1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
31 */
32
33#include <linux/crc32.h>
34#include <linux/slab.h>
35#include "ubifs.h"
36
37/**
38 * is_empty - determine whether a buffer is empty (contains all 0xff).
39 * @buf: buffer to clean
40 * @len: length of buffer
41 *
42 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
43 * %0 is returned.
44 */
45static int is_empty(void *buf, int len)
46{
47	uint8_t *p = buf;
48	int i;
49
50	for (i = 0; i < len; i++)
51		if (*p++ != 0xff)
52			return 0;
53	return 1;
54}
55
56/**
57 * first_non_ff - find offset of the first non-0xff byte.
58 * @buf: buffer to search in
59 * @len: length of buffer
60 *
61 * This function returns offset of the first non-0xff byte in @buf or %-1 if
62 * the buffer contains only 0xff bytes.
63 */
64static int first_non_ff(void *buf, int len)
65{
66	uint8_t *p = buf;
67	int i;
68
69	for (i = 0; i < len; i++)
70		if (*p++ != 0xff)
71			return i;
72	return -1;
73}
74
75/**
76 * get_master_node - get the last valid master node allowing for corruption.
77 * @c: UBIFS file-system description object
78 * @lnum: LEB number
79 * @pbuf: buffer containing the LEB read, is returned here
80 * @mst: master node, if found, is returned here
81 * @cor: corruption, if found, is returned here
82 *
83 * This function allocates a buffer, reads the LEB into it, and finds and
84 * returns the last valid master node allowing for one area of corruption.
85 * The corrupt area, if there is one, must be consistent with the assumption
86 * that it is the result of an unclean unmount while the master node was being
87 * written. Under those circumstances, it is valid to use the previously written
88 * master node.
89 *
90 * This function returns %0 on success and a negative error code on failure.
91 */
92static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
93			   struct ubifs_mst_node **mst, void **cor)
94{
95	const int sz = c->mst_node_alsz;
96	int err, offs, len;
97	void *sbuf, *buf;
98
99	sbuf = vmalloc(c->leb_size);
100	if (!sbuf)
101		return -ENOMEM;
102
103	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
104	if (err && err != -EBADMSG)
105		goto out_free;
106
107	/* Find the first position that is definitely not a node */
108	offs = 0;
109	buf = sbuf;
110	len = c->leb_size;
111	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
112		struct ubifs_ch *ch = buf;
113
114		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
115			break;
116		offs += sz;
117		buf  += sz;
118		len  -= sz;
119	}
120	/* See if there was a valid master node before that */
121	if (offs) {
122		int ret;
123
124		offs -= sz;
125		buf  -= sz;
126		len  += sz;
127		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
128		if (ret != SCANNED_A_NODE && offs) {
129			/* Could have been corruption so check one place back */
130			offs -= sz;
131			buf  -= sz;
132			len  += sz;
133			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
134			if (ret != SCANNED_A_NODE)
135				/*
136				 * We accept only one area of corruption because
137				 * we are assuming that it was caused while
138				 * trying to write a master node.
139				 */
140				goto out_err;
141		}
142		if (ret == SCANNED_A_NODE) {
143			struct ubifs_ch *ch = buf;
144
145			if (ch->node_type != UBIFS_MST_NODE)
146				goto out_err;
147			dbg_rcvry("found a master node at %d:%d", lnum, offs);
148			*mst = buf;
149			offs += sz;
150			buf  += sz;
151			len  -= sz;
152		}
153	}
154	/* Check for corruption */
155	if (offs < c->leb_size) {
156		if (!is_empty(buf, min_t(int, len, sz))) {
157			*cor = buf;
158			dbg_rcvry("found corruption at %d:%d", lnum, offs);
159		}
160		offs += sz;
161		buf  += sz;
162		len  -= sz;
163	}
164	/* Check remaining empty space */
165	if (offs < c->leb_size)
166		if (!is_empty(buf, len))
167			goto out_err;
168	*pbuf = sbuf;
169	return 0;
170
171out_err:
172	err = -EINVAL;
173out_free:
174	vfree(sbuf);
175	*mst = NULL;
176	*cor = NULL;
177	return err;
178}
179
180/**
181 * write_rcvrd_mst_node - write recovered master node.
182 * @c: UBIFS file-system description object
183 * @mst: master node
184 *
185 * This function returns %0 on success and a negative error code on failure.
186 */
187static int write_rcvrd_mst_node(struct ubifs_info *c,
188				struct ubifs_mst_node *mst)
189{
190	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
191	__le32 save_flags;
192
193	dbg_rcvry("recovery");
194
195	save_flags = mst->flags;
196	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
197
198	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
199	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
200	if (err)
201		goto out;
202	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
203	if (err)
204		goto out;
205out:
206	mst->flags = save_flags;
207	return err;
208}
209
210/**
211 * ubifs_recover_master_node - recover the master node.
212 * @c: UBIFS file-system description object
213 *
214 * This function recovers the master node from corruption that may occur due to
215 * an unclean unmount.
216 *
217 * This function returns %0 on success and a negative error code on failure.
218 */
219int ubifs_recover_master_node(struct ubifs_info *c)
220{
221	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
222	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
223	const int sz = c->mst_node_alsz;
224	int err, offs1, offs2;
225
226	dbg_rcvry("recovery");
227
228	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
229	if (err)
230		goto out_free;
231
232	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
233	if (err)
234		goto out_free;
235
236	if (mst1) {
237		offs1 = (void *)mst1 - buf1;
238		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
239		    (offs1 == 0 && !cor1)) {
240			/*
241			 * mst1 was written by recovery at offset 0 with no
242			 * corruption.
