1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 *	    Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/gfp.h>
27#include <linux/mm.h>
28#include <linux/pagemap.h>
29#include <linux/swap.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/bit_spinlock.h>
33
34#include "aops.h"
35#include "attrib.h"
36#include "debug.h"
37#include "inode.h"
38#include "mft.h"
39#include "runlist.h"
40#include "types.h"
41#include "ntfs.h"
42
43/**
44 * ntfs_end_buffer_async_read - async io completion for reading attributes
45 * @bh:		buffer head on which io is completed
46 * @uptodate:	whether @bh is now uptodate or not
47 *
48 * Asynchronous I/O completion handler for reading pages belonging to the
49 * attribute address space of an inode.  The inodes can either be files or
50 * directories or they can be fake inodes describing some attribute.
51 *
52 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
53 * page has been completed and mark the page uptodate or set the error bit on
54 * the page.  To determine the size of the records that need fixing up, we
55 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
56 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
57 * record size.
58 */
59static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
60{
61	unsigned long flags;
62	struct buffer_head *first, *tmp;
63	struct page *page;
64	struct inode *vi;
65	ntfs_inode *ni;
66	int page_uptodate = 1;
67
68	page = bh->b_page;
69	vi = page->mapping->host;
70	ni = NTFS_I(vi);
71
72	if (likely(uptodate)) {
73		loff_t i_size;
74		s64 file_ofs, init_size;
75
76		set_buffer_uptodate(bh);
77
78		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
79				bh_offset(bh);
80		read_lock_irqsave(&ni->size_lock, flags);
81		init_size = ni->initialized_size;
82		i_size = i_size_read(vi);
83		read_unlock_irqrestore(&ni->size_lock, flags);
84		if (unlikely(init_size > i_size)) {
85			/* Race with shrinking truncate. */
86			init_size = i_size;
87		}
88		/* Check for the current buffer head overflowing. */
89		if (unlikely(file_ofs + bh->b_size > init_size)) {
90			int ofs;
91			void *kaddr;
92
93			ofs = 0;
94			if (file_ofs < init_size)
95				ofs = init_size - file_ofs;
96			local_irq_save(flags);
97			kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
98			memset(kaddr + bh_offset(bh) + ofs, 0,
99					bh->b_size - ofs);
100			flush_dcache_page(page);
101			kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
102			local_irq_restore(flags);
103		}
104	} else {
105		clear_buffer_uptodate(bh);
106		SetPageError(page);
107		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
108				"0x%llx.", (unsigned long long)bh->b_blocknr);
109	}
110	first = page_buffers(page);
111	local_irq_save(flags);
112	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
113	clear_buffer_async_read(bh);
114	unlock_buffer(bh);
115	tmp = bh;
116	do {
117		if (!buffer_uptodate(tmp))
118			page_uptodate = 0;
119		if (buffer_async_read(tmp)) {
120			if (likely(buffer_locked(tmp)))
121				goto still_busy;
122			/* Async buffers must be locked. */
123			BUG();
124		}
125		tmp = tmp->b_this_page;
126	} while (tmp != bh);
127	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
128	local_irq_restore(flags);
129	/*
130	 * If none of the buffers had errors then we can set the page uptodate,
131	 * but we first have to perform the post read mst fixups, if the
132	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
133	 * Note we ignore fixup errors as those are detected when
134	 * map_mft_record() is called which gives us per record granularity
135	 * rather than per page granularity.
136	 */
137	if (!NInoMstProtected(ni)) {
138		if (likely(page_uptodate && !PageError(page)))
139			SetPageUptodate(page);
140	} else {
141		u8 *kaddr;
142		unsigned int i, recs;
143		u32 rec_size;
144
145		rec_size = ni->itype.index.block_size;
146		recs = PAGE_CACHE_SIZE / rec_size;
147		/* Should have been verified before we got here... */
148		BUG_ON(!recs);
149		local_irq_save(flags);
150		kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
151		for (i = 0; i < recs; i++)
152			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
153					i * rec_size), rec_size);
154		kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
155		local_irq_restore(flags);
156		flush_dcache_page(page);
157		if (likely(page_uptodate && !PageError(page)))
158			SetPageUptodate(page);
159	}
160	unlock_page(page);
161	return;
162still_busy:
163	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
164	local_irq_restore(flags);
165	return;
166}
167
168/**
169 * ntfs_read_block - fill a @page of an address space with data
170 * @page:	page cache page to fill with data
171 *
172 * Fill the page @page of the address space belonging to the @page->host inode.
173 * We read each buffer asynchronously and when all buffers are read in, our io
174 * completion handler ntfs_end_buffer_read_async(), if required, automatically
175 * applies the mst fixups to the page before finally marking it uptodate and
176 * unlocking it.
177 *
178 * We only enforce allocated_size limit because i_size is checked for in
179 * generic_file_read().
180 *
181 * Return 0 on success and -errno on error.
182 *
183 * Contains an adapted version of fs/buffer.c::block_read_full_page().
184 */
185static int ntfs_read_block(struct page *page)
186{
187	loff_t i_size;
188	VCN vcn;
189	LCN lcn;
190	s64 init_size;
191	struct inode *vi;
192	ntfs_inode *ni;
193	ntfs_volume *vol;
194	runlist_element *rl;
195	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
196	sector_t iblock, lblock, zblock;
197	unsigned long flags;
198	unsigned int blocksize, vcn_ofs;
199	int i, nr;
200	unsigned char blocksize_bits;
201
202	vi = page->mapping->host;
203	ni = NTFS_I(vi);
204	vol = ni->vol;
205
206	/* $MFT/$DATA must have its complete runlist in memory at all times. */
207	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
208
209	blocksize = vol->sb->s_blocksize;
210	blocksize_bits = vol->sb->s_blocksize_bits;
211
212	if (!page_has_buffers(page)) {
213		create_empty_buffers(page, blocksize, 0);
214		if (unlikely(!page_has_buffers(page))) {
215			unlock_page(page);
216			return -ENOMEM;
217		}
218	}
219	bh = head = page_buffers(page);
220	BUG_ON(!bh);
221
222	/*
223	 * We may be racing with truncate.  To avoid some of the problems we
224	 * now take a snapshot of the various sizes and use those for the whole
225	 * of the function.  In case of an extending truncate it just means we
226	 * may leave some buffers unmapped which are now allocated.  This is
227	 * not a problem since these buffers will just get mapped when a write
228	 * occurs.  In case of a shrinking truncate, we will detect this later
229	 * on due to the runlist being incomplete and if the page is being
230	 * fully truncated, truncate will throw it away as soon as we unlock
231	 * it so no need to worry what we do with it.
