1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22#include "ubifs.h"
23
24/*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted.  Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space.  There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55#ifdef CONFIG_UBIFS_FS_DEBUG
56static int dbg_check_orphans(struct ubifs_info *c);
57#else
58#define dbg_check_orphans(c) 0
59#endif
60
61/**
62 * ubifs_add_orphan - add an orphan.
63 * @c: UBIFS file-system description object
64 * @inum: orphan inode number
65 *
66 * Add an orphan. This function is called when an inodes link count drops to
67 * zero.
68 */
69int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
70{
71	struct ubifs_orphan *orphan, *o;
72	struct rb_node **p, *parent = NULL;
73
74	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
75	if (!orphan)
76		return -ENOMEM;
77	orphan->inum = inum;
78	orphan->new = 1;
79
80	spin_lock(&c->orphan_lock);
81	if (c->tot_orphans >= c->max_orphans) {
82		spin_unlock(&c->orphan_lock);
83		kfree(orphan);
84		return -ENFILE;
85	}
86	p = &c->orph_tree.rb_node;
87	while (*p) {
88		parent = *p;
89		o = rb_entry(parent, struct ubifs_orphan, rb);
90		if (inum < o->inum)
91			p = &(*p)->rb_left;
92		else if (inum > o->inum)
93			p = &(*p)->rb_right;
94		else {
95			dbg_err("orphaned twice");
96			spin_unlock(&c->orphan_lock);
97			kfree(orphan);
98			return 0;
99		}
100	}
101	c->tot_orphans += 1;
102	c->new_orphans += 1;
103	rb_link_node(&orphan->rb, parent, p);
104	rb_insert_color(&orphan->rb, &c->orph_tree);
105	list_add_tail(&orphan->list, &c->orph_list);
106	list_add_tail(&orphan->new_list, &c->orph_new);
107	spin_unlock(&c->orphan_lock);
108	dbg_gen("ino %lu", (unsigned long)inum);
109	return 0;
110}
111
112/**
113 * ubifs_delete_orphan - delete an orphan.
114 * @c: UBIFS file-system description object
115 * @inum: orphan inode number
116 *
117 * Delete an orphan. This function is called when an inode is deleted.
118 */
119void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
120{
121	struct ubifs_orphan *o;
122	struct rb_node *p;
123
124	spin_lock(&c->orphan_lock);
125	p = c->orph_tree.rb_node;
126	while (p) {
127		o = rb_entry(p, struct ubifs_orphan, rb);
128		if (inum < o->inum)
129			p = p->rb_left;
130		else if (inum > o->inum)
131			p = p->rb_right;
132		else {
133			if (o->dnext) {
134				spin_unlock(&c->orphan_lock);
135				dbg_gen("deleted twice ino %lu",
136					(unsigned long)inum);
137				return;
138			}
139			if (o->cnext) {
140				o->dnext = c->orph_dnext;
141				c->orph_dnext = o;
142				spin_unlock(&c->orphan_lock);
143				dbg_gen("delete later ino %lu",
144					(unsigned long)inum);
145				return;
146			}
147			rb_erase(p, &c->orph_tree);
148			list_del(&o->list);
149			c->tot_orphans -= 1;
150			if (o->new) {
151				list_del(&o->new_list);
152				c->new_orphans -= 1;
153			}
154			spin_unlock(&c->orphan_lock);
155			kfree(o);
156			dbg_gen("inum %lu", (unsigned long)inum);
157			return;
158		}
159	}
160	spin_unlock(&c->orphan_lock);
161	dbg_err("missing orphan ino %lu", (unsigned long)inum);
162	dbg_dump_stack();
163}
164
165/**
166 * ubifs_orphan_start_commit - start commit of orphans.
167 * @c: UBIFS file-system description object
168 *
169 * Start commit of orphans.