243			 */
244			dbg_rcvry("recovery recovery");
245			mst = mst1;
246		} else if (mst2) {
247			offs2 = (void *)mst2 - buf2;
248			if (offs1 == offs2) {
249				/* Same offset, so must be the same */
250				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
251					   (void *)mst2 + UBIFS_CH_SZ,
252					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
253					goto out_err;
254				mst = mst1;
255			} else if (offs2 + sz == offs1) {
256				/* 1st LEB was written, 2nd was not */
257				if (cor1)
258					goto out_err;
259				mst = mst1;
260			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
261				/* 1st LEB was unmapped and written, 2nd not */
262				if (cor1)
263					goto out_err;
264				mst = mst1;
265			} else
266				goto out_err;
267		} else {
268			/*
269			 * 2nd LEB was unmapped and about to be written, so
270			 * there must be only one master node in the first LEB
271			 * and no corruption.
272			 */
273			if (offs1 != 0 || cor1)
274				goto out_err;
275			mst = mst1;
276		}
277	} else {
278		if (!mst2)
279			goto out_err;
280		/*
281		 * 1st LEB was unmapped and about to be written, so there must
282		 * be no room left in 2nd LEB.
283		 */
284		offs2 = (void *)mst2 - buf2;
285		if (offs2 + sz + sz <= c->leb_size)
286			goto out_err;
287		mst = mst2;
288	}
289
290	ubifs_msg("recovered master node from LEB %d",
291		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
292
293	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
294
295	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
296		/* Read-only mode. Keep a copy for switching to rw mode */
297		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
298		if (!c->rcvrd_mst_node) {
299			err = -ENOMEM;
300			goto out_free;
301		}
302		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
303	} else {
304		/* Write the recovered master node */
305		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
306		err = write_rcvrd_mst_node(c, c->mst_node);
307		if (err)
308			goto out_free;
309	}
310
311	vfree(buf2);
312	vfree(buf1);
313
314	return 0;
315
316out_err:
317	err = -EINVAL;
318out_free:
319	ubifs_err("failed to recover master node");
320	if (mst1) {
321		dbg_err("dumping first master node");
322		dbg_dump_node(c, mst1);
323	}
324	if (mst2) {
325		dbg_err("dumping second master node");
326		dbg_dump_node(c, mst2);
327	}
328	vfree(buf2);
329	vfree(buf1);
330	return err;
331}
332
333/**
334 * ubifs_write_rcvrd_mst_node - write the recovered master node.
335 * @c: UBIFS file-system description object
336 *
337 * This function writes the master node that was recovered during mounting in
338 * read-only mode and must now be written because we are remounting rw.
339 *
340 * This function returns %0 on success and a negative error code on failure.
341 */
342int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
343{
344	int err;
345
346	if (!c->rcvrd_mst_node)
347		return 0;
348	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
349	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
350	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
351	if (err)
352		return err;
353	kfree(c->rcvrd_mst_node);
354	c->rcvrd_mst_node = NULL;
355	return 0;
356}
357
358/**
359 * is_last_write - determine if an offset was in the last write to a LEB.
360 * @c: UBIFS file-system description object
361 * @buf: buffer to check
362 * @offs: offset to check
363 *
364 * This function returns %1 if @offs was in the last write to the LEB whose data
365 * is in @buf, otherwise %0 is returned.  The determination is made by checking
366 * for subsequent empty space starting from the next @c->min_io_size boundary.
367 */
368static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
369{
370	int empty_offs, check_len;
371	uint8_t *p;
372
373	/*
374	 * Round up to the next @c->min_io_size boundary i.e. @offs is in the
375	 * last wbuf written. After that should be empty space.
376	 */
377	empty_offs = ALIGN(offs + 1, c->min_io_size);
378	check_len = c->leb_size - empty_offs;
379	p = buf + empty_offs - offs;
380	return is_empty(p, check_len);
381}
382
383/**
384 * clean_buf - clean the data from an LEB sitting in a buffer.
385 * @c: UBIFS file-system description object
386 * @buf: buffer to clean
387 * @lnum: LEB number to clean
388 * @offs: offset from which to clean
389 * @len: length of buffer
390 *
391 * This function pads up to the next min_io_size boundary (if there is one) and
392 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
393 * @c->min_io_size boundary.
394 */
395static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
396		      int *offs, int *len)
397{
398	int empty_offs, pad_len;
399
400	lnum = lnum;
401	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
402
403	ubifs_assert(!(*offs & 7));
404	empty_offs = ALIGN(*offs, c->min_io_size);
405	pad_len = empty_offs - *offs;
406	ubifs_pad(c, *buf, pad_len);
407	*offs += pad_len;
408	*buf += pad_len;
409	*len -= pad_len;
410	memset(*buf, 0xff, c->leb_size - empty_offs);
411}
412
413/**
414 * no_more_nodes - determine if there are no more nodes in a buffer.
415 * @c: UBIFS file-system description object
416 * @buf: buffer to check
417 * @len: length of buffer
418 * @lnum: LEB number of the LEB from which @buf was read
419 * @offs: offset from which @buf was read
420 *
421 * This function ensures that the corrupted node at @offs is the last thing
422 * written to a LEB. This function returns %1 if more data is not found and
423 * %0 if more data is found.
