1/*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_types.h"
22#include "xfs_bit.h"
23#include "xfs_log.h"
24#include "xfs_inum.h"
25#include "xfs_trans.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_error.h"
30#include "xfs_da_btree.h"
31#include "xfs_bmap_btree.h"
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
34#include "xfs_dinode.h"
35#include "xfs_inode.h"
36#include "xfs_btree.h"
37#include "xfs_ialloc.h"
38#include "xfs_alloc.h"
39#include "xfs_bmap.h"
40#include "xfs_quota.h"
41#include "xfs_trans_priv.h"
42#include "xfs_trans_space.h"
43#include "xfs_inode_item.h"
44#include "xfs_trace.h"
45
46kmem_zone_t	*xfs_trans_zone;
47kmem_zone_t	*xfs_log_item_desc_zone;
48
49
50/*
51 * Various log reservation values.
52 *
53 * These are based on the size of the file system block because that is what
54 * most transactions manipulate.  Each adds in an additional 128 bytes per
55 * item logged to try to account for the overhead of the transaction mechanism.
56 *
57 * Note:  Most of the reservations underestimate the number of allocation
58 * groups into which they could free extents in the xfs_bmap_finish() call.
59 * This is because the number in the worst case is quite high and quite
60 * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
61 * extents in only a single AG at a time.  This will require changes to the
62 * EFI code as well, however, so that the EFI for the extents not freed is
63 * logged again in each transaction.  See SGI PV #261917.
64 *
65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
66 * register overflow from temporaries in the calculations.
67 */
68
69
70/*
71 * In a write transaction we can allocate a maximum of 2
72 * extents.  This gives:
73 *    the inode getting the new extents: inode size
74 *    the inode's bmap btree: max depth * block size
75 *    the agfs of the ags from which the extents are allocated: 2 * sector
76 *    the superblock free block counter: sector size
77 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78 * And the bmap_finish transaction can free bmap blocks in a join:
79 *    the agfs of the ags containing the blocks: 2 * sector size
80 *    the agfls of the ags containing the blocks: 2 * sector size
81 *    the super block free block counter: sector size
82 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
83 */
84STATIC uint
85xfs_calc_write_reservation(
86	struct xfs_mount	*mp)
87{
88	return XFS_DQUOT_LOGRES(mp) +
89		MAX((mp->m_sb.sb_inodesize +
90		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91		     2 * mp->m_sb.sb_sectsize +
92		     mp->m_sb.sb_sectsize +
93		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
94		     128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95			    XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96		    (2 * mp->m_sb.sb_sectsize +
97		     2 * mp->m_sb.sb_sectsize +
98		     mp->m_sb.sb_sectsize +
99		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
100		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
101}
102
103/*
104 * In truncating a file we free up to two extents at once.  We can modify:
105 *    the inode being truncated: inode size
106 *    the inode's bmap btree: (max depth + 1) * block size
107 * And the bmap_finish transaction can free the blocks and bmap blocks:
108 *    the agf for each of the ags: 4 * sector size
109 *    the agfl for each of the ags: 4 * sector size
110 *    the super block to reflect the freed blocks: sector size
111 *    worst case split in allocation btrees per extent assuming 4 extents:
112 *		4 exts * 2 trees * (2 * max depth - 1) * block size
113 *    the inode btree: max depth * blocksize
114 *    the allocation btrees: 2 trees * (max depth - 1) * block size
115 */
116STATIC uint
117xfs_calc_itruncate_reservation(
118	struct xfs_mount	*mp)
119{
120	return XFS_DQUOT_LOGRES(mp) +
121		MAX((mp->m_sb.sb_inodesize +
122		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123		     128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124		    (4 * mp->m_sb.sb_sectsize +
125		     4 * mp->m_sb.sb_sectsize +
126		     mp->m_sb.sb_sectsize +
127		     XFS_ALLOCFREE_LOG_RES(mp, 4) +
128		     128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129		     128 * 5 +
130		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
131		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
133}
134
135/*
136 * In renaming a files we can modify:
137 *    the four inodes involved: 4 * inode size
138 *    the two directory btrees: 2 * (max depth + v2) * dir block size
139 *    the two directory bmap btrees: 2 * max depth * block size
140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
141 *	of bmap blocks) giving:
142 *    the agf for the ags in which the blocks live: 3 * sector size
143 *    the agfl for the ags in which the blocks live: 3 * sector size
144 *    the superblock for the free block count: sector size
145 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
146 */
147STATIC uint
148xfs_calc_rename_reservation(
149	struct xfs_mount	*mp)
150{
151	return XFS_DQUOT_LOGRES(mp) +
152		MAX((4 * mp->m_sb.sb_inodesize +
153		     2 * XFS_DIROP_LOG_RES(mp) +
154		     128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155		    (3 * mp->m_sb.sb_sectsize +
156		     3 * mp->m_sb.sb_sectsize +
157		     mp->m_sb.sb_sectsize +
158		     XFS_ALLOCFREE_LOG_RES(mp, 3) +
159		     128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
160}
161
162/*
163 * For creating a link to an inode:
164 *    the parent directory inode: inode size
165 *    the linked inode: inode size
166 *    the directory btree could split: (max depth + v2) * dir block size
167 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
168 * And the bmap_finish transaction can free some bmap blocks giving:
169 *    the agf for the ag in which the blocks live: sector size
170 *    the agfl for the ag in which the blocks live: sector size
171 *    the superblock for the free block count: sector size
172 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
173 */
174STATIC uint
175xfs_calc_link_reservation(
176	struct xfs_mount	*mp)
177{
178	return XFS_DQUOT_LOGRES(mp) +
179		MAX((mp->m_sb.sb_inodesize +
180		     mp->m_sb.sb_inodesize +
181		     XFS_DIROP_LOG_RES(mp) +
182		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183		    (mp->m_sb.sb_sectsize +
184		     mp->m_sb.sb_sectsize +
185		     mp->m_sb.sb_sectsize +
186		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
187		     128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
188}
189
190/*
191 * For removing a directory entry we can modify:
192 *    the parent directory inode: inode size
193 *    the removed inode: inode size
194 *    the directory btree could join: (max depth + v2) * dir block size
195 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
197 *    the agf for the ag in which the blocks live: 2 * sector size
198 *    the agfl for the ag in which the blocks live: 2 * sector size
199 *    the superblock for the free block count: sector size
200 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
201 */
202STATIC uint
203xfs_calc_remove_reservation(
204	struct xfs_mount	*mp)
205{
206	return XFS_DQUOT_LOGRES(mp) +
207		MAX((mp->m_sb.sb_inodesize +
208		     mp->m_sb.sb_inodesize +
209		     XFS_DIROP_LOG_RES(mp) +
210		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211		    (2 * mp->m_sb.sb_sectsize +
212		     2 * mp->m_sb.sb_sectsize +
213		     mp->m_sb.sb_sectsize +
214		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
215		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
216}
217
218/*
219 * For symlink we can modify:
220 *    the parent directory inode: inode size
221 *    the new inode: inode size
222 *    the inode btree entry: 1 block
223 *    the directory btree: (max depth + v2) * dir block size
224 *    the directory inode's bmap btree: (max depth + v2) * block size
225 *    the blocks for the symlink: 1 kB
226 * Or in the first xact we allocate some inodes giving:
227 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
228 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229 *    the inode btree: max depth * blocksize
230 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
231 */
232STATIC uint
233xfs_calc_symlink_reservation(
234	struct xfs_mount	*mp)
235{
236	return XFS_DQUOT_LOGRES(mp) +
237		MAX((mp->m_sb.sb_inodesize +
238		     mp->m_sb.sb_inodesize +
239		     XFS_FSB_TO_B(mp, 1) +
240		     XFS_DIROP_LOG_RES(mp) +
241		     1024 +
242		     128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243		    (2 * mp->m_sb.sb_sectsize +
244		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
247		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
249}
250
251/*
252 * For create we can modify:
253 *    the parent directory inode: inode size
254 *    the new inode: inode size
255 *    the inode btree entry: block size
256 *    the superblock for the nlink flag: sector size
257 *    the directory btree: (max depth + v2) * dir block size
258 *    the directory inode's bmap btree: (max depth + v2) * block size
259 * Or in the first xact we allocate some inodes giving:
260 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
261 *    the superblock for the nlink flag: sector size
262 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263 *    the inode btree: max depth * blocksize
264 *    the allocation btrees: 2 trees * (max depth - 1) * block size
265 */
266STATIC uint
267xfs_calc_create_reservation(
268	struct xfs_mount	*mp)
269{
270	return XFS_DQUOT_LOGRES(mp) +
271		MAX((mp->m_sb.sb_inodesize +
272		     mp->m_sb.sb_inodesize +
273		     mp->m_sb.sb_sectsize +
274		     XFS_FSB_TO_B(mp, 1) +
275		     XFS_DIROP_LOG_RES(mp) +
276		     128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277		    (3 * mp->m_sb.sb_sectsize +
278		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
281		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
283}
284
285/*
286 * Making a new directory is the same as creating a new file.
