pid.h
1558 */
1559pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1560			struct pid_namespace *ns);
1561
1562static inline pid_t task_pid_nr(struct task_struct *tsk)
1563{
1564	return tsk->pid;
1565}
1566
1567static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1568					struct pid_namespace *ns)
1569{
1570	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1571}
1572
1573static inline pid_t task_pid_vnr(struct task_struct *tsk)
1574{
1575	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1576}
1577
1578
1579static inline pid_t task_tgid_nr(struct task_struct *tsk)
1580{
1581	return tsk->tgid;
1582}
1583
1584pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1585
1586static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1587{
1588	return pid_vnr(task_tgid(tsk));
1589}
1590
1591
1592static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1593					struct pid_namespace *ns)
1594{
1595	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1596}
1597
1598static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1599{
1600	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1601}
1602
1603
1604static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1605					struct pid_namespace *ns)
1606{
1607	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1608}
1609
1610static inline pid_t task_session_vnr(struct task_struct *tsk)
1611{
1612	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1613}
1614
1615/* obsolete, do not use */
1616static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1617{
1618	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1619}
1620
1621/**
1622 * pid_alive - check that a task structure is not stale
1623 * @p: Task structure to be checked.
1624 *
1625 * Test if a process is not yet dead (at most zombie state)
1626 * If pid_alive fails, then pointers within the task structure
1627 * can be stale and must not be dereferenced.
1628 */
1629static inline int pid_alive(struct task_struct *p)
1630{
1631	return p->pids[PIDTYPE_PID].pid != NULL;
1632}
1633
1634/**
1635 * is_global_init - check if a task structure is init
1636 * @tsk: Task structure to be checked.
1637 *
1638 * Check if a task structure is the first user space task the kernel created.
1639 */
1640static inline int is_global_init(struct task_struct *tsk)
1641{
1642	return tsk->pid == 1;
1643}
1644
1645/*
1646 * is_container_init:
1647 * check whether in the task is init in its own pid namespace.
1648 */
1649extern int is_container_init(struct task_struct *tsk);
1650
1651extern struct pid *cad_pid;
1652
1653extern void free_task(struct task_struct *tsk);
1654#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1655
1656extern void __put_task_struct(struct task_struct *t);
1657
1658static inline void put_task_struct(struct task_struct *t)
1659{
1660	if (atomic_dec_and_test(&t->usage))
1661		__put_task_struct(t);
1662}
1663
1664extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1665extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1666
1667/*
1668 * Per process flags
1669 */
1670#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1671					/* Not implemented yet, only for 486*/
1672#define PF_STARTING	0x00000002	/* being created */
1673#define PF_EXITING	0x00000004	/* getting shut down */
1674#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1675#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1676#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1677#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1678#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1679#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1680#define PF_DUMPCORE	0x00000200	/* dumped core */
1681#define PF_SIGNALED	0x00000400	/* killed by a signal */
1682#define PF_MEMALLOC	0x00000800	/* Allocating memory */
1683#define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1684#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1685#define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1686#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1687#define PF_FROZEN	0x00010000	/* frozen for system suspend */
1688#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1689#define PF_KSWAPD	0x00040000	/* I am kswapd */
1690#define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1691#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1692#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1693#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1694#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1695#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1696#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1697#define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1698#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1699#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1700#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1701#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1702#define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1703
1704/*
1705 * Only the _current_ task can read/write to tsk->flags, but other
1706 * tasks can access tsk->flags in readonly mode for example
1707 * with tsk_used_math (like during threaded core dumping).
1708 * There is however an exception to this rule during ptrace
1709 * or during fork: the ptracer task is allowed to write to the
1710 * child->flags of its traced child (same goes for fork, the parent
1711 * can write to the child->flags), because we're guaranteed the
1712 * child is not running and in turn not changing child->flags
1713 * at the same time the parent does it.