170 */
171int ubifs_orphan_start_commit(struct ubifs_info *c)
172{
173	struct ubifs_orphan *orphan, **last;
174
175	spin_lock(&c->orphan_lock);
176	last = &c->orph_cnext;
177	list_for_each_entry(orphan, &c->orph_new, new_list) {
178		ubifs_assert(orphan->new);
179		orphan->new = 0;
180		*last = orphan;
181		last = &orphan->cnext;
182	}
183	*last = orphan->cnext;
184	c->cmt_orphans = c->new_orphans;
185	c->new_orphans = 0;
186	dbg_cmt("%d orphans to commit", c->cmt_orphans);
187	INIT_LIST_HEAD(&c->orph_new);
188	if (c->tot_orphans == 0)
189		c->no_orphs = 1;
190	else
191		c->no_orphs = 0;
192	spin_unlock(&c->orphan_lock);
193	return 0;
194}
195
196/**
197 * avail_orphs - calculate available space.
198 * @c: UBIFS file-system description object
199 *
200 * This function returns the number of orphans that can be written in the
201 * available space.
202 */
203static int avail_orphs(struct ubifs_info *c)
204{
205	int avail_lebs, avail, gap;
206
207	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
208	avail = avail_lebs *
209	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
210	gap = c->leb_size - c->ohead_offs;
211	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
212		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
213	return avail;
214}
215
216/**
217 * tot_avail_orphs - calculate total space.
218 * @c: UBIFS file-system description object
219 *
220 * This function returns the number of orphans that can be written in half
221 * the total space. That leaves half the space for adding new orphans.
222 */
223static int tot_avail_orphs(struct ubifs_info *c)
224{
225	int avail_lebs, avail;
226
227	avail_lebs = c->orph_lebs;
228	avail = avail_lebs *
229	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
230	return avail / 2;
231}
232
233/**
234 * do_write_orph_node - write a node to the orphan head.
235 * @c: UBIFS file-system description object
236 * @len: length of node
237 * @atomic: write atomically
238 *
239 * This function writes a node to the orphan head from the orphan buffer. If
240 * %atomic is not zero, then the write is done atomically. On success, %0 is
241 * returned, otherwise a negative error code is returned.
242 */
243static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
244{
245	int err = 0;
246
247	if (atomic) {
248		ubifs_assert(c->ohead_offs == 0);
249		ubifs_prepare_node(c, c->orph_buf, len, 1);
250		len = ALIGN(len, c->min_io_size);
251		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
252				       UBI_SHORTTERM);
253	} else {
254		if (c->ohead_offs == 0) {
255			/* Ensure LEB has been unmapped */
256			err = ubifs_leb_unmap(c, c->ohead_lnum);
257			if (err)
258				return err;
259		}
260		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
261				       c->ohead_offs, UBI_SHORTTERM);
262	}
263	return err;
264}
265
266/**
267 * write_orph_node - write an orphan node.
268 * @c: UBIFS file-system description object
269 * @atomic: write atomically
270 *
271 * This function builds an orphan node from the cnext list and writes it to the
272 * orphan head. On success, %0 is returned, otherwise a negative error code
273 * is returned.
274 */
275static int write_orph_node(struct ubifs_info *c, int atomic)
276{
277	struct ubifs_orphan *orphan, *cnext;
278	struct ubifs_orph_node *orph;
279	int gap, err, len, cnt, i;
280
281	ubifs_assert(c->cmt_orphans > 0);
282	gap = c->leb_size - c->ohead_offs;
283	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
284		c->ohead_lnum += 1;
285		c->ohead_offs = 0;
286		gap = c->leb_size;
287		if (c->ohead_lnum > c->orph_last) {
288			/*
289			 * We limit the number of orphans so that this should
290			 * never happen.