424 */
425static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
426			int lnum, int offs)
427{
428	struct ubifs_ch *ch = buf;
429	int skip, dlen = le32_to_cpu(ch->len);
430
431	/* Check for empty space after the corrupt node's common header */
432	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
433	if (is_empty(buf + skip, len - skip))
434		return 1;
435	/*
436	 * The area after the common header size is not empty, so the common
437	 * header must be intact. Check it.
438	 */
439	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
440		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
441		return 0;
442	}
443	/* Now we know the corrupt node's length we can skip over it */
444	skip = ALIGN(offs + dlen, c->min_io_size) - offs;
445	/* After which there should be empty space */
446	if (is_empty(buf + skip, len - skip))
447		return 1;
448	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
449	return 0;
450}
451
452/**
453 * fix_unclean_leb - fix an unclean LEB.
454 * @c: UBIFS file-system description object
455 * @sleb: scanned LEB information
456 * @start: offset where scan started
457 */
458static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
459			   int start)
460{
461	int lnum = sleb->lnum, endpt = start;
462
463	/* Get the end offset of the last node we are keeping */
464	if (!list_empty(&sleb->nodes)) {
465		struct ubifs_scan_node *snod;
466
467		snod = list_entry(sleb->nodes.prev,
468				  struct ubifs_scan_node, list);
469		endpt = snod->offs + snod->len;
470	}
471
472	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
473		/* Add to recovery list */
474		struct ubifs_unclean_leb *ucleb;
475
476		dbg_rcvry("need to fix LEB %d start %d endpt %d",
477			  lnum, start, sleb->endpt);
478		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
479		if (!ucleb)
480			return -ENOMEM;
481		ucleb->lnum = lnum;
482		ucleb->endpt = endpt;
483		list_add_tail(&ucleb->list, &c->unclean_leb_list);
484	} else {
485		/* Write the fixed LEB back to flash */
486		int err;
487
488		dbg_rcvry("fixing LEB %d start %d endpt %d",
489			  lnum, start, sleb->endpt);
490		if (endpt == 0) {
491			err = ubifs_leb_unmap(c, lnum);
492			if (err)
493				return err;
494		} else {
495			int len = ALIGN(endpt, c->min_io_size);
496
497			if (start) {
498				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
499					       start);
500				if (err)
501					return err;
502			}
503			/* Pad to min_io_size */
504			if (len > endpt) {
505				int pad_len = len - ALIGN(endpt, 8);
506
507				if (pad_len > 0) {
508					void *buf = sleb->buf + len - pad_len;
509
510					ubifs_pad(c, buf, pad_len);
511				}
512			}
513			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
514					     UBI_UNKNOWN);
515			if (err)
516				return err;
517		}
518	}
519	return 0;
520}
521
522/**
523 * drop_incomplete_group - drop nodes from an incomplete group.
524 * @sleb: scanned LEB information
525 * @offs: offset of dropped nodes is returned here
526 *
527 * This function returns %1 if nodes are dropped and %0 otherwise.
528 */
529static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
530{
531	int dropped = 0;
532
533	while (!list_empty(&sleb->nodes)) {
534		struct ubifs_scan_node *snod;
535		struct ubifs_ch *ch;
536
537		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
538				  list);
539		ch = snod->node;
540		if (ch->group_type != UBIFS_IN_NODE_GROUP)
541			return dropped;
542		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
543		*offs = snod->offs;
544		list_del(&snod->list);
545		kfree(snod);
546		sleb->nodes_cnt -= 1;
547		dropped = 1;
548	}
549	return dropped;
550}
551
552/**
553 * ubifs_recover_leb - scan and recover a LEB.
554 * @c: UBIFS file-system description object
555 * @lnum: LEB number
556 * @offs: offset
557 * @sbuf: LEB-sized buffer to use
558 * @grouped: nodes may be grouped for recovery
559 *
560 * This function does a scan of a LEB, but caters for errors that might have
561 * been caused by the unclean unmount from which we are attempting to recover.
562 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
563 * found, and a negative error code in case of failure.