287 */
288STATIC uint
289xfs_calc_mkdir_reservation(
290	struct xfs_mount	*mp)
291{
292	return xfs_calc_create_reservation(mp);
293}
294
295/*
296 * In freeing an inode we can modify:
297 *    the inode being freed: inode size
298 *    the super block free inode counter: sector size
299 *    the agi hash list and counters: sector size
300 *    the inode btree entry: block size
301 *    the on disk inode before ours in the agi hash list: inode cluster size
302 *    the inode btree: max depth * blocksize
303 *    the allocation btrees: 2 trees * (max depth - 1) * block size
304 */
305STATIC uint
306xfs_calc_ifree_reservation(
307	struct xfs_mount	*mp)
308{
309	return XFS_DQUOT_LOGRES(mp) +
310		mp->m_sb.sb_inodesize +
311		mp->m_sb.sb_sectsize +
312		mp->m_sb.sb_sectsize +
313		XFS_FSB_TO_B(mp, 1) +
314		MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315		    XFS_INODE_CLUSTER_SIZE(mp)) +
316		128 * 5 +
317		XFS_ALLOCFREE_LOG_RES(mp, 1) +
318		128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
320}
321
322/*
323 * When only changing the inode we log the inode and possibly the superblock
324 * We also add a bit of slop for the transaction stuff.
325 */
326STATIC uint
327xfs_calc_ichange_reservation(
328	struct xfs_mount	*mp)
329{
330	return XFS_DQUOT_LOGRES(mp) +
331		mp->m_sb.sb_inodesize +
332		mp->m_sb.sb_sectsize +
333		512;
334
335}
336
337/*
338 * Growing the data section of the filesystem.
339 *	superblock
340 *	agi and agf
341 *	allocation btrees
342 */
343STATIC uint
344xfs_calc_growdata_reservation(
345	struct xfs_mount	*mp)
346{
347	return mp->m_sb.sb_sectsize * 3 +
348		XFS_ALLOCFREE_LOG_RES(mp, 1) +
349		128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
350}
351
352/*
353 * Growing the rt section of the filesystem.
354 * In the first set of transactions (ALLOC) we allocate space to the
355 * bitmap or summary files.
356 *	superblock: sector size
357 *	agf of the ag from which the extent is allocated: sector size
358 *	bmap btree for bitmap/summary inode: max depth * blocksize
359 *	bitmap/summary inode: inode size
360 *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
361 */
362STATIC uint
363xfs_calc_growrtalloc_reservation(
364	struct xfs_mount	*mp)
365{
366	return 2 * mp->m_sb.sb_sectsize +
367		XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368		mp->m_sb.sb_inodesize +
369		XFS_ALLOCFREE_LOG_RES(mp, 1) +
370		128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
372}
373
374/*
375 * Growing the rt section of the filesystem.
376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
377 *	one bitmap/summary block: blocksize
378 */
379STATIC uint
380xfs_calc_growrtzero_reservation(
381	struct xfs_mount	*mp)
382{
383	return mp->m_sb.sb_blocksize + 128;
384}
385
386/*
387 * Growing the rt section of the filesystem.
388 * In the third set of transactions (FREE) we update metadata without
389 * allocating any new blocks.
390 *	superblock: sector size
391 *	bitmap inode: inode size
392 *	summary inode: inode size
393 *	one bitmap block: blocksize
394 *	summary blocks: new summary size
395 */
396STATIC uint
397xfs_calc_growrtfree_reservation(
398	struct xfs_mount	*mp)
399{
400	return mp->m_sb.sb_sectsize +
401		2 * mp->m_sb.sb_inodesize +
402		mp->m_sb.sb_blocksize +
403		mp->m_rsumsize +
404		128 * 5;
405}
406
407/*
408 * Logging the inode modification timestamp on a synchronous write.
409 *	inode
410 */
411STATIC uint
412xfs_calc_swrite_reservation(
413	struct xfs_mount	*mp)
414{
415	return mp->m_sb.sb_inodesize + 128;
416}
417
418/*
419 * Logging the inode mode bits when writing a setuid/setgid file
420 *	inode
421 */
422STATIC uint
423xfs_calc_writeid_reservation(xfs_mount_t *mp)
424{
425	return mp->m_sb.sb_inodesize + 128;
426}
427
428/*
429 * Converting the inode from non-attributed to attributed.
430 *	the inode being converted: inode size
431 *	agf block and superblock (for block allocation)
432 *	the new block (directory sized)
433 *	bmap blocks for the new directory block
434 *	allocation btrees
435 */
436STATIC uint
437xfs_calc_addafork_reservation(
438	struct xfs_mount	*mp)
439{
440	return XFS_DQUOT_LOGRES(mp) +
441		mp->m_sb.sb_inodesize +
442		mp->m_sb.sb_sectsize * 2 +
443		mp->m_dirblksize +
444		XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445		XFS_ALLOCFREE_LOG_RES(mp, 1) +
446		128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
448}
449
450/*
451 * Removing the attribute fork of a file
452 *    the inode being truncated: inode size
453 *    the inode's bmap btree: max depth * block size
454 * And the bmap_finish transaction can free the blocks and bmap blocks:
455 *    the agf for each of the ags: 4 * sector size
456 *    the agfl for each of the ags: 4 * sector size
457 *    the super block to reflect the freed blocks: sector size
458 *    worst case split in allocation btrees per extent assuming 4 extents:
459 *		4 exts * 2 trees * (2 * max depth - 1) * block size
460 */
461STATIC uint
462xfs_calc_attrinval_reservation(
463	struct xfs_mount	*mp)
464{
465	return MAX((mp->m_sb.sb_inodesize +
466		    XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467		    128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468		   (4 * mp->m_sb.sb_sectsize +
469		    4 * mp->m_sb.sb_sectsize +
470		    mp->m_sb.sb_sectsize +
471		    XFS_ALLOCFREE_LOG_RES(mp, 4) +
472		    128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
473}
474
475/*
476 * Setting an attribute.
