1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
29#include <linux/slab.h>
30#include "ubifs.h"
31
32/**
33 * first_dirty_cnode - find first dirty cnode.
34 * @c: UBIFS file-system description object
35 * @nnode: nnode at which to start
36 *
37 * This function returns the first dirty cnode or %NULL if there is not one.
38 */
39static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
40{
41	ubifs_assert(nnode);
42	while (1) {
43		int i, cont = 0;
44
45		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
46			struct ubifs_cnode *cnode;
47
48			cnode = nnode->nbranch[i].cnode;
49			if (cnode &&
50			    test_bit(DIRTY_CNODE, &cnode->flags)) {
51				if (cnode->level == 0)
52					return cnode;
53				nnode = (struct ubifs_nnode *)cnode;
54				cont = 1;
55				break;
56			}
57		}
58		if (!cont)
59			return (struct ubifs_cnode *)nnode;
60	}
61}
62
63/**
64 * next_dirty_cnode - find next dirty cnode.
65 * @cnode: cnode from which to begin searching
66 *
67 * This function returns the next dirty cnode or %NULL if there is not one.
68 */
69static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
70{
71	struct ubifs_nnode *nnode;
72	int i;
73
74	ubifs_assert(cnode);
75	nnode = cnode->parent;
76	if (!nnode)
77		return NULL;
78	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
79		cnode = nnode->nbranch[i].cnode;
80		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
81			if (cnode->level == 0)
82				return cnode; /* cnode is a pnode */
83			/* cnode is a nnode */
84			return first_dirty_cnode((struct ubifs_nnode *)cnode);
85		}
86	}
87	return (struct ubifs_cnode *)nnode;
88}
89
90/**
91 * get_cnodes_to_commit - create list of dirty cnodes to commit.
92 * @c: UBIFS file-system description object
93 *
94 * This function returns the number of cnodes to commit.
95 */
96static int get_cnodes_to_commit(struct ubifs_info *c)
97{
98	struct ubifs_cnode *cnode, *cnext;
99	int cnt = 0;
100
101	if (!c->nroot)
102		return 0;
103
104	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
105		return 0;
106
107	c->lpt_cnext = first_dirty_cnode(c->nroot);
108	cnode = c->lpt_cnext;
109	if (!cnode)
110		return 0;
111	cnt += 1;
112	while (1) {
113		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
114		__set_bit(COW_ZNODE, &cnode->flags);
115		cnext = next_dirty_cnode(cnode);
116		if (!cnext) {
117			cnode->cnext = c->lpt_cnext;
118			break;
119		}
120		cnode->cnext = cnext;
121		cnode = cnext;
122		cnt += 1;
123	}
124	dbg_cmt("committing %d cnodes", cnt);
125	dbg_lp("committing %d cnodes", cnt);
126	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
127	return cnt;
128}
129
130/**
131 * upd_ltab - update LPT LEB properties.
132 * @c: UBIFS file-system description object
133 * @lnum: LEB number
134 * @free: amount of free space
135 * @dirty: amount of dirty space to add
136 */
137static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
138{
139	dbg_lp("LEB %d free %d dirty %d to %d +%d",
140	       lnum, c->ltab[lnum - c->lpt_first].free,
141	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
142	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
143	c->ltab[lnum - c->lpt_first].free = free;
144	c->ltab[lnum - c->lpt_first].dirty += dirty;
145}
146
147/**
148 * alloc_lpt_leb - allocate an LPT LEB that is empty.
149 * @c: UBIFS file-system description object
150 * @lnum: LEB number is passed and returned here
151 *
152 * This function finds the next empty LEB in the ltab starting from @lnum. If a
153 * an empty LEB is found it is returned in @lnum and the function returns %0.
154 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
155 * never to run out of space.
156 */
157static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
158{
159	int i, n;
160
161	n = *lnum - c->lpt_first + 1;
162	for (i = n; i < c->lpt_lebs; i++) {
163		if (c->ltab[i].tgc || c->ltab[i].cmt)
164			continue;
165		if (c->ltab[i].free == c->leb_size) {
166			c->ltab[i].cmt = 1;
167			*lnum = i + c->lpt_first;
168			return 0;
169		}
170	}
171
172	for (i = 0; i < n; i++) {
173		if (c->ltab[i].tgc || c->ltab[i].cmt)
174			continue;
175		if (c->ltab[i].free == c->leb_size) {
176			c->ltab[i].cmt = 1;
177			*lnum = i + c->lpt_first;
178			return 0;
179		}
180	}
181	return -ENOSPC;
182}
183
184/**
185 * layout_cnodes - layout cnodes for commit.
186 * @c: UBIFS file-system description object
187 *
188 * This function returns %0 on success and a negative error code on failure.
189 */
190static int layout_cnodes(struct ubifs_info *c)
191{
192	int lnum, offs, len, alen, done_lsave, done_ltab, err;
193	struct ubifs_cnode *cnode;
194
195	err = dbg_chk_lpt_sz(c, 0, 0);
196	if (err)
197		return err;
198	cnode = c->lpt_cnext;
199	if (!cnode)
200		return 0;
201	lnum = c->nhead_lnum;
202	offs = c->nhead_offs;
203	/* Try to place lsave and ltab nicely */
204	done_lsave = !c->big_lpt;
205	done_ltab = 0;
206	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
207		done_lsave = 1;
208		c->lsave_lnum = lnum;
209		c->lsave_offs = offs;
210		offs += c->lsave_sz;
211		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
212	}
213
214	if (offs + c->ltab_sz <= c->leb_size) {
215		done_ltab = 1;
216		c->ltab_lnum = lnum;
217		c->ltab_offs = offs;
218		offs += c->ltab_sz;
219		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
220	}
221
222	do {
223		if (cnode->level) {
224			len = c->nnode_sz;
225			c->dirty_nn_cnt -= 1;
226		} else {
227			len = c->pnode_sz;
228			c->dirty_pn_cnt -= 1;
229		}
230		while (offs + len > c->leb_size) {
231			alen = ALIGN(offs, c->min_io_size);
232			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
233			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
234			err = alloc_lpt_leb(c, &lnum);
235			if (err)
236				goto no_space;
237			offs = 0;
238			ubifs_assert(lnum >= c->lpt_first &&
239				     lnum <= c->lpt_last);
240			/* Try to place lsave and ltab nicely */
241			if (!done_lsave) {
242				done_lsave = 1;
243				c->lsave_lnum = lnum;
244				c->lsave_offs = offs;
245				offs += c->lsave_sz;
246				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
247				continue;
248			}
249			if (!done_ltab) {
250				done_ltab = 1;
251				c->ltab_lnum = lnum;
252				c->ltab_offs = offs;
253				offs += c->ltab_sz;
254				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
255				continue;
256			}
257			break;
258		}
259		if (cnode->parent) {
260			cnode->parent->nbranch[cnode->iip].lnum = lnum;
261			cnode->parent->nbranch[cnode->iip].offs = offs;
262		} else {
263			c->lpt_lnum = lnum;
264			c->lpt_offs = offs;
265		}
266		offs += len;
267		dbg_chk_lpt_sz(c, 1, len);
268		cnode = cnode->cnext;
269	} while (cnode && cnode != c->lpt_cnext);
270
271	/* Make sure to place LPT's save table */
272	if (!done_lsave) {
273		if (offs + c->lsave_sz > c->leb_size) {
274			alen = ALIGN(offs, c->min_io_size);
275			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
276			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
277			err = alloc_lpt_leb(c, &lnum);
278			if (err)
279				goto no_space;
280			offs = 0;
281			ubifs_assert(lnum >= c->lpt_first &&
282				     lnum <= c->lpt_last);
283		}
284		done_lsave = 1;
285		c->lsave_lnum = lnum;
286		c->lsave_offs = offs;
287		offs += c->lsave_sz;
288		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
289	}
290
291	/* Make sure to place LPT's own lprops table */
292	if (!done_ltab) {
293		if (offs + c->ltab_sz > c->leb_size) {
294			alen = ALIGN(offs, c->min_io_size);
295			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
296			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
297			err = alloc_lpt_leb(c, &lnum);
298			if (err)
299				goto no_space;
300			offs = 0;
301			ubifs_assert(lnum >= c->lpt_first &&
302				     lnum <= c->lpt_last);
303		}
304		done_ltab = 1;
305		c->ltab_lnum = lnum;
306		c->ltab_offs = offs;
307		offs += c->ltab_sz;
308		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
309	}
310
311	alen = ALIGN(offs, c->min_io_size);
312	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
313	dbg_chk_lpt_sz(c, 4, alen - offs);
314	err = dbg_chk_lpt_sz(c, 3, alen);
315	if (err)
316		return err;
317	return 0;
318
319no_space:
320	ubifs_err("LPT out of space");
321	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
322		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
323	dbg_dump_lpt_info(c);
324	dbg_dump_lpt_lebs(c);
325	dump_stack();
326	return err;
327}
328
329/**
330 * realloc_lpt_leb - allocate an LPT LEB that is empty.