564 */
565struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
566					 int offs, void *sbuf, int grouped)
567{
568	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
569	int empty_chkd = 0, start = offs;
570	struct ubifs_scan_leb *sleb;
571	void *buf = sbuf + offs;
572
573	dbg_rcvry("%d:%d", lnum, offs);
574
575	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
576	if (IS_ERR(sleb))
577		return sleb;
578
579	if (sleb->ecc)
580		need_clean = 1;
581
582	while (len >= 8) {
583		int ret;
584
585		dbg_scan("look at LEB %d:%d (%d bytes left)",
586			 lnum, offs, len);
587
588		cond_resched();
589
590		/*
591		 * Scan quietly until there is an error from which we cannot
592		 * recover
593		 */
594		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
595
596		if (ret == SCANNED_A_NODE) {
597			/* A valid node, and not a padding node */
598			struct ubifs_ch *ch = buf;
599			int node_len;
600
601			err = ubifs_add_snod(c, sleb, buf, offs);
602			if (err)
603				goto error;
604			node_len = ALIGN(le32_to_cpu(ch->len), 8);
605			offs += node_len;
606			buf += node_len;
607			len -= node_len;
608			continue;
609		}
610
611		if (ret > 0) {
612			/* Padding bytes or a valid padding node */
613			offs += ret;
614			buf += ret;
615			len -= ret;
616			continue;
617		}
618
619		if (ret == SCANNED_EMPTY_SPACE) {
620			if (!is_empty(buf, len)) {
621				if (!is_last_write(c, buf, offs))
622					break;
623				clean_buf(c, &buf, lnum, &offs, &len);
624				need_clean = 1;
625			}
626			empty_chkd = 1;
627			break;
628		}
629
630		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
631			if (is_last_write(c, buf, offs)) {
632				clean_buf(c, &buf, lnum, &offs, &len);
633				need_clean = 1;
634				empty_chkd = 1;
635				break;
636			}
637
638		if (ret == SCANNED_A_CORRUPT_NODE)
639			if (no_more_nodes(c, buf, len, lnum, offs)) {
640				clean_buf(c, &buf, lnum, &offs, &len);
641				need_clean = 1;
642				empty_chkd = 1;
643				break;
644			}
645
646		if (quiet) {
647			/* Redo the last scan but noisily */
648			quiet = 0;
649			continue;
650		}
651
652		switch (ret) {
653		case SCANNED_GARBAGE:
654			dbg_err("garbage");
655			goto corrupted;
656		case SCANNED_A_CORRUPT_NODE:
657		case SCANNED_A_BAD_PAD_NODE:
658			dbg_err("bad node");
659			goto corrupted;
660		default:
661			dbg_err("unknown");
662			err = -EINVAL;
663			goto error;
664		}
665	}
666
667	if (!empty_chkd && !is_empty(buf, len)) {
668		if (is_last_write(c, buf, offs)) {
669			clean_buf(c, &buf, lnum, &offs, &len);
670			need_clean = 1;
671		} else {
672			int corruption = first_non_ff(buf, len);
673
674			ubifs_err("corrupt empty space LEB %d:%d, corruption "
675				  "starts at %d", lnum, offs, corruption);
676			/* Make sure we dump interesting non-0xFF data */
677			offs = corruption;
678			buf += corruption;
679			goto corrupted;
680		}
681	}
682
683	/* Drop nodes from incomplete group */
684	if (grouped && drop_incomplete_group(sleb, &offs)) {
685		buf = sbuf + offs;
686		len = c->leb_size - offs;
687		clean_buf(c, &buf, lnum, &offs, &len);
688		need_clean = 1;
689	}
690
691	if (offs % c->min_io_size) {
692		clean_buf(c, &buf, lnum, &offs, &len);
693		need_clean = 1;
694	}
695
696	ubifs_end_scan(c, sleb, lnum, offs);
697
698	if (need_clean) {
699		err = fix_unclean_leb(c, sleb, start);
700		if (err)
701			goto error;
702	}
703
704	return sleb;
705
706corrupted:
707	ubifs_scanned_corruption(c, lnum, offs, buf);
708	err = -EUCLEAN;
709error:
710	ubifs_err("LEB %d scanning failed", lnum);
711	ubifs_scan_destroy(sleb);
712	return ERR_PTR(err);
713}
714
715/**
716 * get_cs_sqnum - get commit start sequence number.
717 * @c: UBIFS file-system description object
718 * @lnum: LEB number of commit start node
719 * @offs: offset of commit start node
720 * @cs_sqnum: commit start sequence number is returned here
721 *
722 * This function returns %0 on success and a negative error code on failure.
723 */
724static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
725			unsigned long long *cs_sqnum)
726{
727	struct ubifs_cs_node *cs_node = NULL;
728	int err, ret;
729
730	dbg_rcvry("at %d:%d", lnum, offs);
731	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
732	if (!cs_node)
733		return -ENOMEM;
734	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
735		goto out_err;
736	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
737	if (err && err != -EBADMSG)
738		goto out_free;
739	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
740	if (ret != SCANNED_A_NODE) {
741		dbg_err("Not a valid node");
742		goto out_err;
743	}
744	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
745		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
746		goto out_err;
747	}
748	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
749		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
750			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
751			c->cmt_no);
752		goto out_err;
753	}
754	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
755	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
756	kfree(cs_node);
757	return 0;
758
759out_err:
760	err = -EINVAL;
761out_free:
762	ubifs_err("failed to get CS sqnum");
763	kfree(cs_node);
764	return err;
765}
766
767/**
768 * ubifs_recover_log_leb - scan and recover a log LEB.
769 * @c: UBIFS file-system description object
770 * @lnum: LEB number
771 * @offs: offset
772 * @sbuf: LEB-sized buffer to use
773 *
774 * This function does a scan of a LEB, but caters for errors that might have
775 * been caused by the unclean unmount from which we are attempting to recover.
776 *
777 * This function returns %0 on success and a negative error code on failure.
778 */
779struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
780					     int offs, void *sbuf)
781{
782	struct ubifs_scan_leb *sleb;
783	int next_lnum;
784
785	dbg_rcvry("LEB %d", lnum);
786	next_lnum = lnum + 1;
787	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
788		next_lnum = UBIFS_LOG_LNUM;
789	if (next_lnum != c->ltail_lnum) {
790		/*
791		 * We can only recover at the end of the log, so check that the
792		 * next log LEB is empty or out of date.