477 *	the inode getting the attribute
478 *	the superblock for allocations
479 *	the agfs extents are allocated from
480 *	the attribute btree * max depth
481 *	the inode allocation btree
482 * Since attribute transaction space is dependent on the size of the attribute,
483 * the calculation is done partially at mount time and partially at runtime.
484 */
485STATIC uint
486xfs_calc_attrset_reservation(
487	struct xfs_mount	*mp)
488{
489	return XFS_DQUOT_LOGRES(mp) +
490		mp->m_sb.sb_inodesize +
491		mp->m_sb.sb_sectsize +
492		XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493		128 * (2 + XFS_DA_NODE_MAXDEPTH);
494}
495
496/*
497 * Removing an attribute.
498 *    the inode: inode size
499 *    the attribute btree could join: max depth * block size
500 *    the inode bmap btree could join or split: max depth * block size
501 * And the bmap_finish transaction can free the attr blocks freed giving:
502 *    the agf for the ag in which the blocks live: 2 * sector size
503 *    the agfl for the ag in which the blocks live: 2 * sector size
504 *    the superblock for the free block count: sector size
505 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
506 */
507STATIC uint
508xfs_calc_attrrm_reservation(
509	struct xfs_mount	*mp)
510{
511	return XFS_DQUOT_LOGRES(mp) +
512		MAX((mp->m_sb.sb_inodesize +
513		     XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515		     128 * (1 + XFS_DA_NODE_MAXDEPTH +
516			    XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517		    (2 * mp->m_sb.sb_sectsize +
518		     2 * mp->m_sb.sb_sectsize +
519		     mp->m_sb.sb_sectsize +
520		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
521		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
522}
523
524/*
525 * Clearing a bad agino number in an agi hash bucket.
526 */
527STATIC uint
528xfs_calc_clear_agi_bucket_reservation(
529	struct xfs_mount	*mp)
530{
531	return mp->m_sb.sb_sectsize + 128;
532}
533
534/*
535 * Initialize the precomputed transaction reservation values
536 * in the mount structure.
537 */
538void
539xfs_trans_init(
540	struct xfs_mount	*mp)
541{
542	struct xfs_trans_reservations *resp = &mp->m_reservations;
543
544	resp->tr_write = xfs_calc_write_reservation(mp);
545	resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546	resp->tr_rename = xfs_calc_rename_reservation(mp);
547	resp->tr_link = xfs_calc_link_reservation(mp);
548	resp->tr_remove = xfs_calc_remove_reservation(mp);
549	resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550	resp->tr_create = xfs_calc_create_reservation(mp);
551	resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552	resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553	resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554	resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555	resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556	resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557	resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558	resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559	resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560	resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561	resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562	resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563	resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564	resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
565}
566
567/*
568 * This routine is called to allocate a transaction structure.
569 * The type parameter indicates the type of the transaction.  These
570 * are enumerated in xfs_trans.h.
571 *
572 * Dynamically allocate the transaction structure from the transaction
573 * zone, initialize it, and return it to the caller.
574 */
575xfs_trans_t *
576xfs_trans_alloc(
577	xfs_mount_t	*mp,
578	uint		type)
579{
580	xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
581	return _xfs_trans_alloc(mp, type, KM_SLEEP);
582}
583
584xfs_trans_t *
585_xfs_trans_alloc(
586	xfs_mount_t	*mp,
587	uint		type,
588	uint		memflags)
589{
590	xfs_trans_t	*tp;
591
592	atomic_inc(&mp->m_active_trans);
593
594	tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
595	tp->t_magic = XFS_TRANS_MAGIC;
596	tp->t_type = type;
597	tp->t_mountp = mp;
598	INIT_LIST_HEAD(&tp->t_items);
599	INIT_LIST_HEAD(&tp->t_busy);
600	return tp;
601}
602
603/*
604 * Free the transaction structure.  If there is more clean up
605 * to do when the structure is freed, add it here.
606 */
607STATIC void
608xfs_trans_free(
609	struct xfs_trans	*tp)
610{
611	struct xfs_busy_extent	*busyp, *n;
612
613	list_for_each_entry_safe(busyp, n, &tp->t_busy, list)
614		xfs_alloc_busy_clear(tp->t_mountp, busyp);
615
616	atomic_dec(&tp->t_mountp->m_active_trans);
617	xfs_trans_free_dqinfo(tp);
618	kmem_zone_free(xfs_trans_zone, tp);
619}
620
621/*
622 * This is called to create a new transaction which will share the
623 * permanent log reservation of the given transaction.  The remaining
624 * unused block and rt extent reservations are also inherited.  This
625 * implies that the original transaction is no longer allowed to allocate
626 * blocks.  Locks and log items, however, are no inherited.  They must
627 * be added to the new transaction explicitly.
628 */
629xfs_trans_t *
630xfs_trans_dup(
631	xfs_trans_t	*tp)
632{
633	xfs_trans_t	*ntp;
634
635	ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
636
637	/*
638	 * Initialize the new transaction structure.
639	 */
640	ntp->t_magic = XFS_TRANS_MAGIC;
641	ntp->t_type = tp->t_type;
642	ntp->t_mountp = tp->t_mountp;
643	INIT_LIST_HEAD(&ntp->t_items);
644	INIT_LIST_HEAD(&ntp->t_busy);
645
646	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
647	ASSERT(tp->t_ticket != NULL);
648
649	ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
650	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
651	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
652	tp->t_blk_res = tp->t_blk_res_used;
653	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
654	tp->t_rtx_res = tp->t_rtx_res_used;
655	ntp->t_pflags = tp->t_pflags;
656
657	xfs_trans_dup_dqinfo(tp, ntp);
658
659	atomic_inc(&tp->t_mountp->m_active_trans);
660	return ntp;
661}
662
663/*
664 * This is called to reserve free disk blocks and log space for the
665 * given transaction.  This must be done before allocating any resources
666 * within the transaction.
667 *
668 * This will return ENOSPC if there are not enough blocks available.
669 * It will sleep waiting for available log space.
670 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
671 * is used by long running transactions.  If any one of the reservations
672 * fails then they will all be backed out.
673 *
674 * This does not do quota reservations. That typically is done by the
675 * caller afterwards.
676 */
677int
678xfs_trans_reserve(
679	xfs_trans_t	*tp,
680	uint		blocks,
681	uint		logspace,
682	uint		rtextents,
683	uint		flags,
684	uint		logcount)
685{
686	int		log_flags;
687	int		error = 0;
688	int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
689
690	/* Mark this thread as being in a transaction */
691	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
692
693	/*
694	 * Attempt to reserve the needed disk blocks by decrementing
695	 * the number needed from the number available.  This will
696	 * fail if the count would go below zero.
697	 */
698	if (blocks > 0) {
699		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS,
700					  -((int64_t)blocks), rsvd);
701		if (error != 0) {
702			current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
703			return (XFS_ERROR(ENOSPC));
704		}
705		tp->t_blk_res += blocks;
706	}
707
708	/*
709	 * Reserve the log space needed for this transaction.
710	 */
711	if (logspace > 0) {
712		ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
713		ASSERT((tp->t_log_count == 0) ||
714			(tp->t_log_count == logcount));
715		if (flags & XFS_TRANS_PERM_LOG_RES) {
716			log_flags = XFS_LOG_PERM_RESERV;
717			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
718		} else {
719			ASSERT(tp->t_ticket == NULL);
720			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
721			log_flags = 0;
722		}
723
724		error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
725					&tp->t_ticket,
726					XFS_TRANSACTION, log_flags, tp->t_type);
727		if (error) {
728			goto undo_blocks;
729		}
730		tp->t_log_res = logspace;
731		tp->t_log_count = logcount;
732	}
733
734	/*
735	 * Attempt to reserve the needed realtime extents by decrementing
736	 * the number needed from the number available.  This will
737	 * fail if the count would go below zero.