331 * @c: UBIFS file-system description object
332 * @lnum: LEB number is passed and returned here
333 *
334 * This function duplicates exactly the results of the function alloc_lpt_leb.
335 * It is used during end commit to reallocate the same LEB numbers that were
336 * allocated by alloc_lpt_leb during start commit.
337 *
338 * This function finds the next LEB that was allocated by the alloc_lpt_leb
339 * function starting from @lnum. If a LEB is found it is returned in @lnum and
340 * the function returns %0. Otherwise the function returns -ENOSPC.
341 * Note however, that LPT is designed never to run out of space.
342 */
343static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
344{
345	int i, n;
346
347	n = *lnum - c->lpt_first + 1;
348	for (i = n; i < c->lpt_lebs; i++)
349		if (c->ltab[i].cmt) {
350			c->ltab[i].cmt = 0;
351			*lnum = i + c->lpt_first;
352			return 0;
353		}
354
355	for (i = 0; i < n; i++)
356		if (c->ltab[i].cmt) {
357			c->ltab[i].cmt = 0;
358			*lnum = i + c->lpt_first;
359			return 0;
360		}
361	return -ENOSPC;
362}
363
364/**
365 * write_cnodes - write cnodes for commit.
366 * @c: UBIFS file-system description object
367 *
368 * This function returns %0 on success and a negative error code on failure.
369 */
370static int write_cnodes(struct ubifs_info *c)
371{
372	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
373	struct ubifs_cnode *cnode;
374	void *buf = c->lpt_buf;
375
376	cnode = c->lpt_cnext;
377	if (!cnode)
378		return 0;
379	lnum = c->nhead_lnum;
380	offs = c->nhead_offs;
381	from = offs;
382	/* Ensure empty LEB is unmapped */
383	if (offs == 0) {
384		err = ubifs_leb_unmap(c, lnum);
385		if (err)
386			return err;
387	}
388	/* Try to place lsave and ltab nicely */
389	done_lsave = !c->big_lpt;
390	done_ltab = 0;
391	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
392		done_lsave = 1;
393		ubifs_pack_lsave(c, buf + offs, c->lsave);
394		offs += c->lsave_sz;
395		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
396	}
397
398	if (offs + c->ltab_sz <= c->leb_size) {
399		done_ltab = 1;
400		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
401		offs += c->ltab_sz;
402		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
403	}
404
405	/* Loop for each cnode */
406	do {
407		if (cnode->level)
408			len = c->nnode_sz;
409		else
410			len = c->pnode_sz;
411		while (offs + len > c->leb_size) {
412			wlen = offs - from;
413			if (wlen) {
414				alen = ALIGN(wlen, c->min_io_size);
415				memset(buf + offs, 0xff, alen - wlen);
416				err = ubifs_leb_write(c, lnum, buf + from, from,
417						       alen, UBI_SHORTTERM);
418				if (err)
419					return err;
420			}
421			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
422			err = realloc_lpt_leb(c, &lnum);
423			if (err)
424				goto no_space;
425			offs = from = 0;
426			ubifs_assert(lnum >= c->lpt_first &&
427				     lnum <= c->lpt_last);
428			err = ubifs_leb_unmap(c, lnum);
429			if (err)
430				return err;
431			/* Try to place lsave and ltab nicely */
432			if (!done_lsave) {
433				done_lsave = 1;
434				ubifs_pack_lsave(c, buf + offs, c->lsave);
435				offs += c->lsave_sz;
436				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
437				continue;
438			}
439			if (!done_ltab) {
440				done_ltab = 1;
441				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
442				offs += c->ltab_sz;
443				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
444				continue;
445			}
446			break;
447		}
448		if (cnode->level)
449			ubifs_pack_nnode(c, buf + offs,
450					 (struct ubifs_nnode *)cnode);
451		else
452			ubifs_pack_pnode(c, buf + offs,
453					 (struct ubifs_pnode *)cnode);
454		/*
455		 * The reason for the barriers is the same as in case of TNC.
456		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
457		 * 'dirty_cow_pnode()' are the functions for which this is
458		 * important.
459		 */
460		clear_bit(DIRTY_CNODE, &cnode->flags);
461		smp_mb__before_clear_bit();
462		clear_bit(COW_ZNODE, &cnode->flags);
463		smp_mb__after_clear_bit();
464		offs += len;
465		dbg_chk_lpt_sz(c, 1, len);
466		cnode = cnode->cnext;
467	} while (cnode && cnode != c->lpt_cnext);
468
469	/* Make sure to place LPT's save table */
470	if (!done_lsave) {
471		if (offs + c->lsave_sz > c->leb_size) {
472			wlen = offs - from;
473			alen = ALIGN(wlen, c->min_io_size);
474			memset(buf + offs, 0xff, alen - wlen);
475			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
476					      UBI_SHORTTERM);
477			if (err)
478				return err;
479			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
480			err = realloc_lpt_leb(c, &lnum);
481			if (err)
482				goto no_space;
483			offs = from = 0;
484			ubifs_assert(lnum >= c->lpt_first &&
485				     lnum <= c->lpt_last);
486			err = ubifs_leb_unmap(c, lnum);
487			if (err)
488				return err;
489		}
490		done_lsave = 1;
491		ubifs_pack_lsave(c, buf + offs, c->lsave);
492		offs += c->lsave_sz;
493		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
494	}
495
496	/* Make sure to place LPT's own lprops table */
497	if (!done_ltab) {
498		if (offs + c->ltab_sz > c->leb_size) {
499			wlen = offs - from;
500			alen = ALIGN(wlen, c->min_io_size);
501			memset(buf + offs, 0xff, alen - wlen);
502			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
503					      UBI_SHORTTERM);
504			if (err)
505				return err;
506			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507			err = realloc_lpt_leb(c, &lnum);
508			if (err)
509				goto no_space;
510			offs = from = 0;
511			ubifs_assert(lnum >= c->lpt_first &&
512				     lnum <= c->lpt_last);
513			err = ubifs_leb_unmap(c, lnum);
514			if (err)
515				return err;
516		}
517		done_ltab = 1;
518		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519		offs += c->ltab_sz;
520		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
521	}
522
523	/* Write remaining data in buffer */
524	wlen = offs - from;
525	alen = ALIGN(wlen, c->min_io_size);
526	memset(buf + offs, 0xff, alen - wlen);
527	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
528	if (err)
529		return err;
530
531	dbg_chk_lpt_sz(c, 4, alen - wlen);
532	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
533	if (err)
534		return err;
535
536	c->nhead_lnum = lnum;
537	c->nhead_offs = ALIGN(offs, c->min_io_size);
538
539	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542	if (c->big_lpt)
543		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
544
545	return 0;
546
547no_space:
548	ubifs_err("LPT out of space mismatch");
549	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
550		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
551	dbg_dump_lpt_info(c);
552	dbg_dump_lpt_lebs(c);
553	dump_stack();
554	return err;
555}
556
557/**
558 * next_pnode_to_dirty - find next pnode to dirty.