793		 */
794		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
795		if (IS_ERR(sleb))
796			return sleb;
797		if (sleb->nodes_cnt) {
798			struct ubifs_scan_node *snod;
799			unsigned long long cs_sqnum = c->cs_sqnum;
800
801			snod = list_entry(sleb->nodes.next,
802					  struct ubifs_scan_node, list);
803			if (cs_sqnum == 0) {
804				int err;
805
806				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
807				if (err) {
808					ubifs_scan_destroy(sleb);
809					return ERR_PTR(err);
810				}
811			}
812			if (snod->sqnum > cs_sqnum) {
813				ubifs_err("unrecoverable log corruption "
814					  "in LEB %d", lnum);
815				ubifs_scan_destroy(sleb);
816				return ERR_PTR(-EUCLEAN);
817			}
818		}
819		ubifs_scan_destroy(sleb);
820	}
821	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
822}
823
824/**
825 * recover_head - recover a head.
826 * @c: UBIFS file-system description object
827 * @lnum: LEB number of head to recover
828 * @offs: offset of head to recover
829 * @sbuf: LEB-sized buffer to use
830 *
831 * This function ensures that there is no data on the flash at a head location.
832 *
833 * This function returns %0 on success and a negative error code on failure.
834 */
835static int recover_head(const struct ubifs_info *c, int lnum, int offs,
836			void *sbuf)
837{
838	int len, err;
839
840	if (c->min_io_size > 1)
841		len = c->min_io_size;
842	else
843		len = 512;
844	if (offs + len > c->leb_size)
845		len = c->leb_size - offs;
846
847	if (!len)
848		return 0;
849
850	/* Read at the head location and check it is empty flash */
851	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
852	if (err || !is_empty(sbuf, len)) {
853		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
854		if (offs == 0)
855			return ubifs_leb_unmap(c, lnum);
856		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
857		if (err)
858			return err;
859		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
860	}
861
862	return 0;
863}
864
865/**
866 * ubifs_recover_inl_heads - recover index and LPT heads.
867 * @c: UBIFS file-system description object
868 * @sbuf: LEB-sized buffer to use
869 *
870 * This function ensures that there is no data on the flash at the index and
871 * LPT head locations.
872 *
873 * This deals with the recovery of a half-completed journal commit. UBIFS is
874 * careful never to overwrite the last version of the index or the LPT. Because
875 * the index and LPT are wandering trees, data from a half-completed commit will
876 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
877 * assumed to be empty and will be unmapped anyway before use, or in the index
878 * and LPT heads.
879 *
880 * This function returns %0 on success and a negative error code on failure.
881 */
882int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
883{
884	int err;
885
886	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
887
888	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
889	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
890	if (err)
891		return err;
892
893	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
894	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
895	if (err)
896		return err;
897
898	return 0;
899}
900
901/**
902 *  clean_an_unclean_leb - read and write a LEB to remove corruption.
903 * @c: UBIFS file-system description object
904 * @ucleb: unclean LEB information
905 * @sbuf: LEB-sized buffer to use
906 *
907 * This function reads a LEB up to a point pre-determined by the mount recovery,
908 * checks the nodes, and writes the result back to the flash, thereby cleaning
909 * off any following corruption, or non-fatal ECC errors.
910 *
911 * This function returns %0 on success and a negative error code on failure.
912 */
913static int clean_an_unclean_leb(const struct ubifs_info *c,
914				struct ubifs_unclean_leb *ucleb, void *sbuf)
915{
916	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
917	void *buf = sbuf;
918
919	dbg_rcvry("LEB %d len %d", lnum, len);
920
921	if (len == 0) {
922		/* Nothing to read, just unmap it */
923		err = ubifs_leb_unmap(c, lnum);
924		if (err)
925			return err;
926		return 0;
927	}
928
929	err = ubi_read(c->ubi, lnum, buf, offs, len);
930	if (err && err != -EBADMSG)
931		return err;
932
933	while (len >= 8) {
934		int ret;
935
936		cond_resched();
937
938		/* Scan quietly until there is an error */
939		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
940
941		if (ret == SCANNED_A_NODE) {
942			/* A valid node, and not a padding node */
943			struct ubifs_ch *ch = buf;
944			int node_len;
945
946			node_len = ALIGN(le32_to_cpu(ch->len), 8);
947			offs += node_len;
948			buf += node_len;
949			len -= node_len;
950			continue;
951		}
952
953		if (ret > 0) {
954			/* Padding bytes or a valid padding node */
955			offs += ret;
956			buf += ret;
957			len -= ret;
958			continue;
959		}
960
961		if (ret == SCANNED_EMPTY_SPACE) {
962			ubifs_err("unexpected empty space at %d:%d",
963				  lnum, offs);
964			return -EUCLEAN;
965		}
966
967		if (quiet) {
968			/* Redo the last scan but noisily */
969			quiet = 0;
970			continue;
971		}
972
973		ubifs_scanned_corruption(c, lnum, offs, buf);
974		return -EUCLEAN;
975	}
976
977	/* Pad to min_io_size */
978	len = ALIGN(ucleb->endpt, c->min_io_size);
979	if (len > ucleb->endpt) {
980		int pad_len = len - ALIGN(ucleb->endpt, 8);
981
982		if (pad_len > 0) {
983			buf = c->sbuf + len - pad_len;
984			ubifs_pad(c, buf, pad_len);
985		}
986	}
987
988	/* Write back the LEB atomically */
989	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
990	if (err)
991		return err;
992
993	dbg_rcvry("cleaned LEB %d", lnum);
994
995	return 0;
996}
997
998/**
999 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1000 * @c: UBIFS file-system description object
1001 * @sbuf: LEB-sized buffer to use
1002 *
1003 * This function cleans a LEB identified during recovery that needs to be
1004 * written but was not because UBIFS was mounted read-only. This happens when
1005 * remounting to read-write mode.