738	 */
739	if (rtextents > 0) {
740		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
741					  -((int64_t)rtextents), rsvd);
742		if (error) {
743			error = XFS_ERROR(ENOSPC);
744			goto undo_log;
745		}
746		tp->t_rtx_res += rtextents;
747	}
748
749	return 0;
750
751	/*
752	 * Error cases jump to one of these labels to undo any
753	 * reservations which have already been performed.
754	 */
755undo_log:
756	if (logspace > 0) {
757		if (flags & XFS_TRANS_PERM_LOG_RES) {
758			log_flags = XFS_LOG_REL_PERM_RESERV;
759		} else {
760			log_flags = 0;
761		}
762		xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
763		tp->t_ticket = NULL;
764		tp->t_log_res = 0;
765		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
766	}
767
768undo_blocks:
769	if (blocks > 0) {
770		(void) xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS,
771					 (int64_t)blocks, rsvd);
772		tp->t_blk_res = 0;
773	}
774
775	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
776
777	return error;
778}
779
780/*
781 * Record the indicated change to the given field for application
782 * to the file system's superblock when the transaction commits.
783 * For now, just store the change in the transaction structure.
784 *
785 * Mark the transaction structure to indicate that the superblock
786 * needs to be updated before committing.
787 *
788 * Because we may not be keeping track of allocated/free inodes and
789 * used filesystem blocks in the superblock, we do not mark the
790 * superblock dirty in this transaction if we modify these fields.
791 * We still need to update the transaction deltas so that they get
792 * applied to the incore superblock, but we don't want them to
793 * cause the superblock to get locked and logged if these are the
794 * only fields in the superblock that the transaction modifies.
795 */
796void
797xfs_trans_mod_sb(
798	xfs_trans_t	*tp,
799	uint		field,
800	int64_t		delta)
801{
802	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
803	xfs_mount_t	*mp = tp->t_mountp;
804
805	switch (field) {
806	case XFS_TRANS_SB_ICOUNT:
807		tp->t_icount_delta += delta;
808		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
809			flags &= ~XFS_TRANS_SB_DIRTY;
810		break;
811	case XFS_TRANS_SB_IFREE:
812		tp->t_ifree_delta += delta;
813		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
814			flags &= ~XFS_TRANS_SB_DIRTY;
815		break;
816	case XFS_TRANS_SB_FDBLOCKS:
817		/*
818		 * Track the number of blocks allocated in the
819		 * transaction.  Make sure it does not exceed the
820		 * number reserved.
821		 */
822		if (delta < 0) {
823			tp->t_blk_res_used += (uint)-delta;
824			ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
825		}
826		tp->t_fdblocks_delta += delta;
827		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
828			flags &= ~XFS_TRANS_SB_DIRTY;
829		break;
830	case XFS_TRANS_SB_RES_FDBLOCKS:
831		/*
832		 * The allocation has already been applied to the
833		 * in-core superblock's counter.  This should only
834		 * be applied to the on-disk superblock.
835		 */
836		ASSERT(delta < 0);
837		tp->t_res_fdblocks_delta += delta;
838		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
839			flags &= ~XFS_TRANS_SB_DIRTY;
840		break;
841	case XFS_TRANS_SB_FREXTENTS:
842		/*
843		 * Track the number of blocks allocated in the
844		 * transaction.  Make sure it does not exceed the
845		 * number reserved.
846		 */
847		if (delta < 0) {
848			tp->t_rtx_res_used += (uint)-delta;
849			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
850		}
851		tp->t_frextents_delta += delta;
852		break;
853	case XFS_TRANS_SB_RES_FREXTENTS:
854		/*
855		 * The allocation has already been applied to the
856		 * in-core superblock's counter.  This should only
857		 * be applied to the on-disk superblock.
858		 */
859		ASSERT(delta < 0);
860		tp->t_res_frextents_delta += delta;
861		break;
862	case XFS_TRANS_SB_DBLOCKS:
863		ASSERT(delta > 0);
864		tp->t_dblocks_delta += delta;
865		break;
866	case XFS_TRANS_SB_AGCOUNT:
867		ASSERT(delta > 0);
868		tp->t_agcount_delta += delta;
869		break;
870	case XFS_TRANS_SB_IMAXPCT:
871		tp->t_imaxpct_delta += delta;
872		break;
873	case XFS_TRANS_SB_REXTSIZE:
874		tp->t_rextsize_delta += delta;
875		break;
876	case XFS_TRANS_SB_RBMBLOCKS:
877		tp->t_rbmblocks_delta += delta;
878		break;
879	case XFS_TRANS_SB_RBLOCKS:
880		tp->t_rblocks_delta += delta;
881		break;
882	case XFS_TRANS_SB_REXTENTS:
883		tp->t_rextents_delta += delta;
884		break;
885	case XFS_TRANS_SB_REXTSLOG:
886		tp->t_rextslog_delta += delta;
887		break;
888	default:
889		ASSERT(0);
890		return;
891	}
892
893	tp->t_flags |= flags;
894}
895
896/*
897 * xfs_trans_apply_sb_deltas() is called from the commit code
898 * to bring the superblock buffer into the current transaction
899 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
900 *
901 * For now we just look at each field allowed to change and change
902 * it if necessary.
903 */
904STATIC void
905xfs_trans_apply_sb_deltas(
906	xfs_trans_t	*tp)
907{
908	xfs_dsb_t	*sbp;
909	xfs_buf_t	*bp;
910	int		whole = 0;
911
912	bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
913	sbp = XFS_BUF_TO_SBP(bp);
914
915	/*
916	 * Check that superblock mods match the mods made to AGF counters.
917	 */
918	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
919	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
920		tp->t_ag_btree_delta));
921
922	/*
923	 * Only update the superblock counters if we are logging them
924	 */
925	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
926		if (tp->t_icount_delta)
927			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
928		if (tp->t_ifree_delta)
929			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
930		if (tp->t_fdblocks_delta)
931			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
932		if (tp->t_res_fdblocks_delta)
933			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
934	}
935
936	if (tp->t_frextents_delta)
937		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
938	if (tp->t_res_frextents_delta)
939		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
940
941	if (tp->t_dblocks_delta) {
942		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
943		whole = 1;
944	}
945	if (tp->t_agcount_delta) {
946		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
947		whole = 1;
948	}
949	if (tp->t_imaxpct_delta) {
950		sbp->sb_imax_pct += tp->t_imaxpct_delta;
951		whole = 1;
952	}
953	if (tp->t_rextsize_delta) {
954		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
955		whole = 1;
956	}
957	if (tp->t_rbmblocks_delta) {
958		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
959		whole = 1;
960	}
961	if (tp->t_rblocks_delta) {
962		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
963		whole = 1;
964	}
965	if (tp->t_rextents_delta) {
966		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
967		whole = 1;
968	}
969	if (tp->t_rextslog_delta) {
970		sbp->sb_rextslog += tp->t_rextslog_delta;
971		whole = 1;
972	}
973
974	if (whole)
975		/*
976		 * Log the whole thing, the fields are noncontiguous.
977		 */
978		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
979	else
980		/*
981		 * Since all the modifiable fields are contiguous, we
982		 * can get away with this.