291			 */
292			ubifs_err("out of space in orphan area");
293			return -EINVAL;
294		}
295	}
296	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
297	if (cnt > c->cmt_orphans)
298		cnt = c->cmt_orphans;
299	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
300	ubifs_assert(c->orph_buf);
301	orph = c->orph_buf;
302	orph->ch.node_type = UBIFS_ORPH_NODE;
303	spin_lock(&c->orphan_lock);
304	cnext = c->orph_cnext;
305	for (i = 0; i < cnt; i++) {
306		orphan = cnext;
307		orph->inos[i] = cpu_to_le64(orphan->inum);
308		cnext = orphan->cnext;
309		orphan->cnext = NULL;
310	}
311	c->orph_cnext = cnext;
312	c->cmt_orphans -= cnt;
313	spin_unlock(&c->orphan_lock);
314	if (c->cmt_orphans)
315		orph->cmt_no = cpu_to_le64(c->cmt_no);
316	else
317		/* Mark the last node of the commit */
318		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
319	ubifs_assert(c->ohead_offs + len <= c->leb_size);
320	ubifs_assert(c->ohead_lnum >= c->orph_first);
321	ubifs_assert(c->ohead_lnum <= c->orph_last);
322	err = do_write_orph_node(c, len, atomic);
323	c->ohead_offs += ALIGN(len, c->min_io_size);
324	c->ohead_offs = ALIGN(c->ohead_offs, 8);
325	return err;
326}
327
328/**
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
332 *
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
335 */
336static int write_orph_nodes(struct ubifs_info *c, int atomic)
337{
338	int err;
339
340	while (c->cmt_orphans > 0) {
341		err = write_orph_node(c, atomic);
342		if (err)
343			return err;
344	}
345	if (atomic) {
346		int lnum;
347
348		/* Unmap any unused LEBs after consolidation */
349		lnum = c->ohead_lnum + 1;
350		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
351			err = ubifs_leb_unmap(c, lnum);
352			if (err)
353				return err;
354		}
355	}
356	return 0;
357}
358
359/**
360 * consolidate - consolidate the orphan area.
361 * @c: UBIFS file-system description object
362 *
363 * This function enables consolidation by putting all the orphans into the list
364 * to commit. The list is in the order that the orphans were added, and the
365 * LEBs are written atomically in order, so at no time can orphans be lost by
366 * an unclean unmount.
367 *
368 * This function returns %0 on success and a negative error code on failure.
369 */
370static int consolidate(struct ubifs_info *c)
371{
372	int tot_avail = tot_avail_orphs(c), err = 0;
373
374	spin_lock(&c->orphan_lock);
375	dbg_cmt("there is space for %d orphans and there are %d",
376		tot_avail, c->tot_orphans);
377	if (c->tot_orphans - c->new_orphans <= tot_avail) {
378		struct ubifs_orphan *orphan, **last;
379		int cnt = 0;
380
381		/* Change the cnext list to include all non-new orphans */
382		last = &c->orph_cnext;
383		list_for_each_entry(orphan, &c->orph_list, list) {
384			if (orphan->new)
385				continue;
386			*last = orphan;
387			last = &orphan->cnext;
388			cnt += 1;
389		}
390		*last = orphan->cnext;
391		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
392		c->cmt_orphans = cnt;
393		c->ohead_lnum = c->orph_first;
394		c->ohead_offs = 0;
395	} else {
396		/*
397		 * We limit the number of orphans so that this should
398		 * never happen.
399		 */
400		ubifs_err("out of space in orphan area");
401		err = -EINVAL;
402	}
403	spin_unlock(&c->orphan_lock);
404	return err;
405}
406
407/**
408 * commit_orphans - commit orphans.
409 * @c: UBIFS file-system description object
410 *
411 * This function commits orphans to flash. On success, %0 is returned,
412 * otherwise a negative error code is returned.
413 */
414static int commit_orphans(struct ubifs_info *c)
415{
416	int avail, atomic = 0, err;
417
418	ubifs_assert(c->cmt_orphans > 0);
419	avail = avail_orphs(c);
420	if (avail < c->cmt_orphans) {
421		/* Not enough space to write new orphans, so consolidate */
422		err = consolidate(c);
423		if (err)
424			return err;
425		atomic = 1;
426	}
427	err = write_orph_nodes(c, atomic);
428	return err;
429}
430
431/**
432 * erase_deleted - erase the orphans marked for deletion.