232	 */
233	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
234	read_lock_irqsave(&ni->size_lock, flags);
235	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
236	init_size = ni->initialized_size;
237	i_size = i_size_read(vi);
238	read_unlock_irqrestore(&ni->size_lock, flags);
239	if (unlikely(init_size > i_size)) {
240		/* Race with shrinking truncate. */
241		init_size = i_size;
242	}
243	zblock = (init_size + blocksize - 1) >> blocksize_bits;
244
245	/* Loop through all the buffers in the page. */
246	rl = NULL;
247	nr = i = 0;
248	do {
249		int err = 0;
250
251		if (unlikely(buffer_uptodate(bh)))
252			continue;
253		if (unlikely(buffer_mapped(bh))) {
254			arr[nr++] = bh;
255			continue;
256		}
257		bh->b_bdev = vol->sb->s_bdev;
258		/* Is the block within the allowed limits? */
259		if (iblock < lblock) {
260			bool is_retry = false;
261
262			/* Convert iblock into corresponding vcn and offset. */
263			vcn = (VCN)iblock << blocksize_bits >>
264					vol->cluster_size_bits;
265			vcn_ofs = ((VCN)iblock << blocksize_bits) &
266					vol->cluster_size_mask;
267			if (!rl) {
268lock_retry_remap:
269				down_read(&ni->runlist.lock);
270				rl = ni->runlist.rl;
271			}
272			if (likely(rl != NULL)) {
273				/* Seek to element containing target vcn. */
274				while (rl->length && rl[1].vcn <= vcn)
275					rl++;
276				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
277			} else
278				lcn = LCN_RL_NOT_MAPPED;
279			/* Successful remap. */
280			if (lcn >= 0) {
281				/* Setup buffer head to correct block. */
282				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
283						+ vcn_ofs) >> blocksize_bits;
284				set_buffer_mapped(bh);
285				/* Only read initialized data blocks. */
286				if (iblock < zblock) {
287					arr[nr++] = bh;
288					continue;
289				}
290				/* Fully non-initialized data block, zero it. */
291				goto handle_zblock;
292			}
293			/* It is a hole, need to zero it. */
294			if (lcn == LCN_HOLE)
295				goto handle_hole;
296			/* If first try and runlist unmapped, map and retry. */
297			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
298				is_retry = true;
299				/*
300				 * Attempt to map runlist, dropping lock for
301				 * the duration.
302				 */
303				up_read(&ni->runlist.lock);
304				err = ntfs_map_runlist(ni, vcn);
305				if (likely(!err))
306					goto lock_retry_remap;
307				rl = NULL;
308			} else if (!rl)
309				up_read(&ni->runlist.lock);
310			/*
311			 * If buffer is outside the runlist, treat it as a
312			 * hole.  This can happen due to concurrent truncate
313			 * for example.
314			 */
315			if (err == -ENOENT || lcn == LCN_ENOENT) {
316				err = 0;
317				goto handle_hole;
318			}
319			/* Hard error, zero out region. */
320			if (!err)
321				err = -EIO;
322			bh->b_blocknr = -1;
323			SetPageError(page);
324			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
325					"attribute type 0x%x, vcn 0x%llx, "
326					"offset 0x%x because its location on "
327					"disk could not be determined%s "
328					"(error code %i).", ni->mft_no,
329					ni->type, (unsigned long long)vcn,
330					vcn_ofs, is_retry ? " even after "
331					"retrying" : "", err);
332		}
333		/*
334		 * Either iblock was outside lblock limits or
335		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
336		 * of the page and set the buffer uptodate.
337		 */
338handle_hole:
339		bh->b_blocknr = -1UL;
340		clear_buffer_mapped(bh);
341handle_zblock:
342		zero_user(page, i * blocksize, blocksize);
343		if (likely(!err))
344			set_buffer_uptodate(bh);
345	} while (i++, iblock++, (bh = bh->b_this_page) != head);
346
347	/* Release the lock if we took it. */
348	if (rl)
349		up_read(&ni->runlist.lock);
350
351	/* Check we have at least one buffer ready for i/o. */
352	if (nr) {
353		struct buffer_head *tbh;
354
355		/* Lock the buffers. */
356		for (i = 0; i < nr; i++) {
357			tbh = arr[i];
358			lock_buffer(tbh);
359			tbh->b_end_io = ntfs_end_buffer_async_read;
360			set_buffer_async_read(tbh);
361		}
362		/* Finally, start i/o on the buffers. */
363		for (i = 0; i < nr; i++) {
364			tbh = arr[i];
365			if (likely(!buffer_uptodate(tbh)))
366				submit_bh(READ, tbh);
367			else
368				ntfs_end_buffer_async_read(tbh, 1);
369		}
370		return 0;
371	}
372	/* No i/o was scheduled on any of the buffers. */
373	if (likely(!PageError(page)))
374		SetPageUptodate(page);
375	else /* Signal synchronous i/o error. */
376		nr = -EIO;
377	unlock_page(page);
378	return nr;
379}
380
381/**
382 * ntfs_readpage - fill a @page of a @file with data from the device
383 * @file:	open file to which the page @page belongs or NULL
384 * @page:	page cache page to fill with data
385 *
386 * For non-resident attributes, ntfs_readpage() fills the @page of the open
387 * file @file by calling the ntfs version of the generic block_read_full_page()
388 * function, ntfs_read_block(), which in turn creates and reads in the buffers
389 * associated with the page asynchronously.
390 *
391 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
392 * data from the mft record (which at this stage is most likely in memory) and
393 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
394 * even if the mft record is not cached at this point in time, we need to wait
395 * for it to be read in before we can do the copy.
396 *
397 * Return 0 on success and -errno on error.
398 */
399static int ntfs_readpage(struct file *file, struct page *page)
400{
401	loff_t i_size;
402	struct inode *vi;
403	ntfs_inode *ni, *base_ni;
404	u8 *addr;
405	ntfs_attr_search_ctx *ctx;
406	MFT_RECORD *mrec;
407	unsigned long flags;
408	u32 attr_len;
409	int err = 0;
410
411retry_readpage:
412	BUG_ON(!PageLocked(page));
413	vi = page->mapping->host;
414	i_size = i_size_read(vi);
415	/* Is the page fully outside i_size? (truncate in progress) */
416	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
417			PAGE_CACHE_SHIFT)) {
418		zero_user(page, 0, PAGE_CACHE_SIZE);
419		ntfs_debug("Read outside i_size - truncated?");
420		goto done;
421	}
422	/*
423	 * This can potentially happen because we clear PageUptodate() during
424	 * ntfs_writepage() of MstProtected() attributes.