1006 *
1007 * This function returns %0 on success and a negative error code on failure.
1008 */
1009int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1010{
1011	dbg_rcvry("recovery");
1012	while (!list_empty(&c->unclean_leb_list)) {
1013		struct ubifs_unclean_leb *ucleb;
1014		int err;
1015
1016		ucleb = list_entry(c->unclean_leb_list.next,
1017				   struct ubifs_unclean_leb, list);
1018		err = clean_an_unclean_leb(c, ucleb, sbuf);
1019		if (err)
1020			return err;
1021		list_del(&ucleb->list);
1022		kfree(ucleb);
1023	}
1024	return 0;
1025}
1026
1027/**
1028 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1029 * @c: UBIFS file-system description object
1030 *
1031 * Out-of-place garbage collection requires always one empty LEB with which to
1032 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1033 * written to the master node on unmounting. In the case of an unclean unmount
1034 * the value of gc_lnum recorded in the master node is out of date and cannot
1035 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1036 * However, there may not be enough empty space, in which case it must be
1037 * possible to GC the dirtiest LEB into the GC head LEB.
1038 *
1039 * This function also runs the commit which causes the TNC updates from
1040 * size-recovery and orphans to be written to the flash. That is important to
1041 * ensure correct replay order for subsequent mounts.
1042 *
1043 * This function returns %0 on success and a negative error code on failure.
1044 */
1045int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1046{
1047	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1048	struct ubifs_lprops lp;
1049	int lnum, err;
1050
1051	c->gc_lnum = -1;
1052	if (wbuf->lnum == -1) {
1053		dbg_rcvry("no GC head LEB");
1054		goto find_free;
1055	}
1056	/*
1057	 * See whether the used space in the dirtiest LEB fits in the GC head
1058	 * LEB.
1059	 */
1060	if (wbuf->offs == c->leb_size) {
1061		dbg_rcvry("no room in GC head LEB");
1062		goto find_free;
1063	}
1064	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1065	if (err) {
1066		/*
1067		 * There are no dirty or empty LEBs subject to here being
1068		 * enough for the index. Try to use
1069		 * 'ubifs_find_free_leb_for_idx()', which will return any empty
1070		 * LEBs (ignoring index requirements). If the index then
1071		 * doesn't have enough LEBs the recovery commit will fail -
1072		 * which is the  same result anyway i.e. recovery fails. So
1073		 * there is no problem ignoring index  requirements and just
1074		 * grabbing a free LEB since we have already established there
1075		 * is not a dirty LEB we could have used instead.
1076		 */
1077		if (err == -ENOSPC) {
1078			dbg_rcvry("could not find a dirty LEB");
1079			goto find_free;
1080		}
1081		return err;
1082	}
1083	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1084	lnum = lp.lnum;
1085	if (lp.free + lp.dirty == c->leb_size) {
1086		/* An empty LEB was returned */
1087		if (lp.free != c->leb_size) {
1088			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1089						  0, 0, 0, 0);
1090			if (err)
1091				return err;
1092		}
1093		err = ubifs_leb_unmap(c, lnum);
1094		if (err)
1095			return err;
1096		c->gc_lnum = lnum;
1097		dbg_rcvry("allocated LEB %d for GC", lnum);
1098		/* Run the commit */
1099		dbg_rcvry("committing");
1100		return ubifs_run_commit(c);
1101	}
1102	/*
1103	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1104	 * in the GC head LEB.
1105	 */
1106	if (lp.free + lp.dirty < wbuf->offs) {
1107		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1108			  lnum, wbuf->lnum, wbuf->offs);
1109		err = ubifs_return_leb(c, lnum);
1110		if (err)
1111			return err;
1112		goto find_free;
1113	}
1114	/*
1115	 * We run the commit before garbage collection otherwise subsequent
1116	 * mounts will see the GC and orphan deletion in a different order.
1117	 */
1118	dbg_rcvry("committing");
1119	err = ubifs_run_commit(c);
1120	if (err)
1121		return err;
1122	/*
1123	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1124	 * - use locking to keep 'ubifs_assert()' happy.
1125	 */
1126	dbg_rcvry("GC'ing LEB %d", lnum);
1127	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1128	err = ubifs_garbage_collect_leb(c, &lp);
1129	if (err >= 0) {
1130		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1131
1132		if (err2)
1133			err = err2;
1134	}
1135	mutex_unlock(&wbuf->io_mutex);
1136	if (err < 0) {
1137		dbg_err("GC failed, error %d", err);
1138		if (err == -EAGAIN)
1139			err = -EINVAL;
1140		return err;
1141	}
1142	if (err != LEB_RETAINED) {
1143		dbg_err("GC returned %d", err);
1144		return -EINVAL;
1145	}
1146	err = ubifs_leb_unmap(c, c->gc_lnum);
1147	if (err)
1148		return err;
1149	dbg_rcvry("allocated LEB %d for GC", lnum);
1150	return 0;
1151
1152find_free:
1153	/*
1154	 * There is no GC head LEB or the free space in the GC head LEB is too
1155	 * small, or there are not dirty LEBs. Allocate gc_lnum by calling
1156	 * 'ubifs_find_free_leb_for_idx()' so GC is not run.