559 * @c: UBIFS file-system description object
560 * @pnode: pnode
561 *
562 * This function returns the next pnode to dirty or %NULL if there are no more
563 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
564 * skipped.
565 */
566static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
567					       struct ubifs_pnode *pnode)
568{
569	struct ubifs_nnode *nnode;
570	int iip;
571
572	/* Try to go right */
573	nnode = pnode->parent;
574	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
575		if (nnode->nbranch[iip].lnum)
576			return ubifs_get_pnode(c, nnode, iip);
577	}
578
579	/* Go up while can't go right */
580	do {
581		iip = nnode->iip + 1;
582		nnode = nnode->parent;
583		if (!nnode)
584			return NULL;
585		for (; iip < UBIFS_LPT_FANOUT; iip++) {
586			if (nnode->nbranch[iip].lnum)
587				break;
588		}
589       } while (iip >= UBIFS_LPT_FANOUT);
590
591	/* Go right */
592	nnode = ubifs_get_nnode(c, nnode, iip);
593	if (IS_ERR(nnode))
594		return (void *)nnode;
595
596	/* Go down to level 1 */
597	while (nnode->level > 1) {
598		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
599			if (nnode->nbranch[iip].lnum)
600				break;
601		}
602		if (iip >= UBIFS_LPT_FANOUT) {
603			/*
604			 * Should not happen, but we need to keep going
605			 * if it does.
606			 */
607			iip = 0;
608		}
609		nnode = ubifs_get_nnode(c, nnode, iip);
610		if (IS_ERR(nnode))
611			return (void *)nnode;
612	}
613
614	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
615		if (nnode->nbranch[iip].lnum)
616			break;
617	if (iip >= UBIFS_LPT_FANOUT)
618		/* Should not happen, but we need to keep going if it does */
619		iip = 0;
620	return ubifs_get_pnode(c, nnode, iip);
621}
622
623/**
624 * pnode_lookup - lookup a pnode in the LPT.
625 * @c: UBIFS file-system description object
626 * @i: pnode number (0 to main_lebs - 1)
627 *
628 * This function returns a pointer to the pnode on success or a negative
629 * error code on failure.
630 */
631static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
632{
633	int err, h, iip, shft;
634	struct ubifs_nnode *nnode;
635
636	if (!c->nroot) {
637		err = ubifs_read_nnode(c, NULL, 0);
638		if (err)
639			return ERR_PTR(err);
640	}
641	i <<= UBIFS_LPT_FANOUT_SHIFT;
642	nnode = c->nroot;
643	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
644	for (h = 1; h < c->lpt_hght; h++) {
645		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
646		shft -= UBIFS_LPT_FANOUT_SHIFT;
647		nnode = ubifs_get_nnode(c, nnode, iip);
648		if (IS_ERR(nnode))
649			return ERR_CAST(nnode);
650	}
651	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
652	return ubifs_get_pnode(c, nnode, iip);
653}
654
655/**
656 * add_pnode_dirt - add dirty space to LPT LEB properties.
657 * @c: UBIFS file-system description object
658 * @pnode: pnode for which to add dirt
659 */
660static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
661{
662	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
663			   c->pnode_sz);
664}
665
666/**
667 * do_make_pnode_dirty - mark a pnode dirty.
668 * @c: UBIFS file-system description object
669 * @pnode: pnode to mark dirty
670 */
671static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
672{
673	/* Assumes cnext list is empty i.e. not called during commit */
674	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
675		struct ubifs_nnode *nnode;
676
677		c->dirty_pn_cnt += 1;
678		add_pnode_dirt(c, pnode);
679		/* Mark parent and ancestors dirty too */
680		nnode = pnode->parent;
681		while (nnode) {
682			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
683				c->dirty_nn_cnt += 1;
684				ubifs_add_nnode_dirt(c, nnode);
685				nnode = nnode->parent;
686			} else
687				break;
688		}
689	}
690}
691
692/**
693 * make_tree_dirty - mark the entire LEB properties tree dirty.
694 * @c: UBIFS file-system description object
695 *
696 * This function is used by the "small" LPT model to cause the entire LEB
697 * properties tree to be written.  The "small" LPT model does not use LPT
698 * garbage collection because it is more efficient to write the entire tree
699 * (because it is small).
700 *
701 * This function returns %0 on success and a negative error code on failure.
702 */
703static int make_tree_dirty(struct ubifs_info *c)
704{
705	struct ubifs_pnode *pnode;
706
707	pnode = pnode_lookup(c, 0);
708	while (pnode) {
709		do_make_pnode_dirty(c, pnode);
710		pnode = next_pnode_to_dirty(c, pnode);
711		if (IS_ERR(pnode))
712			return PTR_ERR(pnode);
713	}
714	return 0;
715}
716
717/**
718 * need_write_all - determine if the LPT area is running out of free space.
719 * @c: UBIFS file-system description object
720 *
721 * This function returns %1 if the LPT area is running out of free space and %0
722 * if it is not.
723 */
724static int need_write_all(struct ubifs_info *c)
725{
726	long long free = 0;
727	int i;
728
729	for (i = 0; i < c->lpt_lebs; i++) {
730		if (i + c->lpt_first == c->nhead_lnum)
731			free += c->leb_size - c->nhead_offs;
732		else if (c->ltab[i].free == c->leb_size)
733			free += c->leb_size;
734		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
735			free += c->leb_size;
736	}
737	/* Less than twice the size left */
738	if (free <= c->lpt_sz * 2)
739		return 1;
740	return 0;
741}
742
743/**
744 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
745 * @c: UBIFS file-system description object
746 *
747 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
748 * free space and so may be reused as soon as the next commit is completed.
749 * This function is called during start commit to mark LPT LEBs for trivial GC.
