1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file implements the budgeting sub-system which is responsible for UBIFS
25 * space management.
26 *
27 * Factors such as compression, wasted space at the ends of LEBs, space in other
28 * journal heads, the effect of updates on the index, and so on, make it
29 * impossible to accurately predict the amount of space needed. Consequently
30 * approximations are used.
31 */
32
33#include "ubifs.h"
34#include <linux/writeback.h>
35#include <linux/math64.h>
36
37/*
38 * When pessimistic budget calculations say that there is no enough space,
39 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40 * or committing. The below constant defines maximum number of times UBIFS
41 * repeats the operations.
42 */
43#define MAX_MKSPC_RETRIES 3
44
45/*
46 * The below constant defines amount of dirty pages which should be written
47 * back at when trying to shrink the liability.
48 */
49#define NR_TO_WRITE 16
50
51/**
52 * shrink_liability - write-back some dirty pages/inodes.
53 * @c: UBIFS file-system description object
54 * @nr_to_write: how many dirty pages to write-back
55 *
56 * This function shrinks UBIFS liability by means of writing back some amount
57 * of dirty inodes and their pages.
58 *
59 * Note, this function synchronizes even VFS inodes which are locked
60 * (@i_mutex) by the caller of the budgeting function, because write-back does
61 * not touch @i_mutex.
62 */
63static void shrink_liability(struct ubifs_info *c, int nr_to_write)
64{
65	down_read(&c->vfs_sb->s_umount);
66	writeback_inodes_sb(c->vfs_sb);
67	up_read(&c->vfs_sb->s_umount);
68}
69
70/**
71 * run_gc - run garbage collector.
72 * @c: UBIFS file-system description object
73 *
74 * This function runs garbage collector to make some more free space. Returns
75 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
76 * negative error code in case of failure.
77 */
78static int run_gc(struct ubifs_info *c)
79{
80	int err, lnum;
81
82	/* Make some free space by garbage-collecting dirty space */
83	down_read(&c->commit_sem);
84	lnum = ubifs_garbage_collect(c, 1);
85	up_read(&c->commit_sem);
86	if (lnum < 0)
87		return lnum;
88
89	/* GC freed one LEB, return it to lprops */
90	dbg_budg("GC freed LEB %d", lnum);
91	err = ubifs_return_leb(c, lnum);
92	if (err)
93		return err;
94	return 0;
95}
96
97/**
98 * get_liability - calculate current liability.
99 * @c: UBIFS file-system description object
100 *
101 * This function calculates and returns current UBIFS liability, i.e. the
102 * amount of bytes UBIFS has "promised" to write to the media.
103 */
104static long long get_liability(struct ubifs_info *c)
105{
106	long long liab;
107
108	spin_lock(&c->space_lock);
109	liab = c->budg_idx_growth + c->budg_data_growth + c->budg_dd_growth;
110	spin_unlock(&c->space_lock);
111	return liab;
112}
113
114/**
115 * make_free_space - make more free space on the file-system.
116 * @c: UBIFS file-system description object
117 *
118 * This function is called when an operation cannot be budgeted because there
119 * is supposedly no free space. But in most cases there is some free space:
120 *   o budgeting is pessimistic, so it always budgets more than it is actually
121 *     needed, so shrinking the liability is one way to make free space - the
122 *     cached data will take less space then it was budgeted for;
123 *   o GC may turn some dark space into free space (budgeting treats dark space
124 *     as not available);
125 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
126 *
127 * So this function tries to do the above. Returns %-EAGAIN if some free space
128 * was presumably made and the caller has to re-try budgeting the operation.
129 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
130 * codes on failures.
131 */
132static int make_free_space(struct ubifs_info *c)
133{
134	int err, retries = 0;
135	long long liab1, liab2;
136
137	do {
138		liab1 = get_liability(c);
139		/*
140		 * We probably have some dirty pages or inodes (liability), try
141		 * to write them back.