983		 */
984		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
985				  offsetof(xfs_dsb_t, sb_frextents) +
986				  sizeof(sbp->sb_frextents) - 1);
987}
988
989/*
990 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
991 * and apply superblock counter changes to the in-core superblock.  The
992 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
993 * applied to the in-core superblock.  The idea is that that has already been
994 * done.
995 *
996 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
997 * However, we have to ensure that we only modify each superblock field only
998 * once because the application of the delta values may not be atomic. That can
999 * lead to ENOSPC races occurring if we have two separate modifcations of the
1000 * free space counter to put back the entire reservation and then take away
1001 * what we used.
1002 *
1003 * If we are not logging superblock counters, then the inode allocated/free and
1004 * used block counts are not updated in the on disk superblock. In this case,
1005 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1006 * still need to update the incore superblock with the changes.
1007 */
1008void
1009xfs_trans_unreserve_and_mod_sb(
1010	xfs_trans_t	*tp)
1011{
1012	xfs_mod_sb_t	msb[14];	/* If you add cases, add entries */
1013	xfs_mod_sb_t	*msbp;
1014	xfs_mount_t	*mp = tp->t_mountp;
1015	/* REFERENCED */
1016	int		error;
1017	int		rsvd;
1018	int64_t		blkdelta = 0;
1019	int64_t		rtxdelta = 0;
1020
1021	msbp = msb;
1022	rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1023
1024	/* calculate free blocks delta */
1025	if (tp->t_blk_res > 0)
1026		blkdelta = tp->t_blk_res;
1027
1028	if ((tp->t_fdblocks_delta != 0) &&
1029	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1030	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1031	        blkdelta += tp->t_fdblocks_delta;
1032
1033	if (blkdelta != 0) {
1034		msbp->msb_field = XFS_SBS_FDBLOCKS;
1035		msbp->msb_delta = blkdelta;
1036		msbp++;
1037	}
1038
1039	/* calculate free realtime extents delta */
1040	if (tp->t_rtx_res > 0)
1041		rtxdelta = tp->t_rtx_res;
1042
1043	if ((tp->t_frextents_delta != 0) &&
1044	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
1045		rtxdelta += tp->t_frextents_delta;
1046
1047	if (rtxdelta != 0) {
1048		msbp->msb_field = XFS_SBS_FREXTENTS;
1049		msbp->msb_delta = rtxdelta;
1050		msbp++;
1051	}
1052
1053	/* apply remaining deltas */
1054
1055	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1056	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1057		if (tp->t_icount_delta != 0) {
1058			msbp->msb_field = XFS_SBS_ICOUNT;
1059			msbp->msb_delta = tp->t_icount_delta;
1060			msbp++;
1061		}
1062		if (tp->t_ifree_delta != 0) {
1063			msbp->msb_field = XFS_SBS_IFREE;
1064			msbp->msb_delta = tp->t_ifree_delta;
1065			msbp++;
1066		}
1067	}
1068
1069	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1070		if (tp->t_dblocks_delta != 0) {
1071			msbp->msb_field = XFS_SBS_DBLOCKS;
1072			msbp->msb_delta = tp->t_dblocks_delta;
1073			msbp++;
1074		}
1075		if (tp->t_agcount_delta != 0) {
1076			msbp->msb_field = XFS_SBS_AGCOUNT;
1077			msbp->msb_delta = tp->t_agcount_delta;
1078			msbp++;
1079		}
1080		if (tp->t_imaxpct_delta != 0) {
1081			msbp->msb_field = XFS_SBS_IMAX_PCT;
1082			msbp->msb_delta = tp->t_imaxpct_delta;
1083			msbp++;
1084		}
1085		if (tp->t_rextsize_delta != 0) {
1086			msbp->msb_field = XFS_SBS_REXTSIZE;
1087			msbp->msb_delta = tp->t_rextsize_delta;
1088			msbp++;
1089		}
1090		if (tp->t_rbmblocks_delta != 0) {
1091			msbp->msb_field = XFS_SBS_RBMBLOCKS;
1092			msbp->msb_delta = tp->t_rbmblocks_delta;
1093			msbp++;
1094		}
1095		if (tp->t_rblocks_delta != 0) {
1096			msbp->msb_field = XFS_SBS_RBLOCKS;
1097			msbp->msb_delta = tp->t_rblocks_delta;
1098			msbp++;
1099		}
1100		if (tp->t_rextents_delta != 0) {
1101			msbp->msb_field = XFS_SBS_REXTENTS;
1102			msbp->msb_delta = tp->t_rextents_delta;
1103			msbp++;
1104		}
1105		if (tp->t_rextslog_delta != 0) {
1106			msbp->msb_field = XFS_SBS_REXTSLOG;
1107			msbp->msb_delta = tp->t_rextslog_delta;
1108			msbp++;
1109		}
1110	}
1111
1112	/*
1113	 * If we need to change anything, do it.
1114	 */
1115	if (msbp > msb) {
1116		error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1117			(uint)(msbp - msb), rsvd);
1118		ASSERT(error == 0);
1119	}
1120}
1121
1122/*
1123 * Add the given log item to the transaction's list of log items.
1124 *
1125 * The log item will now point to its new descriptor with its li_desc field.
1126 */
1127void
1128xfs_trans_add_item(
1129	struct xfs_trans	*tp,
1130	struct xfs_log_item	*lip)
1131{
1132	struct xfs_log_item_desc *lidp;
1133
1134	ASSERT(lip->li_mountp = tp->t_mountp);
1135	ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1136
1137	lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1138
1139	lidp->lid_item = lip;
1140	lidp->lid_flags = 0;
1141	lidp->lid_size = 0;
1142	list_add_tail(&lidp->lid_trans, &tp->t_items);
1143
1144	lip->li_desc = lidp;
1145}
1146
1147STATIC void
1148xfs_trans_free_item_desc(
1149	struct xfs_log_item_desc *lidp)
1150{
1151	list_del_init(&lidp->lid_trans);
1152	kmem_zone_free(xfs_log_item_desc_zone, lidp);
1153}
1154
1155/*
1156 * Unlink and free the given descriptor.
1157 */
1158void
1159xfs_trans_del_item(
1160	struct xfs_log_item	*lip)
1161{
1162	xfs_trans_free_item_desc(lip->li_desc);
1163	lip->li_desc = NULL;
1164}
1165
1166/*
1167 * Unlock all of the items of a transaction and free all the descriptors
1168 * of that transaction.
1169 */
1170void
1171xfs_trans_free_items(
1172	struct xfs_trans	*tp,
1173	xfs_lsn_t		commit_lsn,
1174	int			flags)
1175{
1176	struct xfs_log_item_desc *lidp, *next;
1177
1178	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1179		struct xfs_log_item	*lip = lidp->lid_item;
1180
1181		lip->li_desc = NULL;
1182
1183		if (commit_lsn != NULLCOMMITLSN)
1184			IOP_COMMITTING(lip, commit_lsn);
1185		if (flags & XFS_TRANS_ABORT)
1186			lip->li_flags |= XFS_LI_ABORTED;
1187		IOP_UNLOCK(lip);
1188
1189		xfs_trans_free_item_desc(lidp);
1190	}
1191}
1192
1193/*
1194 * Unlock the items associated with a transaction.
1195 *
1196 * Items which were not logged should be freed.  Those which were logged must
1197 * still be tracked so they can be unpinned when the transaction commits.