1157	 */
1158	lnum = ubifs_find_free_leb_for_idx(c);
1159	if (lnum < 0) {
1160		dbg_err("could not find an empty LEB");
1161		return lnum;
1162	}
1163	/* And reset the index flag */
1164	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1165				  LPROPS_INDEX, 0);
1166	if (err)
1167		return err;
1168	c->gc_lnum = lnum;
1169	dbg_rcvry("allocated LEB %d for GC", lnum);
1170	/* Run the commit */
1171	dbg_rcvry("committing");
1172	return ubifs_run_commit(c);
1173}
1174
1175/**
1176 * struct size_entry - inode size information for recovery.
1177 * @rb: link in the RB-tree of sizes
1178 * @inum: inode number
1179 * @i_size: size on inode
1180 * @d_size: maximum size based on data nodes
1181 * @exists: indicates whether the inode exists
1182 * @inode: inode if pinned in memory awaiting rw mode to fix it
1183 */
1184struct size_entry {
1185	struct rb_node rb;
1186	ino_t inum;
1187	loff_t i_size;
1188	loff_t d_size;
1189	int exists;
1190	struct inode *inode;
1191};
1192
1193/**
1194 * add_ino - add an entry to the size tree.
1195 * @c: UBIFS file-system description object
1196 * @inum: inode number
1197 * @i_size: size on inode
1198 * @d_size: maximum size based on data nodes
1199 * @exists: indicates whether the inode exists
1200 */
1201static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1202		   loff_t d_size, int exists)
1203{
1204	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1205	struct size_entry *e;
1206
1207	while (*p) {
1208		parent = *p;
1209		e = rb_entry(parent, struct size_entry, rb);
1210		if (inum < e->inum)
1211			p = &(*p)->rb_left;
1212		else
1213			p = &(*p)->rb_right;
1214	}
1215
1216	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1217	if (!e)
1218		return -ENOMEM;
1219
1220	e->inum = inum;
1221	e->i_size = i_size;
1222	e->d_size = d_size;
1223	e->exists = exists;
1224
1225	rb_link_node(&e->rb, parent, p);
1226	rb_insert_color(&e->rb, &c->size_tree);
1227
1228	return 0;
1229}
1230
1231/**
1232 * find_ino - find an entry on the size tree.
1233 * @c: UBIFS file-system description object
1234 * @inum: inode number
1235 */
1236static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1237{
1238	struct rb_node *p = c->size_tree.rb_node;
1239	struct size_entry *e;
1240
1241	while (p) {
1242		e = rb_entry(p, struct size_entry, rb);
1243		if (inum < e->inum)
1244			p = p->rb_left;
1245		else if (inum > e->inum)
1246			p = p->rb_right;
1247		else
1248			return e;
1249	}
1250	return NULL;
1251}
1252
1253/**
1254 * remove_ino - remove an entry from the size tree.
1255 * @c: UBIFS file-system description object
1256 * @inum: inode number
1257 */
1258static void remove_ino(struct ubifs_info *c, ino_t inum)
1259{
1260	struct size_entry *e = find_ino(c, inum);
1261
1262	if (!e)
1263		return;
1264	rb_erase(&e->rb, &c->size_tree);
1265	kfree(e);
1266}
1267
1268/**
1269 * ubifs_destroy_size_tree - free resources related to the size tree.
1270 * @c: UBIFS file-system description object
1271 */
1272void ubifs_destroy_size_tree(struct ubifs_info *c)
1273{
1274	struct rb_node *this = c->size_tree.rb_node;
1275	struct size_entry *e;
1276
1277	while (this) {
1278		if (this->rb_left) {
1279			this = this->rb_left;
1280			continue;
1281		} else if (this->rb_right) {
1282			this = this->rb_right;
1283			continue;
1284		}
1285		e = rb_entry(this, struct size_entry, rb);
1286		if (e->inode)
1287			iput(e->inode);
1288		this = rb_parent(this);
1289		if (this) {
1290			if (this->rb_left == &e->rb)
1291				this->rb_left = NULL;
1292			else
1293				this->rb_right = NULL;
1294		}
1295		kfree(e);
1296	}
1297	c->size_tree = RB_ROOT;
1298}
1299
1300/**
1301 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1302 * @c: UBIFS file-system description object
1303 * @key: node key
1304 * @deletion: node is for a deletion
1305 * @new_size: inode size
1306 *
1307 * This function has two purposes:
1308 *     1) to ensure there are no data nodes that fall outside the inode size
1309 *     2) to ensure there are no data nodes for inodes that do not exist
1310 * To accomplish those purposes, a rb-tree is constructed containing an entry
1311 * for each inode number in the journal that has not been deleted, and recording
1312 * the size from the inode node, the maximum size of any data node (also altered
1313 * by truncations) and a flag indicating a inode number for which no inode node
1314 * was present in the journal.
1315 *
1316 * Note that there is still the possibility that there are data nodes that have
1317 * been committed that are beyond the inode size, however the only way to find
1318 * them would be to scan the entire index. Alternatively, some provision could
1319 * be made to record the size of inodes at the start of commit, which would seem
1320 * very cumbersome for a scenario that is quite unlikely and the only negative
1321 * consequence of which is wasted space.
