• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1/*
2 *  include/linux/ktime.h
3 *
4 *  ktime_t - nanosecond-resolution time format.
5 *
6 *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 *  data type definitions, declarations, prototypes and macros.
10 *
11 *  Started by: Thomas Gleixner and Ingo Molnar
12 *
13 *  Credits:
14 *
15 *  	Roman Zippel provided the ideas and primary code snippets of
16 *  	the ktime_t union and further simplifications of the original
17 *  	code.
18 *
19 *  For licencing details see kernel-base/COPYING
20 */
21#ifndef _LINUX_KTIME_H
22#define _LINUX_KTIME_H
23
24#include <linux/time.h>
25#include <linux/jiffies.h>
26
27/*
28 * ktime_t:
29 *
30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
35 *
36 * On 32-bit CPUs an optimized representation of the timespec structure
37 * is used to avoid expensive conversions from and to timespecs. The
38 * endian-aware order of the tv struct members is choosen to allow
39 * mathematical operations on the tv64 member of the union too, which
40 * for certain operations produces better code.
41 *
42 * For architectures with efficient support for 64/32-bit conversions the
43 * plain scalar nanosecond based representation can be selected by the
44 * config switch CONFIG_KTIME_SCALAR.
45 */
46union ktime {
47	s64	tv64;
48#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49	struct {
50# ifdef __BIG_ENDIAN
51	s32	sec, nsec;
52# else
53	s32	nsec, sec;
54# endif
55	} tv;
56#endif
57};
58
59typedef union ktime ktime_t;		/* Kill this */
60
61#define KTIME_MAX			((s64)~((u64)1 << 63))
62#if (BITS_PER_LONG == 64)
63# define KTIME_SEC_MAX			(KTIME_MAX / NSEC_PER_SEC)
64#else
65# define KTIME_SEC_MAX			LONG_MAX
66#endif
67
68/*
69 * ktime_t definitions when using the 64-bit scalar representation:
70 */
71
72#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
73
74/**
75 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
76 * @secs:	seconds to set
77 * @nsecs:	nanoseconds to set
78 *
79 * Return the ktime_t representation of the value
80 */
81static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
82{
83#if (BITS_PER_LONG == 64)
84	if (unlikely(secs >= KTIME_SEC_MAX))
85		return (ktime_t){ .tv64 = KTIME_MAX };
86#endif
87	return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
88}
89
90/* Subtract two ktime_t variables. rem = lhs -rhs: */
91#define ktime_sub(lhs, rhs) \
92		({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
93
94/* Add two ktime_t variables. res = lhs + rhs: */
95#define ktime_add(lhs, rhs) \
96		({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
97
98/*
99 * Add a ktime_t variable and a scalar nanosecond value.
100 * res = kt + nsval:
101 */
102#define ktime_add_ns(kt, nsval) \
103		({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
104
105/*
106 * Subtract a scalar nanosecod from a ktime_t variable
107 * res = kt - nsval:
108 */
109#define ktime_sub_ns(kt, nsval) \
110		({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
111
112/* convert a timespec to ktime_t format: */
113static inline ktime_t timespec_to_ktime(struct timespec ts)
114{
115	return ktime_set(ts.tv_sec, ts.tv_nsec);
116}
117
118/* convert a timeval to ktime_t format: */
119static inline ktime_t timeval_to_ktime(struct timeval tv)
120{
121	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
122}
123
124/* Map the ktime_t to timespec conversion to ns_to_timespec function */
125#define ktime_to_timespec(kt)		ns_to_timespec((kt).tv64)
126
127/* Map the ktime_t to timeval conversion to ns_to_timeval function */
128#define ktime_to_timeval(kt)		ns_to_timeval((kt).tv64)
129
130/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
131#define ktime_to_ns(kt)			((kt).tv64)
132
133#else	/* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
134
135/*
136 * Helper macros/inlines to get the ktime_t math right in the timespec
137 * representation. The macros are sometimes ugly - their actual use is
138 * pretty okay-ish, given the circumstances. We do all this for
139 * performance reasons. The pure scalar nsec_t based code was nice and
140 * simple, but created too many 64-bit / 32-bit conversions and divisions.
141 *
142 * Be especially aware that negative values are represented in a way
143 * that the tv.sec field is negative and the tv.nsec field is greater
144 * or equal to zero but less than nanoseconds per second. This is the
145 * same representation which is used by timespecs.
146 *
147 *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
148 */
149
150/* Set a ktime_t variable to a value in sec/nsec representation: */
151static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
152{
153	return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
154}
155
156/**
157 * ktime_sub - subtract two ktime_t variables
158 * @lhs:	minuend
159 * @rhs:	subtrahend
160 *
161 * Returns the remainder of the substraction
162 */
163static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
164{
165	ktime_t res;
166
167	res.tv64 = lhs.tv64 - rhs.tv64;
168	if (res.tv.nsec < 0)
169		res.tv.nsec += NSEC_PER_SEC;
170
171	return res;
172}
173
174/**
175 * ktime_add - add two ktime_t variables
176 * @add1:	addend1
177 * @add2:	addend2
178 *
179 * Returns the sum of @add1 and @add2.