750 */
751static void lpt_tgc_start(struct ubifs_info *c)
752{
753	int i;
754
755	for (i = 0; i < c->lpt_lebs; i++) {
756		if (i + c->lpt_first == c->nhead_lnum)
757			continue;
758		if (c->ltab[i].dirty > 0 &&
759		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
760			c->ltab[i].tgc = 1;
761			c->ltab[i].free = c->leb_size;
762			c->ltab[i].dirty = 0;
763			dbg_lp("LEB %d", i + c->lpt_first);
764		}
765	}
766}
767
768/**
769 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
770 * @c: UBIFS file-system description object
771 *
772 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
773 * free space and so may be reused as soon as the next commit is completed.
774 * This function is called after the commit is completed (master node has been
775 * written) and un-maps LPT LEBs that were marked for trivial GC.
776 */
777static int lpt_tgc_end(struct ubifs_info *c)
778{
779	int i, err;
780
781	for (i = 0; i < c->lpt_lebs; i++)
782		if (c->ltab[i].tgc) {
783			err = ubifs_leb_unmap(c, i + c->lpt_first);
784			if (err)
785				return err;
786			c->ltab[i].tgc = 0;
787			dbg_lp("LEB %d", i + c->lpt_first);
788		}
789	return 0;
790}
791
792/**
793 * populate_lsave - fill the lsave array with important LEB numbers.
794 * @c: the UBIFS file-system description object
795 *
796 * This function is only called for the "big" model. It records a small number
797 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
798 * most important to least important): empty, freeable, freeable index, dirty
799 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
800 * their pnodes into memory.  That will stop us from having to scan the LPT
801 * straight away. For the "small" model we assume that scanning the LPT is no
802 * big deal.
803 */
804static void populate_lsave(struct ubifs_info *c)
805{
806	struct ubifs_lprops *lprops;
807	struct ubifs_lpt_heap *heap;
808	int i, cnt = 0;
809
810	ubifs_assert(c->big_lpt);
811	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
812		c->lpt_drty_flgs |= LSAVE_DIRTY;
813		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
814	}
815	list_for_each_entry(lprops, &c->empty_list, list) {
816		c->lsave[cnt++] = lprops->lnum;
817		if (cnt >= c->lsave_cnt)
818			return;
819	}
820	list_for_each_entry(lprops, &c->freeable_list, list) {
821		c->lsave[cnt++] = lprops->lnum;
822		if (cnt >= c->lsave_cnt)
823			return;
824	}
825	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
826		c->lsave[cnt++] = lprops->lnum;
827		if (cnt >= c->lsave_cnt)
828			return;
829	}
830	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
831	for (i = 0; i < heap->cnt; i++) {
832		c->lsave[cnt++] = heap->arr[i]->lnum;
833		if (cnt >= c->lsave_cnt)
834			return;
835	}
836	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
837	for (i = 0; i < heap->cnt; i++) {
838		c->lsave[cnt++] = heap->arr[i]->lnum;
839		if (cnt >= c->lsave_cnt)
840			return;
841	}
842	heap = &c->lpt_heap[LPROPS_FREE - 1];
843	for (i = 0; i < heap->cnt; i++) {
844		c->lsave[cnt++] = heap->arr[i]->lnum;
845		if (cnt >= c->lsave_cnt)
846			return;
847	}
848	/* Fill it up completely */
849	while (cnt < c->lsave_cnt)
850		c->lsave[cnt++] = c->main_first;
851}
852
853/**
854 * nnode_lookup - lookup a nnode in the LPT.
855 * @c: UBIFS file-system description object
856 * @i: nnode number
857 *
858 * This function returns a pointer to the nnode on success or a negative
859 * error code on failure.
860 */
861static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
862{
863	int err, iip;
864	struct ubifs_nnode *nnode;
865
866	if (!c->nroot) {
867		err = ubifs_read_nnode(c, NULL, 0);
868		if (err)
869			return ERR_PTR(err);
870	}
871	nnode = c->nroot;
872	while (1) {
873		iip = i & (UBIFS_LPT_FANOUT - 1);
874		i >>= UBIFS_LPT_FANOUT_SHIFT;
875		if (!i)
876			break;
877		nnode = ubifs_get_nnode(c, nnode, iip);
878		if (IS_ERR(nnode))
879			return nnode;
880	}
881	return nnode;
882}
883
884/**
885 * make_nnode_dirty - find a nnode and, if found, make it dirty.
886 * @c: UBIFS file-system description object
887 * @node_num: nnode number of nnode to make dirty
888 * @lnum: LEB number where nnode was written
889 * @offs: offset where nnode was written
890 *
891 * This function is used by LPT garbage collection.  LPT garbage collection is
892 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
893 * simply involves marking all the nodes in the LEB being garbage-collected as
894 * dirty.  The dirty nodes are written next commit, after which the LEB is free
895 * to be reused.
896 *
897 * This function returns %0 on success and a negative error code on failure.
898 */
899static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
900			    int offs)
901{
902	struct ubifs_nnode *nnode;
903
904	nnode = nnode_lookup(c, node_num);
905	if (IS_ERR(nnode))
906		return PTR_ERR(nnode);
907	if (nnode->parent) {
908		struct ubifs_nbranch *branch;
909
910		branch = &nnode->parent->nbranch[nnode->iip];
911		if (branch->lnum != lnum || branch->offs != offs)
912			return 0; /* nnode is obsolete */
913	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
914			return 0; /* nnode is obsolete */
915	/* Assumes cnext list is empty i.e. not called during commit */
916	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
917		c->dirty_nn_cnt += 1;
918		ubifs_add_nnode_dirt(c, nnode);
919		/* Mark parent and ancestors dirty too */
920		nnode = nnode->parent;
921		while (nnode) {
922			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923				c->dirty_nn_cnt += 1;
924				ubifs_add_nnode_dirt(c, nnode);
925				nnode = nnode->parent;
926			} else
927				break;
928		}
929	}
930	return 0;
931}
932
933/**
934 * make_pnode_dirty - find a pnode and, if found, make it dirty.
935 * @c: UBIFS file-system description object
936 * @node_num: pnode number of pnode to make dirty
937 * @lnum: LEB number where pnode was written
938 * @offs: offset where pnode was written
939 *
940 * This function is used by LPT garbage collection.  LPT garbage collection is
941 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
942 * simply involves marking all the nodes in the LEB being garbage-collected as
943 * dirty.  The dirty nodes are written next commit, after which the LEB is free
944 * to be reused.
945 *
946 * This function returns %0 on success and a negative error code on failure.
947 */
948static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
949			    int offs)
950{
951	struct ubifs_pnode *pnode;
952	struct ubifs_nbranch *branch;
953
954	pnode = pnode_lookup(c, node_num);
955	if (IS_ERR(pnode))
956		return PTR_ERR(pnode);
957	branch = &pnode->parent->nbranch[pnode->iip];
958	if (branch->lnum != lnum || branch->offs != offs)
959		return 0;
960	do_make_pnode_dirty(c, pnode);
961	return 0;
962}
963
964/**
965 * make_ltab_dirty - make ltab node dirty.
966 * @c: UBIFS file-system description object
967 * @lnum: LEB number where ltab was written
968 * @offs: offset where ltab was written
969 *
970 * This function is used by LPT garbage collection.  LPT garbage collection is
971 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
972 * simply involves marking all the nodes in the LEB being garbage-collected as
973 * dirty.  The dirty nodes are written next commit, after which the LEB is free
974 * to be reused.