425	 */
426	if (PageUptodate(page)) {
427		unlock_page(page);
428		return 0;
429	}
430	ni = NTFS_I(vi);
431	/*
432	 * Only $DATA attributes can be encrypted and only unnamed $DATA
433	 * attributes can be compressed.  Index root can have the flags set but
434	 * this means to create compressed/encrypted files, not that the
435	 * attribute is compressed/encrypted.  Note we need to check for
436	 * AT_INDEX_ALLOCATION since this is the type of both directory and
437	 * index inodes.
438	 */
439	if (ni->type != AT_INDEX_ALLOCATION) {
440		/* If attribute is encrypted, deny access, just like NT4. */
441		if (NInoEncrypted(ni)) {
442			BUG_ON(ni->type != AT_DATA);
443			err = -EACCES;
444			goto err_out;
445		}
446		/* Compressed data streams are handled in compress.c. */
447		if (NInoNonResident(ni) && NInoCompressed(ni)) {
448			BUG_ON(ni->type != AT_DATA);
449			BUG_ON(ni->name_len);
450			return ntfs_read_compressed_block(page);
451		}
452	}
453	/* NInoNonResident() == NInoIndexAllocPresent() */
454	if (NInoNonResident(ni)) {
455		/* Normal, non-resident data stream. */
456		return ntfs_read_block(page);
457	}
458	/*
459	 * Attribute is resident, implying it is not compressed or encrypted.
460	 * This also means the attribute is smaller than an mft record and
461	 * hence smaller than a page, so can simply zero out any pages with
462	 * index above 0.  Note the attribute can actually be marked compressed
463	 * but if it is resident the actual data is not compressed so we are
464	 * ok to ignore the compressed flag here.
465	 */
466	if (unlikely(page->index > 0)) {
467		zero_user(page, 0, PAGE_CACHE_SIZE);
468		goto done;
469	}
470	if (!NInoAttr(ni))
471		base_ni = ni;
472	else
473		base_ni = ni->ext.base_ntfs_ino;
474	/* Map, pin, and lock the mft record. */
475	mrec = map_mft_record(base_ni);
476	if (IS_ERR(mrec)) {
477		err = PTR_ERR(mrec);
478		goto err_out;
479	}
480	/*
481	 * If a parallel write made the attribute non-resident, drop the mft
482	 * record and retry the readpage.
483	 */
484	if (unlikely(NInoNonResident(ni))) {
485		unmap_mft_record(base_ni);
486		goto retry_readpage;
487	}
488	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
489	if (unlikely(!ctx)) {
490		err = -ENOMEM;
491		goto unm_err_out;
492	}
493	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
494			CASE_SENSITIVE, 0, NULL, 0, ctx);
495	if (unlikely(err))
496		goto put_unm_err_out;
497	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
498	read_lock_irqsave(&ni->size_lock, flags);
499	if (unlikely(attr_len > ni->initialized_size))
500		attr_len = ni->initialized_size;
501	i_size = i_size_read(vi);
502	read_unlock_irqrestore(&ni->size_lock, flags);
503	if (unlikely(attr_len > i_size)) {
504		/* Race with shrinking truncate. */
505		attr_len = i_size;
506	}
507	addr = kmap_atomic(page, KM_USER0);
508	/* Copy the data to the page. */
509	memcpy(addr, (u8*)ctx->attr +
510			le16_to_cpu(ctx->attr->data.resident.value_offset),
511			attr_len);
512	/* Zero the remainder of the page. */
513	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
514	flush_dcache_page(page);
515	kunmap_atomic(addr, KM_USER0);
516put_unm_err_out:
517	ntfs_attr_put_search_ctx(ctx);
518unm_err_out:
519	unmap_mft_record(base_ni);
520done:
521	SetPageUptodate(page);
522err_out:
523	unlock_page(page);
524	return err;
525}
526
527#ifdef NTFS_RW
528
529/**
530 * ntfs_write_block - write a @page to the backing store
531 * @page:	page cache page to write out
532 * @wbc:	writeback control structure
533 *
534 * This function is for writing pages belonging to non-resident, non-mst
535 * protected attributes to their backing store.
536 *
537 * For a page with buffers, map and write the dirty buffers asynchronously
538 * under page writeback. For a page without buffers, create buffers for the
539 * page, then proceed as above.
540 *
541 * If a page doesn't have buffers the page dirty state is definitive. If a page
542 * does have buffers, the page dirty state is just a hint, and the buffer dirty
543 * state is definitive. (A hint which has rules: dirty buffers against a clean
544 * page is illegal. Other combinations are legal and need to be handled. In
545 * particular a dirty page containing clean buffers for example.)
546 *
547 * Return 0 on success and -errno on error.
548 *
549 * Based on ntfs_read_block() and __block_write_full_page().
550 */
551static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
552{
553	VCN vcn;
554	LCN lcn;
555	s64 initialized_size;
556	loff_t i_size;
557	sector_t block, dblock, iblock;
558	struct inode *vi;
559	ntfs_inode *ni;
560	ntfs_volume *vol;
561	runlist_element *rl;
562	struct buffer_head *bh, *head;
563	unsigned long flags;
564	unsigned int blocksize, vcn_ofs;
565	int err;
566	bool need_end_writeback;
567	unsigned char blocksize_bits;
568
569	vi = page->mapping->host;
570	ni = NTFS_I(vi);
571	vol = ni->vol;
572
573	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
574			"0x%lx.", ni->mft_no, ni->type, page->index);
575
576	BUG_ON(!NInoNonResident(ni));
577	BUG_ON(NInoMstProtected(ni));
578	blocksize = vol->sb->s_blocksize;
579	blocksize_bits = vol->sb->s_blocksize_bits;
580	if (!page_has_buffers(page)) {
581		BUG_ON(!PageUptodate(page));
582		create_empty_buffers(page, blocksize,
583				(1 << BH_Uptodate) | (1 << BH_Dirty));
584		if (unlikely(!page_has_buffers(page))) {
585			ntfs_warning(vol->sb, "Error allocating page "
586					"buffers.  Redirtying page so we try "
587					"again later.");
588			/*
589			 * Put the page back on mapping->dirty_pages, but leave
590			 * its buffers' dirty state as-is.
591			 */
592			redirty_page_for_writepage(wbc, page);
593			unlock_page(page);
594			return 0;
595		}
596	}
597	bh = head = page_buffers(page);
598	BUG_ON(!bh);
599
600	/* NOTE: Different naming scheme to ntfs_read_block()! */
601
602	/* The first block in the page. */
603	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
604
605	read_lock_irqsave(&ni->size_lock, flags);
606	i_size = i_size_read(vi);
607	initialized_size = ni->initialized_size;
608	read_unlock_irqrestore(&ni->size_lock, flags);
609
610	/* The first out of bounds block for the data size. */
611	dblock = (i_size + blocksize - 1) >> blocksize_bits;
612
613	/* The last (fully or partially) initialized block. */
614	iblock = initialized_size >> blocksize_bits;
615
616	/*
617	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
618	 * here, and the (potentially unmapped) buffers may become dirty at
619	 * any time.  If a buffer becomes dirty here after we've inspected it
620	 * then we just miss that fact, and the page stays dirty.