1714 */
1715#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1716#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1717#define clear_used_math() clear_stopped_child_used_math(current)
1718#define set_used_math() set_stopped_child_used_math(current)
1719#define conditional_stopped_child_used_math(condition, child) \
1720	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1721#define conditional_used_math(condition) \
1722	conditional_stopped_child_used_math(condition, current)
1723#define copy_to_stopped_child_used_math(child) \
1724	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1725/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1726#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1727#define used_math() tsk_used_math(current)
1728
1729#ifdef CONFIG_TREE_PREEMPT_RCU
1730
1731#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1732#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1733
1734static inline void rcu_copy_process(struct task_struct *p)
1735{
1736	p->rcu_read_lock_nesting = 0;
1737	p->rcu_read_unlock_special = 0;
1738	p->rcu_blocked_node = NULL;
1739	INIT_LIST_HEAD(&p->rcu_node_entry);
1740}
1741
1742#else
1743
1744static inline void rcu_copy_process(struct task_struct *p)
1745{
1746}
1747
1748#endif
1749
1750#ifdef CONFIG_SMP
1751extern int set_cpus_allowed_ptr(struct task_struct *p,
1752				const struct cpumask *new_mask);
1753#else
1754static inline int set_cpus_allowed_ptr(struct task_struct *p,
1755				       const struct cpumask *new_mask)
1756{
1757	if (!cpumask_test_cpu(0, new_mask))
1758		return -EINVAL;
1759	return 0;
1760}
1761#endif
1762
1763#ifndef CONFIG_CPUMASK_OFFSTACK
1764static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1765{
1766	return set_cpus_allowed_ptr(p, &new_mask);
1767}
1768#endif
1769
1770/*
1771 * Do not use outside of architecture code which knows its limitations.
1772 *
1773 * sched_clock() has no promise of monotonicity or bounded drift between
1774 * CPUs, use (which you should not) requires disabling IRQs.
1775 *
1776 * Please use one of the three interfaces below.
1777 */
1778extern unsigned long long notrace sched_clock(void);
1779/*
1780 * See the comment in kernel/sched_clock.c
1781 */
1782extern u64 cpu_clock(int cpu);
1783extern u64 local_clock(void);
1784extern u64 sched_clock_cpu(int cpu);
1785
1786
1787extern void sched_clock_init(void);
1788
1789#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1790static inline void sched_clock_tick(void)
1791{
1792}
1793
1794static inline void sched_clock_idle_sleep_event(void)
1795{
1796}
1797
1798static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1799{
1800}
1801#else
1802/*
1803 * Architectures can set this to 1 if they have specified
1804 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1805 * but then during bootup it turns out that sched_clock()
1806 * is reliable after all:
1807 */
1808extern int sched_clock_stable;
1809
1810extern void sched_clock_tick(void);
1811extern void sched_clock_idle_sleep_event(void);
1812extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1813#endif
1814
1815extern unsigned long long
1816task_sched_runtime(struct task_struct *task);
1817extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1818
1819/* sched_exec is called by processes performing an exec */
1820#ifdef CONFIG_SMP
1821extern void sched_exec(void);
1822#else
1823#define sched_exec()   {}
1824#endif
1825
1826extern void sched_clock_idle_sleep_event(void);
1827extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1828
1829#ifdef CONFIG_HOTPLUG_CPU
1830extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1831extern void idle_task_exit(void);
1832#else
1833static inline void idle_task_exit(void) {}
1834#endif
1835
1836extern void sched_idle_next(void);
1837
1838#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1839extern void wake_up_idle_cpu(int cpu);
1840#else
1841static inline void wake_up_idle_cpu(int cpu) { }
1842#endif
1843
1844extern unsigned int sysctl_sched_latency;