1198 */
1199STATIC void
1200xfs_trans_unlock_items(
1201	struct xfs_trans	*tp,
1202	xfs_lsn_t		commit_lsn)
1203{
1204	struct xfs_log_item_desc *lidp, *next;
1205
1206	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1207		struct xfs_log_item	*lip = lidp->lid_item;
1208
1209		lip->li_desc = NULL;
1210
1211		if (commit_lsn != NULLCOMMITLSN)
1212			IOP_COMMITTING(lip, commit_lsn);
1213		IOP_UNLOCK(lip);
1214
1215		/*
1216		 * Free the descriptor if the item is not dirty
1217		 * within this transaction.
1218		 */
1219		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1220			xfs_trans_free_item_desc(lidp);
1221	}
1222}
1223
1224/*
1225 * Total up the number of log iovecs needed to commit this
1226 * transaction.  The transaction itself needs one for the
1227 * transaction header.  Ask each dirty item in turn how many
1228 * it needs to get the total.
1229 */
1230static uint
1231xfs_trans_count_vecs(
1232	struct xfs_trans	*tp)
1233{
1234	int			nvecs;
1235	struct xfs_log_item_desc *lidp;
1236
1237	nvecs = 1;
1238
1239	/* In the non-debug case we need to start bailing out if we
1240	 * didn't find a log_item here, return zero and let trans_commit
1241	 * deal with it.
1242	 */
1243	if (list_empty(&tp->t_items)) {
1244		ASSERT(0);
1245		return 0;
1246	}
1247
1248	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1249		/*
1250		 * Skip items which aren't dirty in this transaction.
1251		 */
1252		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1253			continue;
1254		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1255		nvecs += lidp->lid_size;
1256	}
1257
1258	return nvecs;
1259}
1260
1261/*
1262 * Fill in the vector with pointers to data to be logged
1263 * by this transaction.  The transaction header takes
1264 * the first vector, and then each dirty item takes the
1265 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1266 *
1267 * As each item fills in the entries it needs, also pin the item
1268 * so that it cannot be flushed out until the log write completes.
1269 */
1270static void
1271xfs_trans_fill_vecs(
1272	struct xfs_trans	*tp,
1273	struct xfs_log_iovec	*log_vector)
1274{
1275	struct xfs_log_item_desc *lidp;
1276	struct xfs_log_iovec	*vecp;
1277	uint			nitems;
1278
1279	/*
1280	 * Skip over the entry for the transaction header, we'll
1281	 * fill that in at the end.
1282	 */
1283	vecp = log_vector + 1;
1284
1285	nitems = 0;
1286	ASSERT(!list_empty(&tp->t_items));
1287	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1288		/* Skip items which aren't dirty in this transaction. */
1289		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1290			continue;
1291
1292		/*
1293		 * The item may be marked dirty but not log anything.  This can
1294		 * be used to get called when a transaction is committed.
1295		 */
1296		if (lidp->lid_size)
1297			nitems++;
1298		IOP_FORMAT(lidp->lid_item, vecp);
1299		vecp += lidp->lid_size;
1300		IOP_PIN(lidp->lid_item);
1301	}
1302
1303	/*
1304	 * Now that we've counted the number of items in this transaction, fill
1305	 * in the transaction header. Note that the transaction header does not
1306	 * have a log item.
1307	 */
1308	tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1309	tp->t_header.th_type = tp->t_type;
1310	tp->t_header.th_num_items = nitems;
1311	log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1312	log_vector->i_len = sizeof(xfs_trans_header_t);
1313	log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1314}
1315
1316/*
1317 * The committed item processing consists of calling the committed routine of
1318 * each logged item, updating the item's position in the AIL if necessary, and
1319 * unpinning each item.  If the committed routine returns -1, then do nothing
1320 * further with the item because it may have been freed.
1321 *
1322 * Since items are unlocked when they are copied to the incore log, it is
1323 * possible for two transactions to be completing and manipulating the same
1324 * item simultaneously.  The AIL lock will protect the lsn field of each item.
1325 * The value of this field can never go backwards.
1326 *
1327 * We unpin the items after repositioning them in the AIL, because otherwise
1328 * they could be immediately flushed and we'd have to race with the flusher
1329 * trying to pull the item from the AIL as we add it.
1330 */
1331void
1332xfs_trans_item_committed(
1333	struct xfs_log_item	*lip,
1334	xfs_lsn_t		commit_lsn,
1335	int			aborted)
1336{
1337	xfs_lsn_t		item_lsn;
1338	struct xfs_ail		*ailp;
1339
1340	if (aborted)
1341		lip->li_flags |= XFS_LI_ABORTED;
1342	item_lsn = IOP_COMMITTED(lip, commit_lsn);
1343
1344	/* If the committed routine returns -1, item has been freed. */
1345	if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1346		return;
1347
1348	/*
1349	 * If the returned lsn is greater than what it contained before, update
1350	 * the location of the item in the AIL.  If it is not, then do nothing.
1351	 * Items can never move backwards in the AIL.
1352	 *
1353	 * While the new lsn should usually be greater, it is possible that a
1354	 * later transaction completing simultaneously with an earlier one
1355	 * using the same item could complete first with a higher lsn.  This
1356	 * would cause the earlier transaction to fail the test below.
1357	 */
1358	ailp = lip->li_ailp;
1359	spin_lock(&ailp->xa_lock);
1360	if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1361		/*
1362		 * This will set the item's lsn to item_lsn and update the
1363		 * position of the item in the AIL.
1364		 *
1365		 * xfs_trans_ail_update() drops the AIL lock.
1366		 */
1367		xfs_trans_ail_update(ailp, lip, item_lsn);
1368	} else {
1369		spin_unlock(&ailp->xa_lock);
1370	}
1371
1372	/*
1373	 * Now that we've repositioned the item in the AIL, unpin it so it can
1374	 * be flushed. Pass information about buffer stale state down from the
1375	 * log item flags, if anyone else stales the buffer we do not want to
1376	 * pay any attention to it.
1377	 */
1378	IOP_UNPIN(lip, 0);
1379}
1380
1381/*
1382 * This is typically called by the LM when a transaction has been fully
1383 * committed to disk.  It needs to unpin the items which have
1384 * been logged by the transaction and update their positions
1385 * in the AIL if necessary.
1386 *
1387 * This also gets called when the transactions didn't get written out
1388 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1389 */
1390STATIC void
1391xfs_trans_committed(
1392	struct xfs_trans	*tp,
1393	int			abortflag)
1394{
1395	struct xfs_log_item_desc *lidp, *next;
1396
1397	/* Call the transaction's completion callback if there is one. */
1398	if (tp->t_callback != NULL)
1399		tp->t_callback(tp, tp->t_callarg);
1400
1401	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1402		xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1403		xfs_trans_free_item_desc(lidp);
1404	}
1405
1406	xfs_trans_free(tp);
1407}
1408
1409/*
1410 * Called from the trans_commit code when we notice that
1411 * the filesystem is in the middle of a forced shutdown.
1412 */
1413STATIC void
1414xfs_trans_uncommit(
1415	struct xfs_trans	*tp,
1416	uint			flags)
1417{
1418	struct xfs_log_item_desc *lidp;
1419
1420	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1421		/*
1422		 * Unpin all but those that aren't dirty.
1423		 */
1424		if (lidp->lid_flags & XFS_LID_DIRTY)
1425			IOP_UNPIN(lidp->lid_item, 1);
1426	}
1427
1428	xfs_trans_unreserve_and_mod_sb(tp);
1429	xfs_trans_unreserve_and_mod_dquots(tp);
1430
1431	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1432	xfs_trans_free(tp);
1433}
1434
1435/*
1436 * Format the transaction direct to the iclog. This isolates the physical
1437 * transaction commit operation from the logical operation and hence allows
1438 * other methods to be introduced without affecting the existing commit path.