975 *
976 * This function returns %0 on success and a negative error code on failure.
977 */
978static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
979{
980	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
981		return 0; /* This ltab node is obsolete */
982	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
983		c->lpt_drty_flgs |= LTAB_DIRTY;
984		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
985	}
986	return 0;
987}
988
989/**
990 * make_lsave_dirty - make lsave node dirty.
991 * @c: UBIFS file-system description object
992 * @lnum: LEB number where lsave was written
993 * @offs: offset where lsave was written
994 *
995 * This function is used by LPT garbage collection.  LPT garbage collection is
996 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
997 * simply involves marking all the nodes in the LEB being garbage-collected as
998 * dirty.  The dirty nodes are written next commit, after which the LEB is free
999 * to be reused.
1000 *
1001 * This function returns %0 on success and a negative error code on failure.
1002 */
1003static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1004{
1005	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1006		return 0; /* This lsave node is obsolete */
1007	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1008		c->lpt_drty_flgs |= LSAVE_DIRTY;
1009		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1010	}
1011	return 0;
1012}
1013
1014/**
1015 * make_node_dirty - make node dirty.
1016 * @c: UBIFS file-system description object
1017 * @node_type: LPT node type
1018 * @node_num: node number
1019 * @lnum: LEB number where node was written
1020 * @offs: offset where node was written
1021 *
1022 * This function is used by LPT garbage collection.  LPT garbage collection is
1023 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1024 * simply involves marking all the nodes in the LEB being garbage-collected as
1025 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1026 * to be reused.
1027 *
1028 * This function returns %0 on success and a negative error code on failure.
1029 */
1030static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1031			   int lnum, int offs)
1032{
1033	switch (node_type) {
1034	case UBIFS_LPT_NNODE:
1035		return make_nnode_dirty(c, node_num, lnum, offs);
1036	case UBIFS_LPT_PNODE:
1037		return make_pnode_dirty(c, node_num, lnum, offs);
1038	case UBIFS_LPT_LTAB:
1039		return make_ltab_dirty(c, lnum, offs);
1040	case UBIFS_LPT_LSAVE:
1041		return make_lsave_dirty(c, lnum, offs);
1042	}
1043	return -EINVAL;
1044}
1045
1046/**
1047 * get_lpt_node_len - return the length of a node based on its type.
1048 * @c: UBIFS file-system description object
1049 * @node_type: LPT node type
1050 */
1051static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1052{
1053	switch (node_type) {
1054	case UBIFS_LPT_NNODE:
1055		return c->nnode_sz;
1056	case UBIFS_LPT_PNODE:
1057		return c->pnode_sz;
1058	case UBIFS_LPT_LTAB:
1059		return c->ltab_sz;
1060	case UBIFS_LPT_LSAVE:
1061		return c->lsave_sz;
1062	}
1063	return 0;
1064}
1065
1066/**
1067 * get_pad_len - return the length of padding in a buffer.
1068 * @c: UBIFS file-system description object
1069 * @buf: buffer
1070 * @len: length of buffer
1071 */
1072static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1073{
1074	int offs, pad_len;
1075
1076	if (c->min_io_size == 1)
1077		return 0;
1078	offs = c->leb_size - len;
1079	pad_len = ALIGN(offs, c->min_io_size) - offs;
1080	return pad_len;
1081}
1082
1083/**
1084 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1085 * @c: UBIFS file-system description object
1086 * @buf: buffer
1087 * @node_num: node number is returned here
1088 */
1089static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1090			     int *node_num)
1091{
1092	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1093	int pos = 0, node_type;
1094
1095	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1096	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1097	return node_type;
1098}
1099
1100/**
1101 * is_a_node - determine if a buffer contains a node.
1102 * @c: UBIFS file-system description object
1103 * @buf: buffer
1104 * @len: length of buffer
1105 *
1106 * This function returns %1 if the buffer contains a node or %0 if it does not.
1107 */
1108static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1109{
1110	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1111	int pos = 0, node_type, node_len;
1112	uint16_t crc, calc_crc;
1113
1114	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1115		return 0;
1116	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1117	if (node_type == UBIFS_LPT_NOT_A_NODE)
1118		return 0;
1119	node_len = get_lpt_node_len(c, node_type);
1120	if (!node_len || node_len > len)
1121		return 0;
1122	pos = 0;
1123	addr = buf;
1124	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1125	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1126			 node_len - UBIFS_LPT_CRC_BYTES);
1127	if (crc != calc_crc)
1128		return 0;
1129	return 1;
1130}
1131
1132/**
1133 * lpt_gc_lnum - garbage collect a LPT LEB.
1134 * @c: UBIFS file-system description object
1135 * @lnum: LEB number to garbage collect
1136 *
1137 * LPT garbage collection is used only for the "big" LPT model
1138 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1139 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1140 * next commit, after which the LEB is free to be reused.
1141 *
1142 * This function returns %0 on success and a negative error code on failure.
1143 */
1144static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1145{
1146	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1147	void *buf = c->lpt_buf;
1148
1149	dbg_lp("LEB %d", lnum);
1150	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1151	if (err) {
1152		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1153		return err;
1154	}
1155	while (1) {
1156		if (!is_a_node(c, buf, len)) {
1157			int pad_len;
1158
1159			pad_len = get_pad_len(c, buf, len);
1160			if (pad_len) {
1161				buf += pad_len;
1162				len -= pad_len;
1163				continue;
1164			}
1165			return 0;
1166		}
1167		node_type = get_lpt_node_type(c, buf, &node_num);
1168		node_len = get_lpt_node_len(c, node_type);
1169		offs = c->leb_size - len;
1170		ubifs_assert(node_len != 0);
1171		mutex_lock(&c->lp_mutex);
1172		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1173		mutex_unlock(&c->lp_mutex);
1174		if (err)
1175			return err;
1176		buf += node_len;
1177		len -= node_len;
1178	}
1179	return 0;
1180}
1181
1182/**
1183 * lpt_gc - LPT garbage collection.
1184 * @c: UBIFS file-system description object
1185 *
1186 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1187 * Returns %0 on success and a negative error code on failure.
1188 */
1189static int lpt_gc(struct ubifs_info *c)
1190{
1191	int i, lnum = -1, dirty = 0;
1192
1193	mutex_lock(&c->lp_mutex);
1194	for (i = 0; i < c->lpt_lebs; i++) {
1195		ubifs_assert(!c->ltab[i].tgc);
1196		if (i + c->lpt_first == c->nhead_lnum ||
1197		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1198			continue;
1199		if (c->ltab[i].dirty > dirty) {
1200			dirty = c->ltab[i].dirty;
1201			lnum = i + c->lpt_first;
1202		}
1203	}
1204	mutex_unlock(&c->lp_mutex);
1205	if (lnum == -1)
1206		return -ENOSPC;
1207	return lpt_gc_lnum(c, lnum);
1208}
1209
1210/**
1211 * ubifs_lpt_start_commit - UBIFS commit starts.
1212 * @c: the UBIFS file-system description object
1213 *
1214 * This function has to be called when UBIFS starts the commit operation.
1215 * This function "freezes" all currently dirty LEB properties and does not
1216 * change them anymore. Further changes are saved and tracked separately
1217 * because they are not part of this commit. This function returns zero in case
1218 * of success and a negative error code in case of failure.