621	 *
622	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
623	 * handle that here by just cleaning them.
624	 */
625
626	/*
627	 * Loop through all the buffers in the page, mapping all the dirty
628	 * buffers to disk addresses and handling any aliases from the
629	 * underlying block device's mapping.
630	 */
631	rl = NULL;
632	err = 0;
633	do {
634		bool is_retry = false;
635
636		if (unlikely(block >= dblock)) {
637			clear_buffer_dirty(bh);
638			set_buffer_uptodate(bh);
639			continue;
640		}
641
642		/* Clean buffers are not written out, so no need to map them. */
643		if (!buffer_dirty(bh))
644			continue;
645
646		/* Make sure we have enough initialized size. */
647		if (unlikely((block >= iblock) &&
648				(initialized_size < i_size))) {
649			/*
650			 * If this page is fully outside initialized size, zero
651			 * out all pages between the current initialized size
652			 * and the current page. Just use ntfs_readpage() to do
653			 * the zeroing transparently.
654			 */
655			if (block > iblock) {
656				// TODO:
657				// For each page do:
658				// - read_cache_page()
659				// Again for each page do:
660				// - wait_on_page_locked()
661				// - Check (PageUptodate(page) &&
662				//			!PageError(page))
663				// Update initialized size in the attribute and
664				// in the inode.
665				// Again, for each page do:
666				//	__set_page_dirty_buffers();
667				// page_cache_release()
668				// We don't need to wait on the writes.
669				// Update iblock.
670			}
671			if (!PageUptodate(page)) {
672				// TODO:
673				// Zero any non-uptodate buffers up to i_size.
674				// Set them uptodate and dirty.
675			}
676			// TODO:
677			// Update initialized size in the attribute and in the
678			// inode (up to i_size).
679			// Update iblock.
680			// size changes to happen in one go.
681			ntfs_error(vol->sb, "Writing beyond initialized size "
682					"is not supported yet. Sorry.");
683			err = -EOPNOTSUPP;
684			break;
685			// Do NOT set_buffer_new() BUT DO clear buffer range
686			// outside write request range.
687			// set_buffer_uptodate() on complete buffers as well as
688			// set_buffer_dirty().
689		}
690
691		/* No need to map buffers that are already mapped. */
692		if (buffer_mapped(bh))
693			continue;
694
695		/* Unmapped, dirty buffer. Need to map it. */
696		bh->b_bdev = vol->sb->s_bdev;
697
698		/* Convert block into corresponding vcn and offset. */
699		vcn = (VCN)block << blocksize_bits;
700		vcn_ofs = vcn & vol->cluster_size_mask;
701		vcn >>= vol->cluster_size_bits;
702		if (!rl) {
703lock_retry_remap:
704			down_read(&ni->runlist.lock);
705			rl = ni->runlist.rl;
706		}
707		if (likely(rl != NULL)) {
708			/* Seek to element containing target vcn. */
709			while (rl->length && rl[1].vcn <= vcn)
710				rl++;
711			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
712		} else
713			lcn = LCN_RL_NOT_MAPPED;
714		/* Successful remap. */
715		if (lcn >= 0) {
716			/* Setup buffer head to point to correct block. */
717			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
718					vcn_ofs) >> blocksize_bits;
719			set_buffer_mapped(bh);
720			continue;
721		}
722		/* It is a hole, need to instantiate it. */
723		if (lcn == LCN_HOLE) {
724			u8 *kaddr;
725			unsigned long *bpos, *bend;
726
727			/* Check if the buffer is zero. */
728			kaddr = kmap_atomic(page, KM_USER0);
729			bpos = (unsigned long *)(kaddr + bh_offset(bh));
730			bend = (unsigned long *)((u8*)bpos + blocksize);
731			do {
732				if (unlikely(*bpos))
733					break;
734			} while (likely(++bpos < bend));
735			kunmap_atomic(kaddr, KM_USER0);
736			if (bpos == bend) {
737				/*
738				 * Buffer is zero and sparse, no need to write
739				 * it.
740				 */
741				bh->b_blocknr = -1;
742				clear_buffer_dirty(bh);
743				continue;
744			}
745			// TODO: Instantiate the hole.
746			// clear_buffer_new(bh);
747			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
748			ntfs_error(vol->sb, "Writing into sparse regions is "
749					"not supported yet. Sorry.");
750			err = -EOPNOTSUPP;
751			break;
752		}
753		/* If first try and runlist unmapped, map and retry. */
754		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
755			is_retry = true;
756			/*
757			 * Attempt to map runlist, dropping lock for
758			 * the duration.
759			 */
760			up_read(&ni->runlist.lock);
761			err = ntfs_map_runlist(ni, vcn);
762			if (likely(!err))
763				goto lock_retry_remap;
764			rl = NULL;
765		} else if (!rl)
766			up_read(&ni->runlist.lock);
767		/*
768		 * If buffer is outside the runlist, truncate has cut it out
769		 * of the runlist.  Just clean and clear the buffer and set it
770		 * uptodate so it can get discarded by the VM.
771		 */
772		if (err == -ENOENT || lcn == LCN_ENOENT) {
773			bh->b_blocknr = -1;
774			clear_buffer_dirty(bh);
775			zero_user(page, bh_offset(bh), blocksize);
776			set_buffer_uptodate(bh);
777			err = 0;
778			continue;
779		}
780		/* Failed to map the buffer, even after retrying. */
781		if (!err)
782			err = -EIO;
783		bh->b_blocknr = -1;
784		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
785				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
786				"because its location on disk could not be "
787				"determined%s (error code %i).", ni->mft_no,
788				ni->type, (unsigned long long)vcn,
789				vcn_ofs, is_retry ? " even after "
790				"retrying" : "", err);
791		break;
792	} while (block++, (bh = bh->b_this_page) != head);
793
794	/* Release the lock if we took it. */
795	if (rl)
796		up_read(&ni->runlist.lock);
797
798	/* For the error case, need to reset bh to the beginning. */
799	bh = head;
800
801	/* Just an optimization, so ->readpage() is not called later. */
802	if (unlikely(!PageUptodate(page))) {
803		int uptodate = 1;
804		do {
805			if (!buffer_uptodate(bh)) {
806				uptodate = 0;
807				bh = head;
808				break;
809			}
810		} while ((bh = bh->b_this_page) != head);
811		if (uptodate)
812			SetPageUptodate(page);
813	}
814
815	/* Setup all mapped, dirty buffers for async write i/o. */
816	do {
817		if (buffer_mapped(bh) && buffer_dirty(bh)) {
818			lock_buffer(bh);
819			if (test_clear_buffer_dirty(bh)) {
820				BUG_ON(!buffer_uptodate(bh));
821				mark_buffer_async_write(bh);
822			} else
823				unlock_buffer(bh);
824		} else if (unlikely(err)) {
825			/*
826			 * For the error case. The buffer may have been set
827			 * dirty during attachment to a dirty page.