180 */
181static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
182{
183	ktime_t res;
184
185	res.tv64 = add1.tv64 + add2.tv64;
186	/*
187	 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
188	 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
189	 *
190	 * it's equivalent to:
191	 *   tv.nsec -= NSEC_PER_SEC
192	 *   tv.sec ++;
193	 */
194	if (res.tv.nsec >= NSEC_PER_SEC)
195		res.tv64 += (u32)-NSEC_PER_SEC;
196
197	return res;
198}
199
200/**
201 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
202 * @kt:		addend
203 * @nsec:	the scalar nsec value to add
204 *
205 * Returns the sum of @kt and @nsec in ktime_t format
206 */
207extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
208
209/**
210 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
211 * @kt:		minuend
212 * @nsec:	the scalar nsec value to subtract
213 *
214 * Returns the subtraction of @nsec from @kt in ktime_t format
215 */
216extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
217
218/**
219 * timespec_to_ktime - convert a timespec to ktime_t format
220 * @ts:		the timespec variable to convert
221 *
222 * Returns a ktime_t variable with the converted timespec value
223 */
224static inline ktime_t timespec_to_ktime(const struct timespec ts)
225{
226	return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
227			   	   .nsec = (s32)ts.tv_nsec } };
228}
229
230/**
231 * timeval_to_ktime - convert a timeval to ktime_t format
232 * @tv:		the timeval variable to convert
233 *
234 * Returns a ktime_t variable with the converted timeval value
235 */
236static inline ktime_t timeval_to_ktime(const struct timeval tv)
237{
238	return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
239				   .nsec = (s32)tv.tv_usec * 1000 } };
240}
241
242/**
243 * ktime_to_timespec - convert a ktime_t variable to timespec format
244 * @kt:		the ktime_t variable to convert
245 *
246 * Returns the timespec representation of the ktime value
247 */
248static inline struct timespec ktime_to_timespec(const ktime_t kt)
249{
250	return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
251				   .tv_nsec = (long) kt.tv.nsec };
252}
253
254/**
255 * ktime_to_timeval - convert a ktime_t variable to timeval format
256 * @kt:		the ktime_t variable to convert
257 *
258 * Returns the timeval representation of the ktime value
259 */
260static inline struct timeval ktime_to_timeval(const ktime_t kt)
261{
262	return (struct timeval) {
263		.tv_sec = (time_t) kt.tv.sec,
264		.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
265}
266
267/**
268 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
269 * @kt:		the ktime_t variable to convert
270 *
271 * Returns the scalar nanoseconds representation of @kt
272 */
273static inline s64 ktime_to_ns(const ktime_t kt)
274{
275	return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
276}
277
278#endif	/* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
279
280/**
281 * ktime_equal - Compares two ktime_t variables to see if they are equal
282 * @cmp1:	comparable1
283 * @cmp2:	comparable2
284 *
285 * Compare two ktime_t variables, returns 1 if equal
286 */
287static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
288{
289	return cmp1.tv64 == cmp2.tv64;
290}
291
292static inline s64 ktime_to_us(const ktime_t kt)
293{
294	struct timeval tv = ktime_to_timeval(kt);
295	return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
296}
297
298static inline s64 ktime_to_ms(const ktime_t kt)
299{
300	struct timeval tv = ktime_to_timeval(kt);
301	return (s64) tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC;
302}
303
304static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
305{
306       return ktime_to_us(ktime_sub(later, earlier));
307}
308
309static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
310{
311	return ktime_add_ns(kt, usec * 1000);
312}
313
314static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
315{
316	return ktime_sub_ns(kt, usec * 1000);
317}
318
319extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
320
321/*
322 * The resolution of the clocks. The resolution value is returned in
323 * the clock_getres() system call to give application programmers an
324 * idea of the (in)accuracy of timers. Timer values are rounded up to
325 * this resolution values.
326 */
327#define LOW_RES_NSEC		TICK_NSEC
328#define KTIME_LOW_RES		(ktime_t){ .tv64 = LOW_RES_NSEC }
329
330/* Get the monotonic time in timespec format: */
331extern void ktime_get_ts(struct timespec *ts);
332
333/* Get the real (wall-) time in timespec format: */
334#define ktime_get_real_ts(ts)	getnstimeofday(ts)
335
336static inline ktime_t ns_to_ktime(u64 ns)
337{
338	static const ktime_t ktime_zero = { .tv64 = 0 };
339	return ktime_add_ns(ktime_zero, ns);
340}
341
342#endif
343