1845extern unsigned int sysctl_sched_min_granularity;
1846extern unsigned int sysctl_sched_wakeup_granularity;
1847extern unsigned int sysctl_sched_shares_ratelimit;
1848extern unsigned int sysctl_sched_shares_thresh;
1849extern unsigned int sysctl_sched_child_runs_first;
1850
1851enum sched_tunable_scaling {
1852	SCHED_TUNABLESCALING_NONE,
1853	SCHED_TUNABLESCALING_LOG,
1854	SCHED_TUNABLESCALING_LINEAR,
1855	SCHED_TUNABLESCALING_END,
1856};
1857extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1858
1859#ifdef CONFIG_SCHED_DEBUG
1860extern unsigned int sysctl_sched_migration_cost;
1861extern unsigned int sysctl_sched_nr_migrate;
1862extern unsigned int sysctl_sched_time_avg;
1863extern unsigned int sysctl_timer_migration;
1864
1865int sched_proc_update_handler(struct ctl_table *table, int write,
1866		void __user *buffer, size_t *length,
1867		loff_t *ppos);
1868#endif
1869#ifdef CONFIG_SCHED_DEBUG
1870static inline unsigned int get_sysctl_timer_migration(void)
1871{
1872	return sysctl_timer_migration;
1873}
1874#else
1875static inline unsigned int get_sysctl_timer_migration(void)
1876{
1877	return 1;
1878}
1879#endif
1880extern unsigned int sysctl_sched_rt_period;
1881extern int sysctl_sched_rt_runtime;
1882
1883int sched_rt_handler(struct ctl_table *table, int write,
1884		void __user *buffer, size_t *lenp,
1885		loff_t *ppos);
1886
1887extern unsigned int sysctl_sched_compat_yield;
1888
1889#ifdef CONFIG_RT_MUTEXES
1890extern int rt_mutex_getprio(struct task_struct *p);
1891extern void rt_mutex_setprio(struct task_struct *p, int prio);
1892extern void rt_mutex_adjust_pi(struct task_struct *p);
1893#else
1894static inline int rt_mutex_getprio(struct task_struct *p)
1895{
1896	return p->normal_prio;
1897}
1898# define rt_mutex_adjust_pi(p)		do { } while (0)
1899#endif
1900
1901extern void set_user_nice(struct task_struct *p, long nice);
1902extern int task_prio(const struct task_struct *p);
1903extern int task_nice(const struct task_struct *p);
1904extern int can_nice(const struct task_struct *p, const int nice);
1905extern int task_curr(const struct task_struct *p);
1906extern int idle_cpu(int cpu);
1907extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1908extern int sched_setscheduler_nocheck(struct task_struct *, int,
1909				      struct sched_param *);
1910extern struct task_struct *idle_task(int cpu);
1911extern struct task_struct *curr_task(int cpu);
1912extern void set_curr_task(int cpu, struct task_struct *p);
1913
1914void yield(void);
1915
1916/*
1917 * The default (Linux) execution domain.
1918 */
1919extern struct exec_domain	default_exec_domain;
1920
1921union thread_union {
1922	struct thread_info thread_info;
1923	unsigned long stack[THREAD_SIZE/sizeof(long)];
1924};
1925
1926#ifndef __HAVE_ARCH_KSTACK_END
1927static inline int kstack_end(void *addr)
1928{
1929	/* Reliable end of stack detection:
1930	 * Some APM bios versions misalign the stack
1931	 */
1932	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1933}
1934#endif
1935
1936extern union thread_union init_thread_union;
1937extern struct task_struct init_task;
1938
1939extern struct   mm_struct init_mm;
1940
1941extern struct pid_namespace init_pid_ns;
1942
1943/*
1944 * find a task by one of its numerical ids
1945 *
1946 * find_task_by_pid_ns():
1947 *      finds a task by its pid in the specified namespace
1948 * find_task_by_vpid():
1949 *      finds a task by its virtual pid
1950 *
1951 * see also find_vpid() etc in include/linux/pid.h
1952 */
1953
1954extern struct task_struct *find_task_by_vpid(pid_t nr);
1955extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1956		struct pid_namespace *ns);
1957
1958extern void __set_special_pids(struct pid *pid);
1959
1960/* per-UID process charging. */
1961extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1962static inline struct user_struct *get_uid(struct user_struct *u)
1963{
1964	atomic_inc(&u->__count);
1965	return u;
1966}
1967extern void free_uid(struct user_struct *);