1219 */
1220int ubifs_lpt_start_commit(struct ubifs_info *c)
1221{
1222	int err, cnt;
1223
1224	dbg_lp("");
1225
1226	mutex_lock(&c->lp_mutex);
1227	err = dbg_chk_lpt_free_spc(c);
1228	if (err)
1229		goto out;
1230	err = dbg_check_ltab(c);
1231	if (err)
1232		goto out;
1233
1234	if (c->check_lpt_free) {
1235		/*
1236		 * We ensure there is enough free space in
1237		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1238		 * information is lost when we unmount, so we also need
1239		 * to check free space once after mounting also.
1240		 */
1241		c->check_lpt_free = 0;
1242		while (need_write_all(c)) {
1243			mutex_unlock(&c->lp_mutex);
1244			err = lpt_gc(c);
1245			if (err)
1246				return err;
1247			mutex_lock(&c->lp_mutex);
1248		}
1249	}
1250
1251	lpt_tgc_start(c);
1252
1253	if (!c->dirty_pn_cnt) {
1254		dbg_cmt("no cnodes to commit");
1255		err = 0;
1256		goto out;
1257	}
1258
1259	if (!c->big_lpt && need_write_all(c)) {
1260		/* If needed, write everything */
1261		err = make_tree_dirty(c);
1262		if (err)
1263			goto out;
1264		lpt_tgc_start(c);
1265	}
1266
1267	if (c->big_lpt)
1268		populate_lsave(c);
1269
1270	cnt = get_cnodes_to_commit(c);
1271	ubifs_assert(cnt != 0);
1272
1273	err = layout_cnodes(c);
1274	if (err)
1275		goto out;
1276
1277	/* Copy the LPT's own lprops for end commit to write */
1278	memcpy(c->ltab_cmt, c->ltab,
1279	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1280	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1281
1282out:
1283	mutex_unlock(&c->lp_mutex);
1284	return err;
1285}
1286
1287/**
1288 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1289 * @c: UBIFS file-system description object
1290 */
1291static void free_obsolete_cnodes(struct ubifs_info *c)
1292{
1293	struct ubifs_cnode *cnode, *cnext;
1294
1295	cnext = c->lpt_cnext;
1296	if (!cnext)
1297		return;
1298	do {
1299		cnode = cnext;
1300		cnext = cnode->cnext;
1301		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1302			kfree(cnode);
1303		else
1304			cnode->cnext = NULL;
1305	} while (cnext != c->lpt_cnext);
1306	c->lpt_cnext = NULL;
1307}
1308
1309/**
1310 * ubifs_lpt_end_commit - finish the commit operation.
1311 * @c: the UBIFS file-system description object
1312 *
1313 * This function has to be called when the commit operation finishes. It
1314 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1315 * the media. Returns zero in case of success and a negative error code in case
1316 * of failure.
1317 */
1318int ubifs_lpt_end_commit(struct ubifs_info *c)
1319{
1320	int err;
1321
1322	dbg_lp("");
1323
1324	if (!c->lpt_cnext)
1325		return 0;
1326
1327	err = write_cnodes(c);
1328	if (err)
1329		return err;
1330
1331	mutex_lock(&c->lp_mutex);
1332	free_obsolete_cnodes(c);
1333	mutex_unlock(&c->lp_mutex);
1334
1335	return 0;
1336}
1337
1338/**
1339 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1340 * @c: UBIFS file-system description object
1341 *
1342 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1343 * commit for the "big" LPT model.
1344 */
1345int ubifs_lpt_post_commit(struct ubifs_info *c)
1346{
1347	int err;
1348
1349	mutex_lock(&c->lp_mutex);
1350	err = lpt_tgc_end(c);
1351	if (err)
1352		goto out;
1353	if (c->big_lpt)
1354		while (need_write_all(c)) {
1355			mutex_unlock(&c->lp_mutex);
1356			err = lpt_gc(c);
1357			if (err)
1358				return err;
1359			mutex_lock(&c->lp_mutex);
1360		}
1361out:
1362	mutex_unlock(&c->lp_mutex);
1363	return err;
1364}
1365
1366/**
1367 * first_nnode - find the first nnode in memory.
1368 * @c: UBIFS file-system description object
1369 * @hght: height of tree where nnode found is returned here
1370 *
1371 * This function returns a pointer to the nnode found or %NULL if no nnode is
1372 * found. This function is a helper to 'ubifs_lpt_free()'.
1373 */
1374static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1375{
1376	struct ubifs_nnode *nnode;
1377	int h, i, found;
1378
1379	nnode = c->nroot;
1380	*hght = 0;
1381	if (!nnode)
1382		return NULL;
1383	for (h = 1; h < c->lpt_hght; h++) {
1384		found = 0;
1385		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1386			if (nnode->nbranch[i].nnode) {
1387				found = 1;
1388				nnode = nnode->nbranch[i].nnode;
1389				*hght = h;
1390				break;
1391			}
1392		}
1393		if (!found)
1394			break;
1395	}
1396	return nnode;
1397}
1398
1399/**
1400 * next_nnode - find the next nnode in memory.
1401 * @c: UBIFS file-system description object
1402 * @nnode: nnode from which to start.
1403 * @hght: height of tree where nnode is, is passed and returned here
1404 *
1405 * This function returns a pointer to the nnode found or %NULL if no nnode is
1406 * found. This function is a helper to 'ubifs_lpt_free()'.
1407 */
1408static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1409				      struct ubifs_nnode *nnode, int *hght)
1410{
1411	struct ubifs_nnode *parent;
1412	int iip, h, i, found;
1413
1414	parent = nnode->parent;
1415	if (!parent)
1416		return NULL;
1417	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1418		*hght -= 1;
1419		return parent;
1420	}
1421	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1422		nnode = parent->nbranch[iip].nnode;
1423		if (nnode)
1424			break;
1425	}
1426	if (!nnode) {
1427		*hght -= 1;
1428		return parent;
1429	}
1430	for (h = *hght + 1; h < c->lpt_hght; h++) {
1431		found = 0;
1432		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1433			if (nnode->nbranch[i].nnode) {
1434				found = 1;
1435				nnode = nnode->nbranch[i].nnode;
1436				*hght = h;
1437				break;
1438			}
1439		}
1440		if (!found)
1441			break;
1442	}
1443	return nnode;
1444}
1445
1446/**
1447 * ubifs_lpt_free - free resources owned by the LPT.