433 * @c: UBIFS file-system description object
434 *
435 * During commit, the orphans being committed cannot be deleted, so they are
436 * marked for deletion and deleted by this function. Also, the recovery
437 * adds killed orphans to the deletion list, and therefore they are deleted
438 * here too.
439 */
440static void erase_deleted(struct ubifs_info *c)
441{
442	struct ubifs_orphan *orphan, *dnext;
443
444	spin_lock(&c->orphan_lock);
445	dnext = c->orph_dnext;
446	while (dnext) {
447		orphan = dnext;
448		dnext = orphan->dnext;
449		ubifs_assert(!orphan->new);
450		rb_erase(&orphan->rb, &c->orph_tree);
451		list_del(&orphan->list);
452		c->tot_orphans -= 1;
453		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
454		kfree(orphan);
455	}
456	c->orph_dnext = NULL;
457	spin_unlock(&c->orphan_lock);
458}
459
460/**
461 * ubifs_orphan_end_commit - end commit of orphans.
462 * @c: UBIFS file-system description object
463 *
464 * End commit of orphans.
465 */
466int ubifs_orphan_end_commit(struct ubifs_info *c)
467{
468	int err;
469
470	if (c->cmt_orphans != 0) {
471		err = commit_orphans(c);
472		if (err)
473			return err;
474	}
475	erase_deleted(c);
476	err = dbg_check_orphans(c);
477	return err;
478}
479
480/**
481 * ubifs_clear_orphans - erase all LEBs used for orphans.
482 * @c: UBIFS file-system description object
483 *
484 * If recovery is not required, then the orphans from the previous session
485 * are not needed. This function locates the LEBs used to record
486 * orphans, and un-maps them.
487 */
488int ubifs_clear_orphans(struct ubifs_info *c)
489{
490	int lnum, err;
491
492	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
493		err = ubifs_leb_unmap(c, lnum);
494		if (err)
495			return err;
496	}
497	c->ohead_lnum = c->orph_first;
498	c->ohead_offs = 0;
499	return 0;
500}
501
502/**
503 * insert_dead_orphan - insert an orphan.
504 * @c: UBIFS file-system description object
505 * @inum: orphan inode number
506 *
507 * This function is a helper to the 'do_kill_orphans()' function. The orphan
508 * must be kept until the next commit, so it is added to the rb-tree and the
509 * deletion list.
510 */
511static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
512{
513	struct ubifs_orphan *orphan, *o;
514	struct rb_node **p, *parent = NULL;
515
516	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
517	if (!orphan)
518		return -ENOMEM;
519	orphan->inum = inum;
520
521	p = &c->orph_tree.rb_node;
522	while (*p) {
523		parent = *p;
524		o = rb_entry(parent, struct ubifs_orphan, rb);
525		if (inum < o->inum)
526			p = &(*p)->rb_left;
527		else if (inum > o->inum)
528			p = &(*p)->rb_right;
529		else {
530			/* Already added - no problem */
531			kfree(orphan);
532			return 0;
533		}
534	}
535	c->tot_orphans += 1;
536	rb_link_node(&orphan->rb, parent, p);
537	rb_insert_color(&orphan->rb, &c->orph_tree);
538	list_add_tail(&orphan->list, &c->orph_list);
539	orphan->dnext = c->orph_dnext;
540	c->orph_dnext = orphan;
541	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
542		c->new_orphans, c->tot_orphans);
543	return 0;
544}
545
546/**
547 * do_kill_orphans - remove orphan inodes from the index.
548 * @c: UBIFS file-system description object
549 * @sleb: scanned LEB
550 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
551 * @outofdate: whether the LEB is out of date is returned here
552 * @last_flagged: whether the end orphan node is encountered
553 *
554 * This function is a helper to the 'kill_orphans()' function. It goes through
555 * every orphan node in a LEB and for every inode number recorded, removes
556 * all keys for that inode from the TNC.