1968extern void release_uids(struct user_namespace *ns);
1969
1970#include <asm/current.h>
1971
1972extern void do_timer(unsigned long ticks);
1973
1974extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1975extern int wake_up_process(struct task_struct *tsk);
1976extern void wake_up_new_task(struct task_struct *tsk,
1977				unsigned long clone_flags);
1978#ifdef CONFIG_SMP
1979 extern void kick_process(struct task_struct *tsk);
1980#else
1981 static inline void kick_process(struct task_struct *tsk) { }
1982#endif
1983extern void sched_fork(struct task_struct *p, int clone_flags);
1984extern void sched_dead(struct task_struct *p);
1985
1986extern void proc_caches_init(void);
1987extern void flush_signals(struct task_struct *);
1988extern void __flush_signals(struct task_struct *);
1989extern void ignore_signals(struct task_struct *);
1990extern void flush_signal_handlers(struct task_struct *, int force_default);
1991extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1992
1993static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1994{
1995	unsigned long flags;
1996	int ret;
1997
1998	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1999	ret = dequeue_signal(tsk, mask, info);
2000	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2001
2002	return ret;
2003}
2004
2005extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2006			      sigset_t *mask);
2007extern void unblock_all_signals(void);
2008extern void release_task(struct task_struct * p);
2009extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2010extern int force_sigsegv(int, struct task_struct *);
2011extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2012extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2013extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2014extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2015extern int kill_pgrp(struct pid *pid, int sig, int priv);
2016extern int kill_pid(struct pid *pid, int sig, int priv);
2017extern int kill_proc_info(int, struct siginfo *, pid_t);
2018extern int do_notify_parent(struct task_struct *, int);
2019extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2020extern void force_sig(int, struct task_struct *);
2021extern int send_sig(int, struct task_struct *, int);
2022extern int zap_other_threads(struct task_struct *p);
2023extern struct sigqueue *sigqueue_alloc(void);
2024extern void sigqueue_free(struct sigqueue *);
2025extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2026extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2027extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2028
2029static inline int kill_cad_pid(int sig, int priv)
2030{
2031	return kill_pid(cad_pid, sig, priv);
2032}
2033
2034/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2035#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2036#define SEND_SIG_PRIV	((struct siginfo *) 1)
2037#define SEND_SIG_FORCED	((struct siginfo *) 2)
2038
2039/*
2040 * True if we are on the alternate signal stack.
2041 */
2042static inline int on_sig_stack(unsigned long sp)
2043{
2044#ifdef CONFIG_STACK_GROWSUP
2045	return sp >= current->sas_ss_sp &&
2046		sp - current->sas_ss_sp < current->sas_ss_size;
2047#else
2048	return sp > current->sas_ss_sp &&
2049		sp - current->sas_ss_sp <= current->sas_ss_size;
2050#endif
2051}
2052
2053static inline int sas_ss_flags(unsigned long sp)
2054{
2055	return (current->sas_ss_size == 0 ? SS_DISABLE
2056		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2057}
2058
2059/*
2060 * Routines for handling mm_structs
2061 */
2062extern struct mm_struct * mm_alloc(void);
2063
2064/* mmdrop drops the mm and the page tables */
2065extern void __mmdrop(struct mm_struct *);
2066static inline void mmdrop(struct mm_struct * mm)
2067{
2068	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2069		__mmdrop(mm);
2070}
2071
2072/* mmput gets rid of the mappings and all user-space */
2073extern void mmput(struct mm_struct *);