828			 */
829			if (err != -ENOMEM)
830				clear_buffer_dirty(bh);
831		}
832	} while ((bh = bh->b_this_page) != head);
833
834	if (unlikely(err)) {
835		// TODO: Remove the -EOPNOTSUPP check later on...
836		if (unlikely(err == -EOPNOTSUPP))
837			err = 0;
838		else if (err == -ENOMEM) {
839			ntfs_warning(vol->sb, "Error allocating memory. "
840					"Redirtying page so we try again "
841					"later.");
842			/*
843			 * Put the page back on mapping->dirty_pages, but
844			 * leave its buffer's dirty state as-is.
845			 */
846			redirty_page_for_writepage(wbc, page);
847			err = 0;
848		} else
849			SetPageError(page);
850	}
851
852	BUG_ON(PageWriteback(page));
853	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
854
855	/* Submit the prepared buffers for i/o. */
856	need_end_writeback = true;
857	do {
858		struct buffer_head *next = bh->b_this_page;
859		if (buffer_async_write(bh)) {
860			submit_bh(WRITE, bh);
861			need_end_writeback = false;
862		}
863		bh = next;
864	} while (bh != head);
865	unlock_page(page);
866
867	/* If no i/o was started, need to end_page_writeback(). */
868	if (unlikely(need_end_writeback))
869		end_page_writeback(page);
870
871	ntfs_debug("Done.");
872	return err;
873}
874
875/**
876 * ntfs_write_mst_block - write a @page to the backing store
877 * @page:	page cache page to write out
878 * @wbc:	writeback control structure
879 *
880 * This function is for writing pages belonging to non-resident, mst protected
881 * attributes to their backing store.  The only supported attributes are index
882 * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
883 * supported for the index allocation case.
884 *
885 * The page must remain locked for the duration of the write because we apply
886 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
887 * page before undoing the fixups, any other user of the page will see the
888 * page contents as corrupt.
889 *
890 * We clear the page uptodate flag for the duration of the function to ensure
891 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
892 * are about to apply the mst fixups to.
893 *
894 * Return 0 on success and -errno on error.
895 *
896 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
897 * write_mft_record_nolock().
898 */
899static int ntfs_write_mst_block(struct page *page,
900		struct writeback_control *wbc)
901{
902	sector_t block, dblock, rec_block;
903	struct inode *vi = page->mapping->host;
904	ntfs_inode *ni = NTFS_I(vi);
905	ntfs_volume *vol = ni->vol;
906	u8 *kaddr;
907	unsigned int rec_size = ni->itype.index.block_size;
908	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
909	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
910	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
911	runlist_element *rl;
912	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
913	unsigned bh_size, rec_size_bits;
914	bool sync, is_mft, page_is_dirty, rec_is_dirty;
915	unsigned char bh_size_bits;
916
917	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
918			"0x%lx.", vi->i_ino, ni->type, page->index);
919	BUG_ON(!NInoNonResident(ni));
920	BUG_ON(!NInoMstProtected(ni));
921	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
922	/*
923	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
924	 * in its page cache were to be marked dirty.  However this should
925	 * never happen with the current driver and considering we do not
926	 * handle this case here we do want to BUG(), at least for now.
927	 */
928	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
929			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
930	bh_size = vol->sb->s_blocksize;
931	bh_size_bits = vol->sb->s_blocksize_bits;
932	max_bhs = PAGE_CACHE_SIZE / bh_size;
933	BUG_ON(!max_bhs);
934	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
935
936	/* Were we called for sync purposes? */
937	sync = (wbc->sync_mode == WB_SYNC_ALL);
938
939	/* Make sure we have mapped buffers. */
940	bh = head = page_buffers(page);
941	BUG_ON(!bh);
942
943	rec_size_bits = ni->itype.index.block_size_bits;
944	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
945	bhs_per_rec = rec_size >> bh_size_bits;
946	BUG_ON(!bhs_per_rec);
947
948	/* The first block in the page. */
949	rec_block = block = (sector_t)page->index <<
950			(PAGE_CACHE_SHIFT - bh_size_bits);
951
952	/* The first out of bounds block for the data size. */
953	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
954
955	rl = NULL;
956	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
957	page_is_dirty = rec_is_dirty = false;
958	rec_start_bh = NULL;
959	do {
960		bool is_retry = false;
961
962		if (likely(block < rec_block)) {
963			if (unlikely(block >= dblock)) {
964				clear_buffer_dirty(bh);
965				set_buffer_uptodate(bh);
966				continue;
967			}
968			/*
969			 * This block is not the first one in the record.  We
970			 * ignore the buffer's dirty state because we could
971			 * have raced with a parallel mark_ntfs_record_dirty().
972			 */
973			if (!rec_is_dirty)
974				continue;
975			if (unlikely(err2)) {
976				if (err2 != -ENOMEM)
977					clear_buffer_dirty(bh);
978				continue;
979			}
980		} else /* if (block == rec_block) */ {
981			BUG_ON(block > rec_block);
982			/* This block is the first one in the record. */
983			rec_block += bhs_per_rec;
984			err2 = 0;
985			if (unlikely(block >= dblock)) {
986				clear_buffer_dirty(bh);
987				continue;
988			}
989			if (!buffer_dirty(bh)) {
990				/* Clean records are not written out. */
991				rec_is_dirty = false;
992				continue;
993			}
994			rec_is_dirty = true;
995			rec_start_bh = bh;
996		}
997		/* Need to map the buffer if it is not mapped already. */
998		if (unlikely(!buffer_mapped(bh))) {
999			VCN vcn;
1000			LCN lcn;
1001			unsigned int vcn_ofs;
1002
1003			bh->b_bdev = vol->sb->s_bdev;
1004			/* Obtain the vcn and offset of the current block. */
1005			vcn = (VCN)block << bh_size_bits;
1006			vcn_ofs = vcn & vol->cluster_size_mask;
1007			vcn >>= vol->cluster_size_bits;
1008			if (!rl) {
1009lock_retry_remap:
1010				down_read(&ni->runlist.lock);
1011				rl = ni->runlist.rl;
1012			}
1013			if (likely(rl != NULL)) {
1014				/* Seek to element containing target vcn. */
1015				while (rl->length && rl[1].vcn <= vcn)
1016					rl++;
1017				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1018			} else
1019				lcn = LCN_RL_NOT_MAPPED;
1020			/* Successful remap. */
1021			if (likely(lcn >= 0)) {
1022				/* Setup buffer head to correct block. */
1023				bh->b_blocknr = ((lcn <<
1024						vol->cluster_size_bits) +
1025						vcn_ofs) >> bh_size_bits;
1026				set_buffer_mapped(bh);
1027			} else {
1028				/*
1029				 * Remap failed.  Retry to map the runlist once
1030				 * unless we are working on $MFT which always
1031				 * has the whole of its runlist in memory.