142		 */
143		dbg_budg("liability %lld, run write-back", liab1);
144		shrink_liability(c, NR_TO_WRITE);
145
146		liab2 = get_liability(c);
147		if (liab2 < liab1)
148			return -EAGAIN;
149
150		dbg_budg("new liability %lld (not shrinked)", liab2);
151
152		/* Liability did not shrink again, try GC */
153		dbg_budg("Run GC");
154		err = run_gc(c);
155		if (!err)
156			return -EAGAIN;
157
158		if (err != -EAGAIN && err != -ENOSPC)
159			/* Some real error happened */
160			return err;
161
162		dbg_budg("Run commit (retries %d)", retries);
163		err = ubifs_run_commit(c);
164		if (err)
165			return err;
166	} while (retries++ < MAX_MKSPC_RETRIES);
167
168	return -ENOSPC;
169}
170
171/**
172 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
173 * @c: UBIFS file-system description object
174 *
175 * This function calculates and returns the number of LEBs which should be kept
176 * for index usage.
177 */
178int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
179{
180	int idx_lebs;
181	long long idx_size;
182
183	idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
184	/* And make sure we have thrice the index size of space reserved */
185	idx_size += idx_size << 1;
186	/*
187	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
188	 * pair, nor similarly the two variables for the new index size, so we
189	 * have to do this costly 64-bit division on fast-path.
190	 */
191	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
192	/*
193	 * The index head is not available for the in-the-gaps method, so add an
194	 * extra LEB to compensate.
195	 */
196	idx_lebs += 1;
197	if (idx_lebs < MIN_INDEX_LEBS)
198		idx_lebs = MIN_INDEX_LEBS;
199	return idx_lebs;
200}
201
202/**
203 * ubifs_calc_available - calculate available FS space.
204 * @c: UBIFS file-system description object
205 * @min_idx_lebs: minimum number of LEBs reserved for the index
206 *
207 * This function calculates and returns amount of FS space available for use.
208 */
209long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
210{
211	int subtract_lebs;
212	long long available;
213
214	available = c->main_bytes - c->lst.total_used;
215
216	/*
217	 * Now 'available' contains theoretically available flash space
218	 * assuming there is no index, so we have to subtract the space which
219	 * is reserved for the index.
220	 */
221	subtract_lebs = min_idx_lebs;
222
223	/* Take into account that GC reserves one LEB for its own needs */
224	subtract_lebs += 1;
225
226	/*
227	 * The GC journal head LEB is not really accessible. And since
228	 * different write types go to different heads, we may count only on
229	 * one head's space.
230	 */
231	subtract_lebs += c->jhead_cnt - 1;
232
233	/* We also reserve one LEB for deletions, which bypass budgeting */
234	subtract_lebs += 1;
235
236	available -= (long long)subtract_lebs * c->leb_size;
237
238	/* Subtract the dead space which is not available for use */
239	available -= c->lst.total_dead;
240
241	/*
242	 * Subtract dark space, which might or might not be usable - it depends
243	 * on the data which we have on the media and which will be written. If
244	 * this is a lot of uncompressed or not-compressible data, the dark
245	 * space cannot be used.
246	 */
247	available -= c->lst.total_dark;
248
249	/*
250	 * However, there is more dark space. The index may be bigger than
251	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
252	 * their dark space is not included in total_dark, so it is subtracted
253	 * here.
254	 */
255	if (c->lst.idx_lebs > min_idx_lebs) {
256		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
257		available -= subtract_lebs * c->dark_wm;
258	}
259
260	/* The calculations are rough and may end up with a negative number */
261	return available > 0 ? available : 0;
262}
263
264/**
265 * can_use_rp - check whether the user is allowed to use reserved pool.
266 * @c: UBIFS file-system description object
267 *
268 * UBIFS has so-called "reserved pool" which is flash space reserved
269 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
270 * This function checks whether current user is allowed to use reserved pool.
271 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
272 */
273static int can_use_rp(struct ubifs_info *c)
274{
275	if (current_fsuid() == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
276	    (c->rp_gid != 0 && in_group_p(c->rp_gid)))
277		return 1;
278	return 0;
279}
280
281/**
282 * do_budget_space - reserve flash space for index and data growth.