2074/* Grab a reference to a task's mm, if it is not already going away */
2075extern struct mm_struct *get_task_mm(struct task_struct *task);
2076/* Remove the current tasks stale references to the old mm_struct */
2077extern void mm_release(struct task_struct *, struct mm_struct *);
2078/* Allocate a new mm structure and copy contents from tsk->mm */
2079extern struct mm_struct *dup_mm(struct task_struct *tsk);
2080
2081extern int copy_thread(unsigned long, unsigned long, unsigned long,
2082			struct task_struct *, struct pt_regs *);
2083extern void flush_thread(void);
2084extern void exit_thread(void);
2085
2086extern void exit_files(struct task_struct *);
2087extern void __cleanup_sighand(struct sighand_struct *);
2088
2089extern void exit_itimers(struct signal_struct *);
2090extern void flush_itimer_signals(void);
2091
2092extern NORET_TYPE void do_group_exit(int);
2093
2094extern void daemonize(const char *, ...);
2095extern int allow_signal(int);
2096extern int disallow_signal(int);
2097
2098extern int do_execve(const char *,
2099		     const char __user * const __user *,
2100		     const char __user * const __user *, struct pt_regs *);
2101extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2102struct task_struct *fork_idle(int);
2103
2104extern void set_task_comm(struct task_struct *tsk, char *from);
2105extern char *get_task_comm(char *to, struct task_struct *tsk);
2106
2107#ifdef CONFIG_SMP
2108extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2109#else
2110static inline unsigned long wait_task_inactive(struct task_struct *p,
2111					       long match_state)
2112{
2113	return 1;
2114}
2115#endif
2116
2117#define next_task(p) \
2118	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2119
2120#define for_each_process(p) \
2121	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2122
2123extern bool current_is_single_threaded(void);
2124
2125/*
2126 * Careful: do_each_thread/while_each_thread is a double loop so
2127 *          'break' will not work as expected - use goto instead.
2128 */
2129#define do_each_thread(g, t) \
2130	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2131
2132#define while_each_thread(g, t) \
2133	while ((t = next_thread(t)) != g)
2134
2135static inline int get_nr_threads(struct task_struct *tsk)
2136{
2137	return tsk->signal->nr_threads;
2138}
2139
2140/* de_thread depends on thread_group_leader not being a pid based check */
2141#define thread_group_leader(p)	(p == p->group_leader)
2142
2143/* Do to the insanities of de_thread it is possible for a process
2144 * to have the pid of the thread group leader without actually being
2145 * the thread group leader.  For iteration through the pids in proc
2146 * all we care about is that we have a task with the appropriate
2147 * pid, we don't actually care if we have the right task.
2148 */
2149static inline int has_group_leader_pid(struct task_struct *p)
2150{
2151	return p->pid == p->tgid;
2152}
2153
2154static inline
2155int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2156{
2157	return p1->tgid == p2->tgid;
2158}
2159
2160static inline struct task_struct *next_thread(const struct task_struct *p)
2161{
2162	return list_entry_rcu(p->thread_group.next,
2163			      struct task_struct, thread_group);
2164}
2165
2166static inline int thread_group_empty(struct task_struct *p)
2167{
2168	return list_empty(&p->thread_group);
2169}
2170
2171#define delay_group_leader(p) \
2172		(thread_group_leader(p) && !thread_group_empty(p))
2173
2174static inline int task_detached(struct task_struct *p)
2175{
2176	return p->exit_signal == -1;
2177}
2178
2179/*
2180 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2181 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2182 * pins the final release of task.io_context.  Also protects ->cpuset and
2183 * ->cgroup.subsys[].
2184 *
2185 * Nests both inside and outside of read_lock(&tasklist_lock).
2186 * It must not be nested with write_lock_irq(&tasklist_lock),
2187 * neither inside nor outside.