1032				 */
1033				if (!is_mft && !is_retry &&
1034						lcn == LCN_RL_NOT_MAPPED) {
1035					is_retry = true;
1036					/*
1037					 * Attempt to map runlist, dropping
1038					 * lock for the duration.
1039					 */
1040					up_read(&ni->runlist.lock);
1041					err2 = ntfs_map_runlist(ni, vcn);
1042					if (likely(!err2))
1043						goto lock_retry_remap;
1044					if (err2 == -ENOMEM)
1045						page_is_dirty = true;
1046					lcn = err2;
1047				} else {
1048					err2 = -EIO;
1049					if (!rl)
1050						up_read(&ni->runlist.lock);
1051				}
1052				/* Hard error.  Abort writing this record. */
1053				if (!err || err == -ENOMEM)
1054					err = err2;
1055				bh->b_blocknr = -1;
1056				ntfs_error(vol->sb, "Cannot write ntfs record "
1057						"0x%llx (inode 0x%lx, "
1058						"attribute type 0x%x) because "
1059						"its location on disk could "
1060						"not be determined (error "
1061						"code %lli).",
1062						(long long)block <<
1063						bh_size_bits >>
1064						vol->mft_record_size_bits,
1065						ni->mft_no, ni->type,
1066						(long long)lcn);
1067				/*
1068				 * If this is not the first buffer, remove the
1069				 * buffers in this record from the list of
1070				 * buffers to write and clear their dirty bit
1071				 * if not error -ENOMEM.
1072				 */
1073				if (rec_start_bh != bh) {
1074					while (bhs[--nr_bhs] != rec_start_bh)
1075						;
1076					if (err2 != -ENOMEM) {
1077						do {
1078							clear_buffer_dirty(
1079								rec_start_bh);
1080						} while ((rec_start_bh =
1081								rec_start_bh->
1082								b_this_page) !=
1083								bh);
1084					}
1085				}
1086				continue;
1087			}
1088		}
1089		BUG_ON(!buffer_uptodate(bh));
1090		BUG_ON(nr_bhs >= max_bhs);
1091		bhs[nr_bhs++] = bh;
1092	} while (block++, (bh = bh->b_this_page) != head);
1093	if (unlikely(rl))
1094		up_read(&ni->runlist.lock);
1095	/* If there were no dirty buffers, we are done. */
1096	if (!nr_bhs)
1097		goto done;
1098	/* Map the page so we can access its contents. */
1099	kaddr = kmap(page);
1100	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1101	BUG_ON(!PageUptodate(page));
1102	ClearPageUptodate(page);
1103	for (i = 0; i < nr_bhs; i++) {
1104		unsigned int ofs;
1105
1106		/* Skip buffers which are not at the beginning of records. */
1107		if (i % bhs_per_rec)
1108			continue;
1109		tbh = bhs[i];
1110		ofs = bh_offset(tbh);
1111		if (is_mft) {
1112			ntfs_inode *tni;
1113			unsigned long mft_no;
1114
1115			/* Get the mft record number. */
1116			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1117					>> rec_size_bits;
1118			/* Check whether to write this mft record. */
1119			tni = NULL;
1120			if (!ntfs_may_write_mft_record(vol, mft_no,
1121					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1122				/*
1123				 * The record should not be written.  This
1124				 * means we need to redirty the page before
1125				 * returning.
1126				 */
1127				page_is_dirty = true;
1128				/*
1129				 * Remove the buffers in this mft record from
1130				 * the list of buffers to write.
1131				 */
1132				do {
1133					bhs[i] = NULL;
1134				} while (++i % bhs_per_rec);
1135				continue;
1136			}
1137			/*
1138			 * The record should be written.  If a locked ntfs
1139			 * inode was returned, add it to the array of locked
1140			 * ntfs inodes.
1141			 */
1142			if (tni)
1143				locked_nis[nr_locked_nis++] = tni;
1144		}
1145		/* Apply the mst protection fixups. */
1146		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1147				rec_size);
1148		if (unlikely(err2)) {
1149			if (!err || err == -ENOMEM)
1150				err = -EIO;
1151			ntfs_error(vol->sb, "Failed to apply mst fixups "
1152					"(inode 0x%lx, attribute type 0x%x, "
1153					"page index 0x%lx, page offset 0x%x)!"
1154					"  Unmount and run chkdsk.", vi->i_ino,
1155					ni->type, page->index, ofs);
1156			/*
1157			 * Mark all the buffers in this record clean as we do
1158			 * not want to write corrupt data to disk.
1159			 */
1160			do {
1161				clear_buffer_dirty(bhs[i]);
1162				bhs[i] = NULL;
1163			} while (++i % bhs_per_rec);
1164			continue;
1165		}
1166		nr_recs++;
1167	}
1168	/* If no records are to be written out, we are done. */
1169	if (!nr_recs)
1170		goto unm_done;
1171	flush_dcache_page(page);
1172	/* Lock buffers and start synchronous write i/o on them. */
1173	for (i = 0; i < nr_bhs; i++) {
1174		tbh = bhs[i];
1175		if (!tbh)
1176			continue;
1177		if (!trylock_buffer(tbh))
1178			BUG();
1179		/* The buffer dirty state is now irrelevant, just clean it. */
1180		clear_buffer_dirty(tbh);
1181		BUG_ON(!buffer_uptodate(tbh));
1182		BUG_ON(!buffer_mapped(tbh));
1183		get_bh(tbh);
1184		tbh->b_end_io = end_buffer_write_sync;
1185		submit_bh(WRITE, tbh);
1186	}
1187	/* Synchronize the mft mirror now if not @sync. */
1188	if (is_mft && !sync)
1189		goto do_mirror;
1190do_wait:
1191	/* Wait on i/o completion of buffers. */
1192	for (i = 0; i < nr_bhs; i++) {
1193		tbh = bhs[i];
1194		if (!tbh)
1195			continue;
1196		wait_on_buffer(tbh);
1197		if (unlikely(!buffer_uptodate(tbh))) {
1198			ntfs_error(vol->sb, "I/O error while writing ntfs "
1199					"record buffer (inode 0x%lx, "
1200					"attribute type 0x%x, page index "
1201					"0x%lx, page offset 0x%lx)!  Unmount "
1202					"and run chkdsk.", vi->i_ino, ni->type,
1203					page->index, bh_offset(tbh));
1204			if (!err || err == -ENOMEM)
1205				err = -EIO;
1206			/*
1207			 * Set the buffer uptodate so the page and buffer
1208			 * states do not become out of sync.