283 * @c: UBIFS file-system description object
284 *
285 * This function makes sure UBIFS has enough free LEBs for index growth and
286 * data.
287 *
288 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
289 * would take if it was consolidated and written to the flash. This guarantees
290 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
291 * be able to commit dirty index. So this function basically adds amount of
292 * budgeted index space to the size of the current index, multiplies this by 3,
293 * and makes sure this does not exceed the amount of free LEBs.
294 *
295 * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
296 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
297 *    be large, because UBIFS does not do any index consolidation as long as
298 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
299 *    will contain a lot of dirt.
300 * o @c->min_idx_lebs is the number of LEBS the index presumably takes. IOW,
301 *    the index may be consolidated to take up to @c->min_idx_lebs LEBs.
302 *
303 * This function returns zero in case of success, and %-ENOSPC in case of
304 * failure.
305 */
306static int do_budget_space(struct ubifs_info *c)
307{
308	long long outstanding, available;
309	int lebs, rsvd_idx_lebs, min_idx_lebs;
310
311	/* First budget index space */
312	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
313
314	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
315	if (min_idx_lebs > c->lst.idx_lebs)
316		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
317	else
318		rsvd_idx_lebs = 0;
319
320	/*
321	 * The number of LEBs that are available to be used by the index is:
322	 *
323	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
324	 *    @c->lst.taken_empty_lebs
325	 *
326	 * @c->lst.empty_lebs are available because they are empty.
327	 * @c->freeable_cnt are available because they contain only free and
328	 * dirty space, @c->idx_gc_cnt are available because they are index
329	 * LEBs that have been garbage collected and are awaiting the commit
330	 * before they can be used. And the in-the-gaps method will grab these
331	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
332	 * already been allocated for some purpose.
333	 *
334	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
335	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
336	 * are taken until after the commit).
337	 *
338	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
339	 * because of the way we serialize LEB allocations and budgeting. See a
340	 * comment in 'ubifs_find_free_space()'.
341	 */
342	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
343	       c->lst.taken_empty_lebs;
344	if (unlikely(rsvd_idx_lebs > lebs)) {
345		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
346			 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
347			 rsvd_idx_lebs);
348		return -ENOSPC;
349	}
350
351	available = ubifs_calc_available(c, min_idx_lebs);
352	outstanding = c->budg_data_growth + c->budg_dd_growth;
353
354	if (unlikely(available < outstanding)) {
355		dbg_budg("out of data space: available %lld, outstanding %lld",
356			 available, outstanding);
357		return -ENOSPC;
358	}
359
360	if (available - outstanding <= c->rp_size && !can_use_rp(c))
361		return -ENOSPC;
362
363	c->min_idx_lebs = min_idx_lebs;
364	return 0;
365}
366
367/**
368 * calc_idx_growth - calculate approximate index growth from budgeting request.
369 * @c: UBIFS file-system description object
370 * @req: budgeting request
371 *
372 * For now we assume each new node adds one znode. But this is rather poor
373 * approximation, though.
374 */
375static int calc_idx_growth(const struct ubifs_info *c,
376			   const struct ubifs_budget_req *req)
377{
378	int znodes;
379
380	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
381		 req->new_dent;
382	return znodes * c->max_idx_node_sz;
383}
384
385/**
386 * calc_data_growth - calculate approximate amount of new data from budgeting
387 * request.
388 * @c: UBIFS file-system description object
389 * @req: budgeting request
390 */
391static int calc_data_growth(const struct ubifs_info *c,
392			    const struct ubifs_budget_req *req)
393{
394	int data_growth;
395
396	data_growth = req->new_ino  ? c->inode_budget : 0;
397	if (req->new_page)
398		data_growth += c->page_budget;
399	if (req->new_dent)
400		data_growth += c->dent_budget;
401	data_growth += req->new_ino_d;
402	return data_growth;
403}
404
405/**
406 * calc_dd_growth - calculate approximate amount of data which makes other data
407 * dirty from budgeting request.