2188 */
2189static inline void task_lock(struct task_struct *p)
2190{
2191	spin_lock(&p->alloc_lock);
2192}
2193
2194static inline void task_unlock(struct task_struct *p)
2195{
2196	spin_unlock(&p->alloc_lock);
2197}
2198
2199extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2200							unsigned long *flags);
2201
2202static inline void unlock_task_sighand(struct task_struct *tsk,
2203						unsigned long *flags)
2204{
2205	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2206}
2207
2208#ifndef __HAVE_THREAD_FUNCTIONS
2209
2210#define task_thread_info(task)	((struct thread_info *)(task)->stack)
2211#define task_stack_page(task)	((task)->stack)
2212
2213static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2214{
2215	*task_thread_info(p) = *task_thread_info(org);
2216	task_thread_info(p)->task = p;
2217}
2218
2219static inline unsigned long *end_of_stack(struct task_struct *p)
2220{
2221	return (unsigned long *)(task_thread_info(p) + 1);
2222}
2223
2224#endif
2225
2226static inline int object_is_on_stack(void *obj)
2227{
2228	void *stack = task_stack_page(current);
2229
2230	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2231}
2232
2233extern void thread_info_cache_init(void);
2234
2235#ifdef CONFIG_DEBUG_STACK_USAGE
2236static inline unsigned long stack_not_used(struct task_struct *p)
2237{
2238	unsigned long *n = end_of_stack(p);
2239
2240	do { 	/* Skip over canary */
2241		n++;
2242	} while (!*n);
2243
2244	return (unsigned long)n - (unsigned long)end_of_stack(p);
2245}
2246#endif
2247
2248/* set thread flags in other task's structures
2249 * - see asm/thread_info.h for TIF_xxxx flags available
2250 */
2251static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2252{
2253	set_ti_thread_flag(task_thread_info(tsk), flag);
2254}
2255
2256static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2257{
2258	clear_ti_thread_flag(task_thread_info(tsk), flag);
2259}
2260
2261static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2262{
2263	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2264}
2265
2266static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2267{
2268	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2269}
2270
2271static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2272{
2273	return test_ti_thread_flag(task_thread_info(tsk), flag);
2274}
2275
2276static inline void set_tsk_need_resched(struct task_struct *tsk)
2277{
2278	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2279}
2280
2281static inline void clear_tsk_need_resched(struct task_struct *tsk)
2282{
2283	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2284}
2285
2286static inline int test_tsk_need_resched(struct task_struct *tsk)
2287{
2288	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2289}
2290
2291static inline int restart_syscall(void)
2292{
2293	set_tsk_thread_flag(current, TIF_SIGPENDING);
2294	return -ERESTARTNOINTR;
2295}
2296
2297static inline int signal_pending(struct task_struct *p)
2298{
2299	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2300}
2301
2302static inline int __fatal_signal_pending(struct task_struct *p)
2303{
2304	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2305}
2306
2307static inline int fatal_signal_pending(struct task_struct *p)
2308{
2309	return signal_pending(p) && __fatal_signal_pending(p);
2310}
2311
2312static inline int signal_pending_state(long state, struct task_struct *p)
2313{
2314	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2315		return 0;
2316	if (!signal_pending(p))
2317		return 0;
2318
2319	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2320}
2321
2322static inline int need_resched(void)
2323{
2324	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2325}
2326
2327/*
2328 * cond_resched() and cond_resched_lock(): latency reduction via
2329 * explicit rescheduling in places that are safe. The return
2330 * value indicates whether a reschedule was done in fact.
2331 * cond_resched_lock() will drop the spinlock before scheduling,
2332 * cond_resched_softirq() will enable bhs before scheduling.
2333 */
2334extern int _cond_resched(void);
2335
2336#define cond_resched() ({			\
2337	__might_sleep(__FILE__, __LINE__, 0);	\
2338	_cond_resched();			\
2339})
2340
2341extern int __cond_resched_lock(spinlock_t *lock);
2342
2343#ifdef CONFIG_PREEMPT
2344#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2345#else
2346#define PREEMPT_LOCK_OFFSET	0
2347#endif
2348
2349#define cond_resched_lock(lock) ({				\
2350	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2351	__cond_resched_lock(lock);				\
2352})
2353
2354extern int __cond_resched_softirq(void);
2355
2356#define cond_resched_softirq() ({				\
2357	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2358	__cond_resched_softirq();				\
2359})
2360
2361/*
2362 * Does a critical section need to be broken due to another
2363 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2364 * but a general need for low latency)
2365 */
2366static inline int spin_needbreak(spinlock_t *lock)
2367{
2368#ifdef CONFIG_PREEMPT
2369	return spin_is_contended(lock);
2370#else
2371	return 0;
2372#endif
2373}
2374
2375/*
2376 * Thread group CPU time accounting.
2377 */
2378void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2379void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2380
2381static inline void thread_group_cputime_init(struct signal_struct *sig)
2382{
2383	spin_lock_init(&sig->cputimer.lock);
2384}
2385
2386/*
2387 * Reevaluate whether the task has signals pending delivery.