1448 * @c: UBIFS file-system description object
1449 * @wr_only: free only resources used for writing
1450 */
1451void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1452{
1453	struct ubifs_nnode *nnode;
1454	int i, hght;
1455
1456	/* Free write-only things first */
1457
1458	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1459
1460	vfree(c->ltab_cmt);
1461	c->ltab_cmt = NULL;
1462	vfree(c->lpt_buf);
1463	c->lpt_buf = NULL;
1464	kfree(c->lsave);
1465	c->lsave = NULL;
1466
1467	if (wr_only)
1468		return;
1469
1470	/* Now free the rest */
1471
1472	nnode = first_nnode(c, &hght);
1473	while (nnode) {
1474		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1475			kfree(nnode->nbranch[i].nnode);
1476		nnode = next_nnode(c, nnode, &hght);
1477	}
1478	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1479		kfree(c->lpt_heap[i].arr);
1480	kfree(c->dirty_idx.arr);
1481	kfree(c->nroot);
1482	vfree(c->ltab);
1483	kfree(c->lpt_nod_buf);
1484}
1485
1486#ifdef CONFIG_UBIFS_FS_DEBUG
1487
1488/**
1489 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1490 * @buf: buffer
1491 * @len: buffer length
1492 */
1493static int dbg_is_all_ff(uint8_t *buf, int len)
1494{
1495	int i;
1496
1497	for (i = 0; i < len; i++)
1498		if (buf[i] != 0xff)
1499			return 0;
1500	return 1;
1501}
1502
1503/**
1504 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1505 * @c: the UBIFS file-system description object
1506 * @lnum: LEB number where nnode was written
1507 * @offs: offset where nnode was written
1508 */
1509static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1510{
1511	struct ubifs_nnode *nnode;
1512	int hght;
1513
1514	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1515	nnode = first_nnode(c, &hght);
1516	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1517		struct ubifs_nbranch *branch;
1518
1519		cond_resched();
1520		if (nnode->parent) {
1521			branch = &nnode->parent->nbranch[nnode->iip];
1522			if (branch->lnum != lnum || branch->offs != offs)
1523				continue;
1524			if (test_bit(DIRTY_CNODE, &nnode->flags))
1525				return 1;
1526			return 0;
1527		} else {
1528			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1529				continue;
1530			if (test_bit(DIRTY_CNODE, &nnode->flags))
1531				return 1;
1532			return 0;
1533		}
1534	}
1535	return 1;
1536}
1537
1538/**
1539 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1540 * @c: the UBIFS file-system description object
1541 * @lnum: LEB number where pnode was written
1542 * @offs: offset where pnode was written
1543 */
1544static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1545{
1546	int i, cnt;
1547
1548	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1549	for (i = 0; i < cnt; i++) {
1550		struct ubifs_pnode *pnode;
1551		struct ubifs_nbranch *branch;
1552
1553		cond_resched();
1554		pnode = pnode_lookup(c, i);
1555		if (IS_ERR(pnode))
1556			return PTR_ERR(pnode);
1557		branch = &pnode->parent->nbranch[pnode->iip];
1558		if (branch->lnum != lnum || branch->offs != offs)
1559			continue;
1560		if (test_bit(DIRTY_CNODE, &pnode->flags))
1561			return 1;
1562		return 0;
1563	}
1564	return 1;
1565}
1566
1567/**
1568 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1569 * @c: the UBIFS file-system description object
1570 * @lnum: LEB number where ltab node was written
1571 * @offs: offset where ltab node was written
1572 */
1573static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1574{
1575	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1576		return 1;
1577	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1578}
1579
1580/**
1581 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1582 * @c: the UBIFS file-system description object
1583 * @lnum: LEB number where lsave node was written
1584 * @offs: offset where lsave node was written
1585 */
1586static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1587{
1588	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1589		return 1;
1590	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1591}
1592
1593/**
1594 * dbg_is_node_dirty - determine if a node is dirty.
1595 * @c: the UBIFS file-system description object
1596 * @node_type: node type
1597 * @lnum: LEB number where node was written
1598 * @offs: offset where node was written
1599 */
1600static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1601			     int offs)
1602{
1603	switch (node_type) {
1604	case UBIFS_LPT_NNODE:
1605		return dbg_is_nnode_dirty(c, lnum, offs);
1606	case UBIFS_LPT_PNODE:
1607		return dbg_is_pnode_dirty(c, lnum, offs);
1608	case UBIFS_LPT_LTAB:
1609		return dbg_is_ltab_dirty(c, lnum, offs);
1610	case UBIFS_LPT_LSAVE:
1611		return dbg_is_lsave_dirty(c, lnum, offs);
1612	}
1613	return 1;
1614}
1615
1616/**
1617 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1618 * @c: the UBIFS file-system description object
1619 * @lnum: LEB number where node was written
1620 * @offs: offset where node was written
1621 *
1622 * This function returns %0 on success and a negative error code on failure.
1623 */
1624static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1625{
1626	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1627	int ret;
1628	void *buf = c->dbg->buf;
1629
1630	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1631		return 0;
1632
1633	dbg_lp("LEB %d", lnum);
1634	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1635	if (err) {
1636		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1637		return err;
1638	}
1639	while (1) {
1640		if (!is_a_node(c, buf, len)) {
1641			int i, pad_len;
1642
1643			pad_len = get_pad_len(c, buf, len);
1644			if (pad_len) {
1645				buf += pad_len;
1646				len -= pad_len;
1647				dirty += pad_len;
1648				continue;
1649			}
1650			if (!dbg_is_all_ff(buf, len)) {
1651				dbg_msg("invalid empty space in LEB %d at %d",
1652					lnum, c->leb_size - len);
1653				err = -EINVAL;
1654			}
1655			i = lnum - c->lpt_first;
1656			if (len != c->ltab[i].free) {
1657				dbg_msg("invalid free space in LEB %d "
1658					"(free %d, expected %d)",
1659					lnum, len, c->ltab[i].free);
1660				err = -EINVAL;
1661			}
1662			if (dirty != c->ltab[i].dirty) {
1663				dbg_msg("invalid dirty space in LEB %d "
1664					"(dirty %d, expected %d)",
1665					lnum, dirty, c->ltab[i].dirty);
1666				err = -EINVAL;
1667			}
1668			return err;
1669		}
1670		node_type = get_lpt_node_type(c, buf, &node_num);
1671		node_len = get_lpt_node_len(c, node_type);
1672		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1673		if (ret == 1)
1674			dirty += node_len;
1675		buf += node_len;
1676		len -= node_len;
1677	}
1678}
1679
1680/**
1681 * dbg_check_ltab - check the free and dirty space in the ltab.
1682 * @c: the UBIFS file-system description object
1683 *
1684 * This function returns %0 on success and a negative error code on failure.
1685 */
1686int dbg_check_ltab(struct ubifs_info *c)
1687{
1688	int lnum, err, i, cnt;
1689
1690	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1691		return 0;
1692
1693	/* Bring the entire tree into memory */
1694	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1695	for (i = 0; i < cnt; i++) {
1696		struct ubifs_pnode *pnode;
1697
1698		pnode = pnode_lookup(c, i);
1699		if (IS_ERR(pnode))
1700			return PTR_ERR(pnode);
1701		cond_resched();
1702	}
1703
1704	/* Check nodes */
1705	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1706	if (err)
1707		return err;
1708
1709	/* Check each LEB */
1710	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1711		err = dbg_check_ltab_lnum(c, lnum);
1712		if (err) {
1713			dbg_err("failed at LEB %d", lnum);
1714			return err;
1715		}
1716	}
1717
1718	dbg_lp("succeeded");
1719	return 0;
1720}
1721
1722/**
1723 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1724 * @c: the UBIFS file-system description object
1725 *
1726 * This function returns %0 on success and a negative error code on failure.