408 * @c: UBIFS file-system description object
409 * @req: budgeting request
410 */
411static int calc_dd_growth(const struct ubifs_info *c,
412			  const struct ubifs_budget_req *req)
413{
414	int dd_growth;
415
416	dd_growth = req->dirtied_page ? c->page_budget : 0;
417
418	if (req->dirtied_ino)
419		dd_growth += c->inode_budget << (req->dirtied_ino - 1);
420	if (req->mod_dent)
421		dd_growth += c->dent_budget;
422	dd_growth += req->dirtied_ino_d;
423	return dd_growth;
424}
425
426/**
427 * ubifs_budget_space - ensure there is enough space to complete an operation.
428 * @c: UBIFS file-system description object
429 * @req: budget request
430 *
431 * This function allocates budget for an operation. It uses pessimistic
432 * approximation of how much flash space the operation needs. The goal of this
433 * function is to make sure UBIFS always has flash space to flush all dirty
434 * pages, dirty inodes, and dirty znodes (liability). This function may force
435 * commit, garbage-collection or write-back. Returns zero in case of success,
436 * %-ENOSPC if there is no free space and other negative error codes in case of
437 * failures.
438 */
439int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
440{
441	int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
442	int err, idx_growth, data_growth, dd_growth, retried = 0;
443
444	ubifs_assert(req->new_page <= 1);
445	ubifs_assert(req->dirtied_page <= 1);
446	ubifs_assert(req->new_dent <= 1);
447	ubifs_assert(req->mod_dent <= 1);
448	ubifs_assert(req->new_ino <= 1);
449	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
450	ubifs_assert(req->dirtied_ino <= 4);
451	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
452	ubifs_assert(!(req->new_ino_d & 7));
453	ubifs_assert(!(req->dirtied_ino_d & 7));
454
455	data_growth = calc_data_growth(c, req);
456	dd_growth = calc_dd_growth(c, req);
457	if (!data_growth && !dd_growth)
458		return 0;
459	idx_growth = calc_idx_growth(c, req);
460
461again:
462	spin_lock(&c->space_lock);
463	ubifs_assert(c->budg_idx_growth >= 0);
464	ubifs_assert(c->budg_data_growth >= 0);
465	ubifs_assert(c->budg_dd_growth >= 0);
466
467	if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
468		dbg_budg("no space");
469		spin_unlock(&c->space_lock);
470		return -ENOSPC;
471	}
472
473	c->budg_idx_growth += idx_growth;
474	c->budg_data_growth += data_growth;
475	c->budg_dd_growth += dd_growth;
476
477	err = do_budget_space(c);
478	if (likely(!err)) {
479		req->idx_growth = idx_growth;
480		req->data_growth = data_growth;
481		req->dd_growth = dd_growth;
482		spin_unlock(&c->space_lock);
483		return 0;
484	}
485
486	/* Restore the old values */
487	c->budg_idx_growth -= idx_growth;
488	c->budg_data_growth -= data_growth;
489	c->budg_dd_growth -= dd_growth;
490	spin_unlock(&c->space_lock);
491
492	if (req->fast) {
493		dbg_budg("no space for fast budgeting");
494		return err;
495	}
496
497	err = make_free_space(c);
498	cond_resched();
499	if (err == -EAGAIN) {
500		dbg_budg("try again");
501		goto again;
502	} else if (err == -ENOSPC) {
503		if (!retried) {
504			retried = 1;
505			dbg_budg("-ENOSPC, but anyway try once again");
506			goto again;
507		}
508		dbg_budg("FS is full, -ENOSPC");
509		c->nospace = 1;
510		if (can_use_rp(c) || c->rp_size == 0)
511			c->nospace_rp = 1;
512		smp_wmb();
513	} else
514		ubifs_err("cannot budget space, error %d", err);
515	return err;
516}
517
518/**
519 * ubifs_release_budget - release budgeted free space.