1209			 */
1210			set_buffer_uptodate(tbh);
1211		}
1212	}
1213	/* If @sync, now synchronize the mft mirror. */
1214	if (is_mft && sync) {
1215do_mirror:
1216		for (i = 0; i < nr_bhs; i++) {
1217			unsigned long mft_no;
1218			unsigned int ofs;
1219
1220			/*
1221			 * Skip buffers which are not at the beginning of
1222			 * records.
1223			 */
1224			if (i % bhs_per_rec)
1225				continue;
1226			tbh = bhs[i];
1227			/* Skip removed buffers (and hence records). */
1228			if (!tbh)
1229				continue;
1230			ofs = bh_offset(tbh);
1231			/* Get the mft record number. */
1232			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1233					>> rec_size_bits;
1234			if (mft_no < vol->mftmirr_size)
1235				ntfs_sync_mft_mirror(vol, mft_no,
1236						(MFT_RECORD*)(kaddr + ofs),
1237						sync);
1238		}
1239		if (!sync)
1240			goto do_wait;
1241	}
1242	/* Remove the mst protection fixups again. */
1243	for (i = 0; i < nr_bhs; i++) {
1244		if (!(i % bhs_per_rec)) {
1245			tbh = bhs[i];
1246			if (!tbh)
1247				continue;
1248			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1249					bh_offset(tbh)));
1250		}
1251	}
1252	flush_dcache_page(page);
1253unm_done:
1254	/* Unlock any locked inodes. */
1255	while (nr_locked_nis-- > 0) {
1256		ntfs_inode *tni, *base_tni;
1257
1258		tni = locked_nis[nr_locked_nis];
1259		/* Get the base inode. */
1260		mutex_lock(&tni->extent_lock);
1261		if (tni->nr_extents >= 0)
1262			base_tni = tni;
1263		else {
1264			base_tni = tni->ext.base_ntfs_ino;
1265			BUG_ON(!base_tni);
1266		}
1267		mutex_unlock(&tni->extent_lock);
1268		ntfs_debug("Unlocking %s inode 0x%lx.",
1269				tni == base_tni ? "base" : "extent",
1270				tni->mft_no);
1271		mutex_unlock(&tni->mrec_lock);
1272		atomic_dec(&tni->count);
1273		iput(VFS_I(base_tni));
1274	}
1275	SetPageUptodate(page);
1276	kunmap(page);
1277done:
1278	if (unlikely(err && err != -ENOMEM)) {
1279		/*
1280		 * Set page error if there is only one ntfs record in the page.
1281		 * Otherwise we would loose per-record granularity.
1282		 */
1283		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1284			SetPageError(page);
1285		NVolSetErrors(vol);
1286	}
1287	if (page_is_dirty) {
1288		ntfs_debug("Page still contains one or more dirty ntfs "
1289				"records.  Redirtying the page starting at "
1290				"record 0x%lx.", page->index <<
1291				(PAGE_CACHE_SHIFT - rec_size_bits));
1292		redirty_page_for_writepage(wbc, page);
1293		unlock_page(page);
1294	} else {
1295		/*
1296		 * Keep the VM happy.  This must be done otherwise the
1297		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1298		 * the page is clean.
1299		 */
1300		BUG_ON(PageWriteback(page));
1301		set_page_writeback(page);
1302		unlock_page(page);
1303		end_page_writeback(page);
1304	}
1305	if (likely(!err))
1306		ntfs_debug("Done.");
1307	return err;
1308}
1309
1310/**
1311 * ntfs_writepage - write a @page to the backing store
1312 * @page:	page cache page to write out
1313 * @wbc:	writeback control structure
1314 *
1315 * This is called from the VM when it wants to have a dirty ntfs page cache
1316 * page cleaned.  The VM has already locked the page and marked it clean.
1317 *
1318 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1319 * the ntfs version of the generic block_write_full_page() function,
1320 * ntfs_write_block(), which in turn if necessary creates and writes the
1321 * buffers associated with the page asynchronously.
1322 *
1323 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1324 * the data to the mft record (which at this stage is most likely in memory).
1325 * The mft record is then marked dirty and written out asynchronously via the
1326 * vfs inode dirty code path for the inode the mft record belongs to or via the
1327 * vm page dirty code path for the page the mft record is in.
1328 *
1329 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1330 *
1331 * Return 0 on success and -errno on error.
1332 */
1333static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335	loff_t i_size;
1336	struct inode *vi = page->mapping->host;
1337	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1338	char *addr;
1339	ntfs_attr_search_ctx *ctx = NULL;
1340	MFT_RECORD *m = NULL;
1341	u32 attr_len;
1342	int err;
1343
1344retry_writepage:
1345	BUG_ON(!PageLocked(page));
1346	i_size = i_size_read(vi);
1347	/* Is the page fully outside i_size? (truncate in progress) */
1348	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1349			PAGE_CACHE_SHIFT)) {
1350		/*
1351		 * The page may have dirty, unmapped buffers.  Make them
1352		 * freeable here, so the page does not leak.
1353		 */
1354		block_invalidatepage(page, 0);
1355		unlock_page(page);
1356		ntfs_debug("Write outside i_size - truncated?");
1357		return 0;
1358	}
1359	/*
1360	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1361	 * attributes can be compressed.  Index root can have the flags set but
1362	 * this means to create compressed/encrypted files, not that the
1363	 * attribute is compressed/encrypted.  Note we need to check for
1364	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1365	 * index inodes.
1366	 */
1367	if (ni->type != AT_INDEX_ALLOCATION) {
1368		/* If file is encrypted, deny access, just like NT4. */
1369		if (NInoEncrypted(ni)) {
1370			unlock_page(page);
1371			BUG_ON(ni->type != AT_DATA);
1372			ntfs_debug("Denying write access to encrypted file.");
1373			return -EACCES;
1374		}
1375		/* Compressed data streams are handled in compress.c. */
1376		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1377			BUG_ON(ni->type != AT_DATA);
1378			BUG_ON(ni->name_len);
1379			// TODO: Implement and replace this with
1380			// return ntfs_write_compressed_block(page);
1381			unlock_page(page);
1382			ntfs_error(vi->i_sb, "Writing to compressed files is "
1383					"not supported yet.  Sorry.");
1384			return -EOPNOTSUPP;
1385		}
1386		// TODO: Implement and remove this check.