1439 */
1440static int
1441xfs_trans_commit_iclog(
1442	struct xfs_mount	*mp,
1443	struct xfs_trans	*tp,
1444	xfs_lsn_t		*commit_lsn,
1445	int			flags)
1446{
1447	int			shutdown;
1448	int			error;
1449	int			log_flags = 0;
1450	struct xlog_in_core	*commit_iclog;
1451#define XFS_TRANS_LOGVEC_COUNT  16
1452	struct xfs_log_iovec	log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1453	struct xfs_log_iovec	*log_vector;
1454	uint			nvec;
1455
1456
1457	/*
1458	 * Ask each log item how many log_vector entries it will
1459	 * need so we can figure out how many to allocate.
1460	 * Try to avoid the kmem_alloc() call in the common case
1461	 * by using a vector from the stack when it fits.
1462	 */
1463	nvec = xfs_trans_count_vecs(tp);
1464	if (nvec == 0) {
1465		return ENOMEM;	/* triggers a shutdown! */
1466	} else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1467		log_vector = log_vector_fast;
1468	} else {
1469		log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1470						   sizeof(xfs_log_iovec_t),
1471						   KM_SLEEP);
1472	}
1473
1474	/*
1475	 * Fill in the log_vector and pin the logged items, and
1476	 * then write the transaction to the log.
1477	 */
1478	xfs_trans_fill_vecs(tp, log_vector);
1479
1480	if (flags & XFS_TRANS_RELEASE_LOG_RES)
1481		log_flags = XFS_LOG_REL_PERM_RESERV;
1482
1483	error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1484
1485	/*
1486	 * The transaction is committed incore here, and can go out to disk
1487	 * at any time after this call.  However, all the items associated
1488	 * with the transaction are still locked and pinned in memory.
1489	 */
1490	*commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1491
1492	tp->t_commit_lsn = *commit_lsn;
1493	trace_xfs_trans_commit_lsn(tp);
1494
1495	if (nvec > XFS_TRANS_LOGVEC_COUNT)
1496		kmem_free(log_vector);
1497
1498	/*
1499	 * If we got a log write error. Unpin the logitems that we
1500	 * had pinned, clean up, free trans structure, and return error.
1501	 */
1502	if (error || *commit_lsn == -1) {
1503		current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1504		xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1505		return XFS_ERROR(EIO);
1506	}
1507
1508	/*
1509	 * Once the transaction has committed, unused
1510	 * reservations need to be released and changes to
1511	 * the superblock need to be reflected in the in-core
1512	 * version.  Do that now.
1513	 */
1514	xfs_trans_unreserve_and_mod_sb(tp);
1515
1516	/*
1517	 * Tell the LM to call the transaction completion routine
1518	 * when the log write with LSN commit_lsn completes (e.g.
1519	 * when the transaction commit really hits the on-disk log).
1520	 * After this call we cannot reference tp, because the call
1521	 * can happen at any time and the call will free the transaction
1522	 * structure pointed to by tp.  The only case where we call
1523	 * the completion routine (xfs_trans_committed) directly is
1524	 * if the log is turned off on a debug kernel or we're
1525	 * running in simulation mode (the log is explicitly turned
1526	 * off).
1527	 */
1528	tp->t_logcb.cb_func = (void(*)(void*, int))xfs_trans_committed;
1529	tp->t_logcb.cb_arg = tp;
1530
1531	/*
1532	 * We need to pass the iclog buffer which was used for the
1533	 * transaction commit record into this function, and attach
1534	 * the callback to it. The callback must be attached before
1535	 * the items are unlocked to avoid racing with other threads
1536	 * waiting for an item to unlock.
1537	 */
1538	shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1539
1540	/*
1541	 * Mark this thread as no longer being in a transaction
1542	 */
1543	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1544
1545	/*
1546	 * Once all the items of the transaction have been copied
1547	 * to the in core log and the callback is attached, the
1548	 * items can be unlocked.
1549	 *
1550	 * This will free descriptors pointing to items which were
1551	 * not logged since there is nothing more to do with them.
1552	 * For items which were logged, we will keep pointers to them
1553	 * so they can be unpinned after the transaction commits to disk.
1554	 * This will also stamp each modified meta-data item with
1555	 * the commit lsn of this transaction for dependency tracking
1556	 * purposes.
1557	 */
1558	xfs_trans_unlock_items(tp, *commit_lsn);
1559
1560	/*
1561	 * If we detected a log error earlier, finish committing
1562	 * the transaction now (unpin log items, etc).
1563	 *
1564	 * Order is critical here, to avoid using the transaction
1565	 * pointer after its been freed (by xfs_trans_committed
1566	 * either here now, or as a callback).  We cannot do this
1567	 * step inside xfs_log_notify as was done earlier because
1568	 * of this issue.
1569	 */
1570	if (shutdown)
1571		xfs_trans_committed(tp, XFS_LI_ABORTED);
1572
1573	/*
1574	 * Now that the xfs_trans_committed callback has been attached,
1575	 * and the items are released we can finally allow the iclog to
1576	 * go to disk.
1577	 */
1578	return xfs_log_release_iclog(mp, commit_iclog);
1579}
1580
1581/*
1582 * Walk the log items and allocate log vector structures for
1583 * each item large enough to fit all the vectors they require.
1584 * Note that this format differs from the old log vector format in
1585 * that there is no transaction header in these log vectors.
1586 */
1587STATIC struct xfs_log_vec *
1588xfs_trans_alloc_log_vecs(
1589	xfs_trans_t	*tp)
1590{
1591	struct xfs_log_item_desc *lidp;
1592	struct xfs_log_vec	*lv = NULL;
1593	struct xfs_log_vec	*ret_lv = NULL;
1594
1595
1596	/* Bail out if we didn't find a log item.  */
1597	if (list_empty(&tp->t_items)) {
1598		ASSERT(0);
1599		return NULL;
1600	}
1601
1602	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1603		struct xfs_log_vec *new_lv;
1604
1605		/* Skip items which aren't dirty in this transaction. */
1606		if (!(lidp->lid_flags & XFS_LID_DIRTY))
1607			continue;
1608
1609		/* Skip items that do not have any vectors for writing */
1610		lidp->lid_size = IOP_SIZE(lidp->lid_item);
1611		if (!lidp->lid_size)
1612			continue;
1613
1614		new_lv = kmem_zalloc(sizeof(*new_lv) +
1615				lidp->lid_size * sizeof(struct xfs_log_iovec),
1616				KM_SLEEP);
1617
1618		/* The allocated iovec region lies beyond the log vector. */
1619		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1620		new_lv->lv_niovecs = lidp->lid_size;
1621		new_lv->lv_item = lidp->lid_item;
1622		if (!ret_lv)
1623			ret_lv = new_lv;
1624		else
1625			lv->lv_next = new_lv;
1626		lv = new_lv;
1627	}
1628
1629	return ret_lv;
1630}
1631
1632static int
1633xfs_trans_commit_cil(
1634	struct xfs_mount	*mp,
1635	struct xfs_trans	*tp,
1636	xfs_lsn_t		*commit_lsn,
1637	int			flags)
1638{
1639	struct xfs_log_vec	*log_vector;
1640	int			error;
1641
1642	/*
1643	 * Get each log item to allocate a vector structure for
1644	 * the log item to to pass to the log write code. The
1645	 * CIL commit code will format the vector and save it away.