1727 */
1728int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1729{
1730	long long free = 0;
1731	int i;
1732
1733	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1734		return 0;
1735
1736	for (i = 0; i < c->lpt_lebs; i++) {
1737		if (c->ltab[i].tgc || c->ltab[i].cmt)
1738			continue;
1739		if (i + c->lpt_first == c->nhead_lnum)
1740			free += c->leb_size - c->nhead_offs;
1741		else if (c->ltab[i].free == c->leb_size)
1742			free += c->leb_size;
1743	}
1744	if (free < c->lpt_sz) {
1745		dbg_err("LPT space error: free %lld lpt_sz %lld",
1746			free, c->lpt_sz);
1747		dbg_dump_lpt_info(c);
1748		dbg_dump_lpt_lebs(c);
1749		dump_stack();
1750		return -EINVAL;
1751	}
1752	return 0;
1753}
1754
1755/**
1756 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1757 * @c: the UBIFS file-system description object
1758 * @action: what to do
1759 * @len: length written
1760 *
1761 * This function returns %0 on success and a negative error code on failure.
1762 * The @action argument may be one of:
1763 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1764 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1765 *   o %2 - switched to a different LEB and wasted @len bytes;
1766 *   o %3 - check that we've written the right number of bytes.
1767 *   o %4 - wasted @len bytes;
1768 */
1769int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1770{
1771	struct ubifs_debug_info *d = c->dbg;
1772	long long chk_lpt_sz, lpt_sz;
1773	int err = 0;
1774
1775	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1776		return 0;
1777
1778	switch (action) {
1779	case 0:
1780		d->chk_lpt_sz = 0;
1781		d->chk_lpt_sz2 = 0;
1782		d->chk_lpt_lebs = 0;
1783		d->chk_lpt_wastage = 0;
1784		if (c->dirty_pn_cnt > c->pnode_cnt) {
1785			dbg_err("dirty pnodes %d exceed max %d",
1786				c->dirty_pn_cnt, c->pnode_cnt);
1787			err = -EINVAL;
1788		}
1789		if (c->dirty_nn_cnt > c->nnode_cnt) {
1790			dbg_err("dirty nnodes %d exceed max %d",
1791				c->dirty_nn_cnt, c->nnode_cnt);
1792			err = -EINVAL;
1793		}
1794		return err;
1795	case 1:
1796		d->chk_lpt_sz += len;
1797		return 0;
1798	case 2:
1799		d->chk_lpt_sz += len;
1800		d->chk_lpt_wastage += len;
1801		d->chk_lpt_lebs += 1;
1802		return 0;
1803	case 3:
1804		chk_lpt_sz = c->leb_size;
1805		chk_lpt_sz *= d->chk_lpt_lebs;
1806		chk_lpt_sz += len - c->nhead_offs;
1807		if (d->chk_lpt_sz != chk_lpt_sz) {
1808			dbg_err("LPT wrote %lld but space used was %lld",
1809				d->chk_lpt_sz, chk_lpt_sz);
1810			err = -EINVAL;
1811		}
1812		if (d->chk_lpt_sz > c->lpt_sz) {
1813			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1814				d->chk_lpt_sz, c->lpt_sz);
1815			err = -EINVAL;
1816		}
1817		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1818			dbg_err("LPT layout size %lld but wrote %lld",
1819				d->chk_lpt_sz, d->chk_lpt_sz2);
1820			err = -EINVAL;
1821		}
1822		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1823			dbg_err("LPT new nhead offs: expected %d was %d",
1824				d->new_nhead_offs, len);
1825			err = -EINVAL;
1826		}
1827		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1828		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1829		lpt_sz += c->ltab_sz;
1830		if (c->big_lpt)
1831			lpt_sz += c->lsave_sz;
1832		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1833			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1834				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1835			err = -EINVAL;
1836		}
1837		if (err) {
1838			dbg_dump_lpt_info(c);
1839			dbg_dump_lpt_lebs(c);
1840			dump_stack();
1841		}
1842		d->chk_lpt_sz2 = d->chk_lpt_sz;
1843		d->chk_lpt_sz = 0;
1844		d->chk_lpt_wastage = 0;
1845		d->chk_lpt_lebs = 0;
1846		d->new_nhead_offs = len;
1847		return err;
1848	case 4:
1849		d->chk_lpt_sz += len;
1850		d->chk_lpt_wastage += len;
1851		return 0;
1852	default:
1853		return -EINVAL;
1854	}
1855}
1856
1857/**
1858 * dbg_dump_lpt_leb - dump an LPT LEB.
1859 * @c: UBIFS file-system description object
1860 * @lnum: LEB number to dump
1861 *
1862 * This function dumps an LEB from LPT area. Nodes in this area are very
1863 * different to nodes in the main area (e.g., they do not have common headers,
1864 * they do not have 8-byte alignments, etc), so we have a separate function to
1865 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1866 */
1867static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1868{
1869	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1870	void *buf = c->dbg->buf;
1871
1872	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1873	       current->pid, lnum);
1874	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1875	if (err) {
1876		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1877		return;
1878	}
1879	while (1) {
1880		offs = c->leb_size - len;
1881		if (!is_a_node(c, buf, len)) {
1882			int pad_len;
1883
1884			pad_len = get_pad_len(c, buf, len);
1885			if (pad_len) {
1886				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1887				       lnum, offs, pad_len);
1888				buf += pad_len;
1889				len -= pad_len;
1890				continue;
1891			}
1892			if (len)
1893				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1894				       lnum, offs, len);
1895			break;
1896		}
1897
1898		node_type = get_lpt_node_type(c, buf, &node_num);
1899		switch (node_type) {
1900		case UBIFS_LPT_PNODE:
1901		{
1902			node_len = c->pnode_sz;
1903			if (c->big_lpt)
1904				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1905				       lnum, offs, node_num);
1906			else
1907				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1908				       lnum, offs);
1909			break;
1910		}
1911		case UBIFS_LPT_NNODE:
1912		{
1913			int i;
1914			struct ubifs_nnode nnode;
1915
1916			node_len = c->nnode_sz;
1917			if (c->big_lpt)
1918				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1919				       lnum, offs, node_num);
1920			else
1921				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1922				       lnum, offs);
1923			err = ubifs_unpack_nnode(c, buf, &nnode);
1924			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1925				printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1926				       nnode.nbranch[i].offs);
1927				if (i != UBIFS_LPT_FANOUT - 1)
1928					printk(KERN_CONT ", ");
1929			}
1930			printk(KERN_CONT "\n");
1931			break;
1932		}
1933		case UBIFS_LPT_LTAB:
1934			node_len = c->ltab_sz;
1935			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1936			       lnum, offs);
1937			break;
1938		case UBIFS_LPT_LSAVE:
1939			node_len = c->lsave_sz;
1940			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1941			break;
1942		default:
1943			ubifs_err("LPT node type %d not recognized", node_type);
1944			return;
1945		}
1946
1947		buf += node_len;
1948		len -= node_len;
1949	}
1950
1951	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1952	       current->pid, lnum);
1953}
1954
1955/**
1956 * dbg_dump_lpt_lebs - dump LPT lebs.
1957 * @c: UBIFS file-system description object
1958 *
1959 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1960 * locked.
1961 */
1962void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1963{
1964	int i;
1965
1966	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1967	       current->pid);
1968	for (i = 0; i < c->lpt_lebs; i++)
1969		dump_lpt_leb(c, i + c->lpt_first);
1970	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1971	       current->pid);
1972}
1973
1974#endif /* CONFIG_UBIFS_FS_DEBUG */
1975