1322 *
1323 * This functions returns %0 on success and a negative error code on failure.
1324 */
1325int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1326			     int deletion, loff_t new_size)
1327{
1328	ino_t inum = key_inum(c, key);
1329	struct size_entry *e;
1330	int err;
1331
1332	switch (key_type(c, key)) {
1333	case UBIFS_INO_KEY:
1334		if (deletion)
1335			remove_ino(c, inum);
1336		else {
1337			e = find_ino(c, inum);
1338			if (e) {
1339				e->i_size = new_size;
1340				e->exists = 1;
1341			} else {
1342				err = add_ino(c, inum, new_size, 0, 1);
1343				if (err)
1344					return err;
1345			}
1346		}
1347		break;
1348	case UBIFS_DATA_KEY:
1349		e = find_ino(c, inum);
1350		if (e) {
1351			if (new_size > e->d_size)
1352				e->d_size = new_size;
1353		} else {
1354			err = add_ino(c, inum, 0, new_size, 0);
1355			if (err)
1356				return err;
1357		}
1358		break;
1359	case UBIFS_TRUN_KEY:
1360		e = find_ino(c, inum);
1361		if (e)
1362			e->d_size = new_size;
1363		break;
1364	}
1365	return 0;
1366}
1367
1368/**
1369 * fix_size_in_place - fix inode size in place on flash.
1370 * @c: UBIFS file-system description object
1371 * @e: inode size information for recovery
1372 */
1373static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1374{
1375	struct ubifs_ino_node *ino = c->sbuf;
1376	unsigned char *p;
1377	union ubifs_key key;
1378	int err, lnum, offs, len;
1379	loff_t i_size;
1380	uint32_t crc;
1381
1382	/* Locate the inode node LEB number and offset */
1383	ino_key_init(c, &key, e->inum);
1384	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1385	if (err)
1386		goto out;
1387	/*
1388	 * If the size recorded on the inode node is greater than the size that
1389	 * was calculated from nodes in the journal then don't change the inode.
1390	 */
1391	i_size = le64_to_cpu(ino->size);
1392	if (i_size >= e->d_size)
1393		return 0;
1394	/* Read the LEB */
1395	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1396	if (err)
1397		goto out;
1398	/* Change the size field and recalculate the CRC */
1399	ino = c->sbuf + offs;
1400	ino->size = cpu_to_le64(e->d_size);
1401	len = le32_to_cpu(ino->ch.len);
1402	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1403	ino->ch.crc = cpu_to_le32(crc);
1404	/* Work out where data in the LEB ends and free space begins */
1405	p = c->sbuf;
1406	len = c->leb_size - 1;
1407	while (p[len] == 0xff)
1408		len -= 1;
1409	len = ALIGN(len + 1, c->min_io_size);
1410	/* Atomically write the fixed LEB back again */
1411	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1412	if (err)
1413		goto out;
1414	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1415		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1416	return 0;
1417
1418out:
1419	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1420		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1421	return err;
1422}
1423
1424/**
1425 * ubifs_recover_size - recover inode size.
1426 * @c: UBIFS file-system description object
1427 *
1428 * This function attempts to fix inode size discrepancies identified by the
1429 * 'ubifs_recover_size_accum()' function.
1430 *
1431 * This functions returns %0 on success and a negative error code on failure.
1432 */
1433int ubifs_recover_size(struct ubifs_info *c)
1434{
1435	struct rb_node *this = rb_first(&c->size_tree);
1436
1437	while (this) {
1438		struct size_entry *e;
1439		int err;
1440
1441		e = rb_entry(this, struct size_entry, rb);
1442		if (!e->exists) {
1443			union ubifs_key key;
1444
1445			ino_key_init(c, &key, e->inum);
1446			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1447			if (err && err != -ENOENT)
1448				return err;
1449			if (err == -ENOENT) {
1450				/* Remove data nodes that have no inode */
1451				dbg_rcvry("removing ino %lu",
1452					  (unsigned long)e->inum);
1453				err = ubifs_tnc_remove_ino(c, e->inum);
1454				if (err)
1455					return err;
1456			} else {
1457				struct ubifs_ino_node *ino = c->sbuf;
1458
1459				e->exists = 1;
1460				e->i_size = le64_to_cpu(ino->size);
1461			}
1462		}
1463		if (e->exists && e->i_size < e->d_size) {
1464			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1465				/* Fix the inode size and pin it in memory */
1466				struct inode *inode;
1467
1468				inode = ubifs_iget(c->vfs_sb, e->inum);
1469				if (IS_ERR(inode))
1470					return PTR_ERR(inode);
1471				if (inode->i_size < e->d_size) {
1472					dbg_rcvry("ino %lu size %lld -> %lld",
1473						  (unsigned long)e->inum,
1474						  e->d_size, inode->i_size);
1475					inode->i_size = e->d_size;
1476					ubifs_inode(inode)->ui_size = e->d_size;
1477					e->inode = inode;
1478					this = rb_next(this);
1479					continue;
1480				}
1481				iput(inode);
1482			} else {
1483				/* Fix the size in place */
1484				err = fix_size_in_place(c, e);
1485				if (err)
1486					return err;
1487				if (e->inode)
1488					iput(e->inode);
1489			}
1490		}
1491		this = rb_next(this);
1492		rb_erase(&e->rb, &c->size_tree);
1493		kfree(e);
1494	}
1495	return 0;
1496}
1497