557 */
558static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
559			   unsigned long long *last_cmt_no, int *outofdate,
560			   int *last_flagged)
561{
562	struct ubifs_scan_node *snod;
563	struct ubifs_orph_node *orph;
564	unsigned long long cmt_no;
565	ino_t inum;
566	int i, n, err, first = 1;
567
568	list_for_each_entry(snod, &sleb->nodes, list) {
569		if (snod->type != UBIFS_ORPH_NODE) {
570			ubifs_err("invalid node type %d in orphan area at "
571				  "%d:%d", snod->type, sleb->lnum, snod->offs);
572			dbg_dump_node(c, snod->node);
573			return -EINVAL;
574		}
575
576		orph = snod->node;
577
578		/* Check commit number */
579		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
580		/*
581		 * The commit number on the master node may be less, because
582		 * of a failed commit. If there are several failed commits in a
583		 * row, the commit number written on orphan nodes will continue
584		 * to increase (because the commit number is adjusted here) even
585		 * though the commit number on the master node stays the same
586		 * because the master node has not been re-written.
587		 */
588		if (cmt_no > c->cmt_no)
589			c->cmt_no = cmt_no;
590		if (cmt_no < *last_cmt_no && *last_flagged) {
591			/*
592			 * The last orphan node had a higher commit number and
593			 * was flagged as the last written for that commit
594			 * number. That makes this orphan node, out of date.
595			 */
596			if (!first) {
597				ubifs_err("out of order commit number %llu in "
598					  "orphan node at %d:%d",
599					  cmt_no, sleb->lnum, snod->offs);
600				dbg_dump_node(c, snod->node);
601				return -EINVAL;
602			}
603			dbg_rcvry("out of date LEB %d", sleb->lnum);
604			*outofdate = 1;
605			return 0;
606		}
607
608		if (first)
609			first = 0;
610
611		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
612		for (i = 0; i < n; i++) {
613			inum = le64_to_cpu(orph->inos[i]);
614			dbg_rcvry("deleting orphaned inode %lu",
615				  (unsigned long)inum);
616			err = ubifs_tnc_remove_ino(c, inum);
617			if (err)
618				return err;
619			err = insert_dead_orphan(c, inum);
620			if (err)
621				return err;
622		}
623
624		*last_cmt_no = cmt_no;
625		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
626			dbg_rcvry("last orph node for commit %llu at %d:%d",
627				  cmt_no, sleb->lnum, snod->offs);
628			*last_flagged = 1;
629		} else
630			*last_flagged = 0;
631	}
632
633	return 0;
634}
635
636/**
637 * kill_orphans - remove all orphan inodes from the index.
638 * @c: UBIFS file-system description object
639 *
640 * If recovery is required, then orphan inodes recorded during the previous
641 * session (which ended with an unclean unmount) must be deleted from the index.
642 * This is done by updating the TNC, but since the index is not updated until
643 * the next commit, the LEBs where the orphan information is recorded are not
644 * erased until the next commit.
645 */
646static int kill_orphans(struct ubifs_info *c)
647{
648	unsigned long long last_cmt_no = 0;
649	int lnum, err = 0, outofdate = 0, last_flagged = 0;
650
651	c->ohead_lnum = c->orph_first;
652	c->ohead_offs = 0;
653	/* Check no-orphans flag and skip this if no orphans */
654	if (c->no_orphs) {
655		dbg_rcvry("no orphans");
656		return 0;
657	}
658	/*
659	 * Orph nodes always start at c->orph_first and are written to each
660	 * successive LEB in turn. Generally unused LEBs will have been unmapped
661	 * but may contain out of date orphan nodes if the unmap didn't go
662	 * through. In addition, the last orphan node written for each commit is
663	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
664	 * there are orphan nodes from the next commit (i.e. the commit did not
665	 * complete successfully). In that case, no orphans will have been lost
666	 * due to the way that orphans are written, and any orphans added will
667	 * be valid orphans anyway and so can be deleted.