520 * @c: UBIFS file-system description object
521 * @req: budget request
522 *
523 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
524 * since the index changes (which were budgeted for in @req->idx_growth) will
525 * only be written to the media on commit, this function moves the index budget
526 * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be
527 * zeroed by the commit operation.
528 */
529void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
530{
531	ubifs_assert(req->new_page <= 1);
532	ubifs_assert(req->dirtied_page <= 1);
533	ubifs_assert(req->new_dent <= 1);
534	ubifs_assert(req->mod_dent <= 1);
535	ubifs_assert(req->new_ino <= 1);
536	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
537	ubifs_assert(req->dirtied_ino <= 4);
538	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
539	ubifs_assert(!(req->new_ino_d & 7));
540	ubifs_assert(!(req->dirtied_ino_d & 7));
541	if (!req->recalculate) {
542		ubifs_assert(req->idx_growth >= 0);
543		ubifs_assert(req->data_growth >= 0);
544		ubifs_assert(req->dd_growth >= 0);
545	}
546
547	if (req->recalculate) {
548		req->data_growth = calc_data_growth(c, req);
549		req->dd_growth = calc_dd_growth(c, req);
550		req->idx_growth = calc_idx_growth(c, req);
551	}
552
553	if (!req->data_growth && !req->dd_growth)
554		return;
555
556	c->nospace = c->nospace_rp = 0;
557	smp_wmb();
558
559	spin_lock(&c->space_lock);
560	c->budg_idx_growth -= req->idx_growth;
561	c->budg_uncommitted_idx += req->idx_growth;
562	c->budg_data_growth -= req->data_growth;
563	c->budg_dd_growth -= req->dd_growth;
564	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
565
566	ubifs_assert(c->budg_idx_growth >= 0);
567	ubifs_assert(c->budg_data_growth >= 0);
568	ubifs_assert(c->budg_dd_growth >= 0);
569	ubifs_assert(c->min_idx_lebs < c->main_lebs);
570	ubifs_assert(!(c->budg_idx_growth & 7));
571	ubifs_assert(!(c->budg_data_growth & 7));
572	ubifs_assert(!(c->budg_dd_growth & 7));
573	spin_unlock(&c->space_lock);
574}
575
576/**
577 * ubifs_convert_page_budget - convert budget of a new page.
578 * @c: UBIFS file-system description object
579 *
580 * This function converts budget which was allocated for a new page of data to
581 * the budget of changing an existing page of data. The latter is smaller than
582 * the former, so this function only does simple re-calculation and does not
583 * involve any write-back.
584 */
585void ubifs_convert_page_budget(struct ubifs_info *c)
586{
587	spin_lock(&c->space_lock);
588	/* Release the index growth reservation */
589	c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
590	/* Release the data growth reservation */
591	c->budg_data_growth -= c->page_budget;
592	/* Increase the dirty data growth reservation instead */
593	c->budg_dd_growth += c->page_budget;
594	/* And re-calculate the indexing space reservation */
595	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
596	spin_unlock(&c->space_lock);
597}
598
599/**
600 * ubifs_release_dirty_inode_budget - release dirty inode budget.
601 * @c: UBIFS file-system description object
602 * @ui: UBIFS inode to release the budget for
603 *
604 * This function releases budget corresponding to a dirty inode. It is usually
605 * called when after the inode has been written to the media and marked as
606 * clean. It also causes the "no space" flags to be cleared.
607 */
608void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
609				      struct ubifs_inode *ui)
610{
611	struct ubifs_budget_req req;
612
613	memset(&req, 0, sizeof(struct ubifs_budget_req));
614	/* The "no space" flags will be cleared because dd_growth is > 0 */
615	req.dd_growth = c->inode_budget + ALIGN(ui->data_len, 8);
616	ubifs_release_budget(c, &req);
617}
618
619/**
620 * ubifs_reported_space - calculate reported free space.