1646	 */
1647	log_vector = xfs_trans_alloc_log_vecs(tp);
1648	if (!log_vector)
1649		return ENOMEM;
1650
1651	error = xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1652	if (error)
1653		return error;
1654
1655	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1656	xfs_trans_free(tp);
1657	return 0;
1658}
1659
1660/*
1661 * xfs_trans_commit
1662 *
1663 * Commit the given transaction to the log a/synchronously.
1664 *
1665 * XFS disk error handling mechanism is not based on a typical
1666 * transaction abort mechanism. Logically after the filesystem
1667 * gets marked 'SHUTDOWN', we can't let any new transactions
1668 * be durable - ie. committed to disk - because some metadata might
1669 * be inconsistent. In such cases, this returns an error, and the
1670 * caller may assume that all locked objects joined to the transaction
1671 * have already been unlocked as if the commit had succeeded.
1672 * Do not reference the transaction structure after this call.
1673 */
1674int
1675_xfs_trans_commit(
1676	struct xfs_trans	*tp,
1677	uint			flags,
1678	int			*log_flushed)
1679{
1680	struct xfs_mount	*mp = tp->t_mountp;
1681	xfs_lsn_t		commit_lsn = -1;
1682	int			error = 0;
1683	int			log_flags = 0;
1684	int			sync = tp->t_flags & XFS_TRANS_SYNC;
1685
1686	/*
1687	 * Determine whether this commit is releasing a permanent
1688	 * log reservation or not.
1689	 */
1690	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1691		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1692		log_flags = XFS_LOG_REL_PERM_RESERV;
1693	}
1694
1695	/*
1696	 * If there is nothing to be logged by the transaction,
1697	 * then unlock all of the items associated with the
1698	 * transaction and free the transaction structure.
1699	 * Also make sure to return any reserved blocks to
1700	 * the free pool.
1701	 */
1702	if (!(tp->t_flags & XFS_TRANS_DIRTY))
1703		goto out_unreserve;
1704
1705	if (XFS_FORCED_SHUTDOWN(mp)) {
1706		error = XFS_ERROR(EIO);
1707		goto out_unreserve;
1708	}
1709
1710	ASSERT(tp->t_ticket != NULL);
1711
1712	/*
1713	 * If we need to update the superblock, then do it now.
1714	 */
1715	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1716		xfs_trans_apply_sb_deltas(tp);
1717	xfs_trans_apply_dquot_deltas(tp);
1718
1719	if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1720		error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1721	else
1722		error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1723
1724	if (error == ENOMEM) {
1725		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1726		error = XFS_ERROR(EIO);
1727		goto out_unreserve;
1728	}
1729
1730	/*
1731	 * If the transaction needs to be synchronous, then force the
1732	 * log out now and wait for it.
1733	 */
1734	if (sync) {
1735		if (!error) {
1736			error = _xfs_log_force_lsn(mp, commit_lsn,
1737				      XFS_LOG_SYNC, log_flushed);
1738		}
1739		XFS_STATS_INC(xs_trans_sync);
1740	} else {
1741		XFS_STATS_INC(xs_trans_async);
1742	}
1743
1744	return error;
1745
1746out_unreserve:
1747	xfs_trans_unreserve_and_mod_sb(tp);
1748
1749	/*
1750	 * It is indeed possible for the transaction to be not dirty but
1751	 * the dqinfo portion to be.  All that means is that we have some
1752	 * (non-persistent) quota reservations that need to be unreserved.
1753	 */
1754	xfs_trans_unreserve_and_mod_dquots(tp);
1755	if (tp->t_ticket) {
1756		commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1757		if (commit_lsn == -1 && !error)
1758			error = XFS_ERROR(EIO);
1759	}
1760	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1761	xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1762	xfs_trans_free(tp);
1763
1764	XFS_STATS_INC(xs_trans_empty);
1765	return error;
1766}
1767
1768/*
1769 * Unlock all of the transaction's items and free the transaction.
1770 * The transaction must not have modified any of its items, because
1771 * there is no way to restore them to their previous state.
1772 *
1773 * If the transaction has made a log reservation, make sure to release
1774 * it as well.
1775 */
1776void
1777xfs_trans_cancel(
1778	xfs_trans_t		*tp,
1779	int			flags)
1780{
1781	int			log_flags;
1782	xfs_mount_t		*mp = tp->t_mountp;
1783
1784	/*
1785	 * See if the caller is being too lazy to figure out if
1786	 * the transaction really needs an abort.
1787	 */
1788	if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1789		flags &= ~XFS_TRANS_ABORT;
1790	/*
1791	 * See if the caller is relying on us to shut down the
1792	 * filesystem.  This happens in paths where we detect
1793	 * corruption and decide to give up.
1794	 */
1795	if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1796		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1797		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1798	}
1799#ifdef DEBUG
1800	if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1801		struct xfs_log_item_desc *lidp;
1802
1803		list_for_each_entry(lidp, &tp->t_items, lid_trans)
1804			ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1805	}
1806#endif
1807	xfs_trans_unreserve_and_mod_sb(tp);
1808	xfs_trans_unreserve_and_mod_dquots(tp);
1809
1810	if (tp->t_ticket) {
1811		if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1812			ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1813			log_flags = XFS_LOG_REL_PERM_RESERV;
1814		} else {
1815			log_flags = 0;
1816		}
1817		xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1818	}
1819
1820	/* mark this thread as no longer being in a transaction */
1821	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1822
1823	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1824	xfs_trans_free(tp);
1825}
1826
1827/*
1828 * Roll from one trans in the sequence of PERMANENT transactions to
1829 * the next: permanent transactions are only flushed out when
1830 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1831 * as possible to let chunks of it go to the log. So we commit the
1832 * chunk we've been working on and get a new transaction to continue.
1833 */
1834int
1835xfs_trans_roll(
1836	struct xfs_trans	**tpp,
1837	struct xfs_inode	*dp)
1838{
1839	struct xfs_trans	*trans;
1840	unsigned int		logres, count;
1841	int			error;
1842
1843	/*
1844	 * Ensure that the inode is always logged.
1845	 */
1846	trans = *tpp;
1847	xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1848
1849	/*
1850	 * Copy the critical parameters from one trans to the next.
1851	 */
1852	logres = trans->t_log_res;
1853	count = trans->t_log_count;
1854	*tpp = xfs_trans_dup(trans);
1855
1856	/*
1857	 * Commit the current transaction.
1858	 * If this commit failed, then it'd just unlock those items that
1859	 * are not marked ihold. That also means that a filesystem shutdown
1860	 * is in progress. The caller takes the responsibility to cancel
1861	 * the duplicate transaction that gets returned.
1862	 */
1863	error = xfs_trans_commit(trans, 0);
1864	if (error)
1865		return (error);
1866
1867	trans = *tpp;
1868
1869	/*
1870	 * transaction commit worked ok so we can drop the extra ticket
1871	 * reference that we gained in xfs_trans_dup()
1872	 */
1873	xfs_log_ticket_put(trans->t_ticket);
1874
1875
1876	/*
1877	 * Reserve space in the log for th next transaction.
1878	 * This also pushes items in the "AIL", the list of logged items,
1879	 * out to disk if they are taking up space at the tail of the log
1880	 * that we want to use.  This requires that either nothing be locked
1881	 * across this call, or that anything that is locked be logged in
1882	 * the prior and the next transactions.
1883	 */
1884	error = xfs_trans_reserve(trans, 0, logres, 0,
1885				  XFS_TRANS_PERM_LOG_RES, count);
1886	/*
1887	 *  Ensure that the inode is in the new transaction and locked.
1888	 */
1889	if (error)
1890		return error;
1891
1892	xfs_trans_ijoin(trans, dp);
1893	return 0;
1894}
1895