668	 */
669	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
670		struct ubifs_scan_leb *sleb;
671
672		dbg_rcvry("LEB %d", lnum);
673		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
674		if (IS_ERR(sleb)) {
675			if (PTR_ERR(sleb) == -EUCLEAN)
676				sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
677			if (IS_ERR(sleb)) {
678				err = PTR_ERR(sleb);
679				break;
680			}
681		}
682		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
683				      &last_flagged);
684		if (err || outofdate) {
685			ubifs_scan_destroy(sleb);
686			break;
687		}
688		if (sleb->endpt) {
689			c->ohead_lnum = lnum;
690			c->ohead_offs = sleb->endpt;
691		}
692		ubifs_scan_destroy(sleb);
693	}
694	return err;
695}
696
697/**
698 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
699 * @c: UBIFS file-system description object
700 * @unclean: indicates recovery from unclean unmount
701 * @read_only: indicates read only mount
702 *
703 * This function is called when mounting to erase orphans from the previous
704 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
705 * orphans are deleted.
706 */
707int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
708{
709	int err = 0;
710
711	c->max_orphans = tot_avail_orphs(c);
712
713	if (!read_only) {
714		c->orph_buf = vmalloc(c->leb_size);
715		if (!c->orph_buf)
716			return -ENOMEM;
717	}
718
719	if (unclean)
720		err = kill_orphans(c);
721	else if (!read_only)
722		err = ubifs_clear_orphans(c);
723
724	return err;
725}
726
727#ifdef CONFIG_UBIFS_FS_DEBUG
728
729struct check_orphan {
730	struct rb_node rb;
731	ino_t inum;
732};
733
734struct check_info {
735	unsigned long last_ino;
736	unsigned long tot_inos;
737	unsigned long missing;
738	unsigned long long leaf_cnt;
739	struct ubifs_ino_node *node;
740	struct rb_root root;
741};
742
743static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
744{
745	struct ubifs_orphan *o;
746	struct rb_node *p;
747
748	spin_lock(&c->orphan_lock);
749	p = c->orph_tree.rb_node;
750	while (p) {
751		o = rb_entry(p, struct ubifs_orphan, rb);
752		if (inum < o->inum)
753			p = p->rb_left;
754		else if (inum > o->inum)
755			p = p->rb_right;
756		else {
757			spin_unlock(&c->orphan_lock);
758			return 1;
759		}
760	}
761	spin_unlock(&c->orphan_lock);
762	return 0;
763}
764
765static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
766{
767	struct check_orphan *orphan, *o;
768	struct rb_node **p, *parent = NULL;
769
770	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
771	if (!orphan)
772		return -ENOMEM;
773	orphan->inum = inum;
774
775	p = &root->rb_node;
776	while (*p) {
777		parent = *p;
778		o = rb_entry(parent, struct check_orphan, rb);
779		if (inum < o->inum)
780			p = &(*p)->rb_left;
781		else if (inum > o->inum)
782			p = &(*p)->rb_right;
783		else {
784			kfree(orphan);
785			return 0;
786		}
787	}
788	rb_link_node(&orphan->rb, parent, p);
789	rb_insert_color(&orphan->rb, root);
790	return 0;
791}
792
793static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
794{
795	struct check_orphan *o;
796	struct rb_node *p;
797
798	p = root->rb_node;
799	while (p) {
800		o = rb_entry(p, struct check_orphan, rb);
801		if (inum < o->inum)
802			p = p->rb_left;
803		else if (inum > o->inum)
804			p = p->rb_right;
805		else
806			return 1;
807	}
808	return 0;
809}
810
811static void dbg_free_check_tree(struct rb_root *root)
812{
813	struct rb_node *this = root->rb_node;
814	struct check_orphan *o;
815
816	while (this) {
817		if (this->rb_left) {
818			this = this->rb_left;