621 * @c: the UBIFS file-system description object
622 * @free: amount of free space
623 *
624 * This function calculates amount of free space which will be reported to
625 * user-space. User-space application tend to expect that if the file-system
626 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
627 * are able to write a file of size N. UBIFS attaches node headers to each data
628 * node and it has to write indexing nodes as well. This introduces additional
629 * overhead, and UBIFS has to report slightly less free space to meet the above
630 * expectations.
631 *
632 * This function assumes free space is made up of uncompressed data nodes and
633 * full index nodes (one per data node, tripled because we always allow enough
634 * space to write the index thrice).
635 *
636 * Note, the calculation is pessimistic, which means that most of the time
637 * UBIFS reports less space than it actually has.
638 */
639long long ubifs_reported_space(const struct ubifs_info *c, long long free)
640{
641	int divisor, factor, f;
642
643	/*
644	 * Reported space size is @free * X, where X is UBIFS block size
645	 * divided by UBIFS block size + all overhead one data block
646	 * introduces. The overhead is the node header + indexing overhead.
647	 *
648	 * Indexing overhead calculations are based on the following formula:
649	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
650	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
651	 * as less than maximum fanout, we assume that each data node
652	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
653	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
654	 * for the index.
655	 */
656	f = c->fanout > 3 ? c->fanout >> 1 : 2;
657	factor = UBIFS_BLOCK_SIZE;
658	divisor = UBIFS_MAX_DATA_NODE_SZ;
659	divisor += (c->max_idx_node_sz * 3) / (f - 1);
660	free *= factor;
661	return div_u64(free, divisor);
662}
663
664/**
665 * ubifs_get_free_space_nolock - return amount of free space.
666 * @c: UBIFS file-system description object
667 *
668 * This function calculates amount of free space to report to user-space.
669 *
670 * Because UBIFS may introduce substantial overhead (the index, node headers,
671 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
672 * free flash space it has (well, because not all dirty space is reclaimable,
673 * UBIFS does not actually know the real amount). If UBIFS did so, it would
674 * bread user expectations about what free space is. Users seem to accustomed
675 * to assume that if the file-system reports N bytes of free space, they would
676 * be able to fit a file of N bytes to the FS. This almost works for
677 * traditional file-systems, because they have way less overhead than UBIFS.
678 * So, to keep users happy, UBIFS tries to take the overhead into account.
679 */
680long long ubifs_get_free_space_nolock(struct ubifs_info *c)
681{
682	int rsvd_idx_lebs, lebs;
683	long long available, outstanding, free;
684
685	ubifs_assert(c->min_idx_lebs == ubifs_calc_min_idx_lebs(c));
686	outstanding = c->budg_data_growth + c->budg_dd_growth;
687	available = ubifs_calc_available(c, c->min_idx_lebs);
688
689	/*
690	 * When reporting free space to user-space, UBIFS guarantees that it is
691	 * possible to write a file of free space size. This means that for
692	 * empty LEBs we may use more precise calculations than
693	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
694	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
695	 * Thus, amend the available space.
696	 *
697	 * Note, the calculations below are similar to what we have in
698	 * 'do_budget_space()', so refer there for comments.
699	 */
700	if (c->min_idx_lebs > c->lst.idx_lebs)
701		rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs;
702	else
703		rsvd_idx_lebs = 0;
704	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
705	       c->lst.taken_empty_lebs;
706	lebs -= rsvd_idx_lebs;
707	available += lebs * (c->dark_wm - c->leb_overhead);
708
709	if (available > outstanding)
710		free = ubifs_reported_space(c, available - outstanding);
711	else
712		free = 0;
713	return free;
714}
715
716/**
717 * ubifs_get_free_space - return amount of free space.
718 * @c: UBIFS file-system description object
719 *
720 * This function calculates and returns amount of free space to report to
721 * user-space.
722 */
723long long ubifs_get_free_space(struct ubifs_info *c)
724{
725	long long free;
726
727	spin_lock(&c->space_lock);
728	free = ubifs_get_free_space_nolock(c);
729	spin_unlock(&c->space_lock);
730
731	return free;
732}
733