2388 * Wake the task if so.
2389 * This is required every time the blocked sigset_t changes.
2390 * callers must hold sighand->siglock.
2391 */
2392extern void recalc_sigpending_and_wake(struct task_struct *t);
2393extern void recalc_sigpending(void);
2394
2395extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2396
2397/*
2398 * Wrappers for p->thread_info->cpu access. No-op on UP.
2399 */
2400#ifdef CONFIG_SMP
2401
2402static inline unsigned int task_cpu(const struct task_struct *p)
2403{
2404	return task_thread_info(p)->cpu;
2405}
2406
2407extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2408
2409#else
2410
2411static inline unsigned int task_cpu(const struct task_struct *p)
2412{
2413	return 0;
2414}
2415
2416static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2417{
2418}
2419
2420#endif /* CONFIG_SMP */
2421
2422extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2423extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2424
2425extern void normalize_rt_tasks(void);
2426
2427#ifdef CONFIG_CGROUP_SCHED
2428
2429extern struct task_group init_task_group;
2430
2431extern struct task_group *sched_create_group(struct task_group *parent);
2432extern void sched_destroy_group(struct task_group *tg);
2433extern void sched_move_task(struct task_struct *tsk);
2434#ifdef CONFIG_FAIR_GROUP_SCHED
2435extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2436extern unsigned long sched_group_shares(struct task_group *tg);
2437#endif
2438#ifdef CONFIG_RT_GROUP_SCHED
2439extern int sched_group_set_rt_runtime(struct task_group *tg,
2440				      long rt_runtime_us);
2441extern long sched_group_rt_runtime(struct task_group *tg);
2442extern int sched_group_set_rt_period(struct task_group *tg,
2443				      long rt_period_us);
2444extern long sched_group_rt_period(struct task_group *tg);
2445extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2446#endif
2447#endif
2448
2449extern int task_can_switch_user(struct user_struct *up,
2450					struct task_struct *tsk);
2451
2452#ifdef CONFIG_TASK_XACCT
2453static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2454{
2455	tsk->ioac.rchar += amt;
2456}
2457
2458static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2459{
2460	tsk->ioac.wchar += amt;
2461}
2462
2463static inline void inc_syscr(struct task_struct *tsk)
2464{
2465	tsk->ioac.syscr++;
2466}
2467
2468static inline void inc_syscw(struct task_struct *tsk)
2469{
2470	tsk->ioac.syscw++;
2471}
2472#else
2473static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2474{
2475}
2476
2477static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2478{
2479}
2480
2481static inline void inc_syscr(struct task_struct *tsk)
2482{
2483}
2484
2485static inline void inc_syscw(struct task_struct *tsk)
2486{
2487}
2488#endif
2489
2490#ifndef TASK_SIZE_OF
2491#define TASK_SIZE_OF(tsk)	TASK_SIZE
2492#endif
2493
2494/*
2495 * Call the function if the target task is executing on a CPU right now:
2496 */
2497extern void task_oncpu_function_call(struct task_struct *p,
2498				     void (*func) (void *info), void *info);
2499
2500
2501#ifdef CONFIG_MM_OWNER
2502extern void mm_update_next_owner(struct mm_struct *mm);
2503extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2504#else
2505static inline void mm_update_next_owner(struct mm_struct *mm)
2506{
2507}
2508
2509static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2510{
2511}
2512#endif /* CONFIG_MM_OWNER */
2513
2514static inline unsigned long task_rlimit(const struct task_struct *tsk,
2515		unsigned int limit)
2516{
2517	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2518}
2519
2520static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2521		unsigned int limit)
2522{
2523	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2524}
2525
2526static inline unsigned long rlimit(unsigned int limit)
2527{
2528	return task_rlimit(current, limit);
2529}
2530
2531static inline unsigned long rlimit_max(unsigned int limit)
2532{
2533	return task_rlimit_max(current, limit);
2534}
2535
2536#endif /* __KERNEL__ */
2537
2538#endif
2539