819			continue;
820		} else if (this->rb_right) {
821			this = this->rb_right;
822			continue;
823		}
824		o = rb_entry(this, struct check_orphan, rb);
825		this = rb_parent(this);
826		if (this) {
827			if (this->rb_left == &o->rb)
828				this->rb_left = NULL;
829			else
830				this->rb_right = NULL;
831		}
832		kfree(o);
833	}
834}
835
836static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
837			    void *priv)
838{
839	struct check_info *ci = priv;
840	ino_t inum;
841	int err;
842
843	inum = key_inum(c, &zbr->key);
844	if (inum != ci->last_ino) {
845		/* Lowest node type is the inode node, so it comes first */
846		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
847			ubifs_err("found orphan node ino %lu, type %d",
848				  (unsigned long)inum, key_type(c, &zbr->key));
849		ci->last_ino = inum;
850		ci->tot_inos += 1;
851		err = ubifs_tnc_read_node(c, zbr, ci->node);
852		if (err) {
853			ubifs_err("node read failed, error %d", err);
854			return err;
855		}
856		if (ci->node->nlink == 0)
857			/* Must be recorded as an orphan */
858			if (!dbg_find_check_orphan(&ci->root, inum) &&
859			    !dbg_find_orphan(c, inum)) {
860				ubifs_err("missing orphan, ino %lu",
861					  (unsigned long)inum);
862				ci->missing += 1;
863			}
864	}
865	ci->leaf_cnt += 1;
866	return 0;
867}
868
869static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
870{
871	struct ubifs_scan_node *snod;
872	struct ubifs_orph_node *orph;
873	ino_t inum;
874	int i, n, err;
875
876	list_for_each_entry(snod, &sleb->nodes, list) {
877		cond_resched();
878		if (snod->type != UBIFS_ORPH_NODE)
879			continue;
880		orph = snod->node;
881		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
882		for (i = 0; i < n; i++) {
883			inum = le64_to_cpu(orph->inos[i]);
884			err = dbg_ins_check_orphan(&ci->root, inum);
885			if (err)
886				return err;
887		}
888	}
889	return 0;
890}
891
892static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
893{
894	int lnum, err = 0;
895
896	/* Check no-orphans flag and skip this if no orphans */
897	if (c->no_orphs)
898		return 0;
899
900	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
901		struct ubifs_scan_leb *sleb;
902
903		sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
904		if (IS_ERR(sleb)) {
905			err = PTR_ERR(sleb);
906			break;
907		}
908
909		err = dbg_read_orphans(ci, sleb);
910		ubifs_scan_destroy(sleb);
911		if (err)
912			break;
913	}
914
915	return err;
916}
917
918static int dbg_check_orphans(struct ubifs_info *c)
919{
920	struct check_info ci;
921	int err;
922
923	if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
924		return 0;
925
926	ci.last_ino = 0;
927	ci.tot_inos = 0;
928	ci.missing  = 0;
929	ci.leaf_cnt = 0;
930	ci.root = RB_ROOT;
931	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
932	if (!ci.node) {
933		ubifs_err("out of memory");
934		return -ENOMEM;
935	}
936
937	err = dbg_scan_orphans(c, &ci);
938	if (err)
939		goto out;
940
941	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
942	if (err) {
943		ubifs_err("cannot scan TNC, error %d", err);
944		goto out;
945	}
946
947	if (ci.missing) {
948		ubifs_err("%lu missing orphan(s)", ci.missing);
949		err = -EINVAL;
950		goto out;
951	}
952
953	dbg_cmt("last inode number is %lu", ci.last_ino);
954	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
955	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
956
957out:
958	dbg_free_check_tree(&ci.root);
959	kfree(ci.node);
960	return err;
961}
962
963#endif /* CONFIG_UBIFS_FS_DEBUG */
964