1387		if (NInoNonResident(ni) && NInoSparse(ni)) {
1388			unlock_page(page);
1389			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1390					"supported yet.  Sorry.");
1391			return -EOPNOTSUPP;
1392		}
1393	}
1394	/* NInoNonResident() == NInoIndexAllocPresent() */
1395	if (NInoNonResident(ni)) {
1396		/* We have to zero every time due to mmap-at-end-of-file. */
1397		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1398			/* The page straddles i_size. */
1399			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1400			zero_user_segment(page, ofs, PAGE_CACHE_SIZE);
1401		}
1402		/* Handle mst protected attributes. */
1403		if (NInoMstProtected(ni))
1404			return ntfs_write_mst_block(page, wbc);
1405		/* Normal, non-resident data stream. */
1406		return ntfs_write_block(page, wbc);
1407	}
1408	/*
1409	 * Attribute is resident, implying it is not compressed, encrypted, or
1410	 * mst protected.  This also means the attribute is smaller than an mft
1411	 * record and hence smaller than a page, so can simply return error on
1412	 * any pages with index above 0.  Note the attribute can actually be
1413	 * marked compressed but if it is resident the actual data is not
1414	 * compressed so we are ok to ignore the compressed flag here.
1415	 */
1416	BUG_ON(page_has_buffers(page));
1417	BUG_ON(!PageUptodate(page));
1418	if (unlikely(page->index > 0)) {
1419		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1420				"Aborting write.", page->index);
1421		BUG_ON(PageWriteback(page));
1422		set_page_writeback(page);
1423		unlock_page(page);
1424		end_page_writeback(page);
1425		return -EIO;
1426	}
1427	if (!NInoAttr(ni))
1428		base_ni = ni;
1429	else
1430		base_ni = ni->ext.base_ntfs_ino;
1431	/* Map, pin, and lock the mft record. */
1432	m = map_mft_record(base_ni);
1433	if (IS_ERR(m)) {
1434		err = PTR_ERR(m);
1435		m = NULL;
1436		ctx = NULL;
1437		goto err_out;
1438	}
1439	/*
1440	 * If a parallel write made the attribute non-resident, drop the mft
1441	 * record and retry the writepage.
1442	 */
1443	if (unlikely(NInoNonResident(ni))) {
1444		unmap_mft_record(base_ni);
1445		goto retry_writepage;
1446	}
1447	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1448	if (unlikely(!ctx)) {
1449		err = -ENOMEM;
1450		goto err_out;
1451	}
1452	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1453			CASE_SENSITIVE, 0, NULL, 0, ctx);
1454	if (unlikely(err))
1455		goto err_out;
1456	/*
1457	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1458	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1459	 */
1460	BUG_ON(PageWriteback(page));
1461	set_page_writeback(page);
1462	unlock_page(page);
1463	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1464	i_size = i_size_read(vi);
1465	if (unlikely(attr_len > i_size)) {
1466		/* Race with shrinking truncate or a failed truncate. */
1467		attr_len = i_size;
1468		/*
1469		 * If the truncate failed, fix it up now.  If a concurrent
1470		 * truncate, we do its job, so it does not have to do anything.
1471		 */
1472		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1473				attr_len);
1474		/* Shrinking cannot fail. */
1475		BUG_ON(err);
1476	}
1477	addr = kmap_atomic(page, KM_USER0);
1478	/* Copy the data from the page to the mft record. */
1479	memcpy((u8*)ctx->attr +
1480			le16_to_cpu(ctx->attr->data.resident.value_offset),
1481			addr, attr_len);
1482	/* Zero out of bounds area in the page cache page. */
1483	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1484	kunmap_atomic(addr, KM_USER0);
1485	flush_dcache_page(page);
1486	flush_dcache_mft_record_page(ctx->ntfs_ino);
1487	/* We are done with the page. */
1488	end_page_writeback(page);
1489	/* Finally, mark the mft record dirty, so it gets written back. */
1490	mark_mft_record_dirty(ctx->ntfs_ino);
1491	ntfs_attr_put_search_ctx(ctx);
1492	unmap_mft_record(base_ni);
1493	return 0;
1494err_out:
1495	if (err == -ENOMEM) {
1496		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1497				"page so we try again later.");
1498		/*
1499		 * Put the page back on mapping->dirty_pages, but leave its
1500		 * buffers' dirty state as-is.
1501		 */
1502		redirty_page_for_writepage(wbc, page);
1503		err = 0;
1504	} else {
1505		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1506				"error %i.", err);
1507		SetPageError(page);
1508		NVolSetErrors(ni->vol);
1509	}
1510	unlock_page(page);
1511	if (ctx)
1512		ntfs_attr_put_search_ctx(ctx);
1513	if (m)
1514		unmap_mft_record(base_ni);
1515	return err;
1516}
1517
1518#endif	/* NTFS_RW */
1519
1520/**
1521 * ntfs_aops - general address space operations for inodes and attributes
1522 */
1523const struct address_space_operations ntfs_aops = {
1524	.readpage	= ntfs_readpage,	/* Fill page with data. */
1525	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1526						   disk request queue. */
1527#ifdef NTFS_RW
1528	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1529#endif /* NTFS_RW */
1530	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1531						   one physical page to an
1532						   other. */
1533	.error_remove_page = generic_error_remove_page,
1534};
1535
1536/**
1537 * ntfs_mst_aops - general address space operations for mst protecteed inodes
1538 *		   and attributes
1539 */
1540const struct address_space_operations ntfs_mst_aops = {
1541	.readpage	= ntfs_readpage,	/* Fill page with data. */
1542	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1543						   disk request queue. */
1544#ifdef NTFS_RW
1545	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1546	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1547						   without touching the buffers
1548						   belonging to the page. */
1549#endif /* NTFS_RW */
1550	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1551						   one physical page to an
1552						   other. */
1553	.error_remove_page = generic_error_remove_page,
1554};
1555
1556#ifdef NTFS_RW
1557
1558/**
1559 * mark_ntfs_record_dirty - mark an ntfs record dirty
1560 * @page:	page containing the ntfs record to mark dirty
1561 * @ofs:	byte offset within @page at which the ntfs record begins
1562 *
1563 * Set the buffers and the page in which the ntfs record is located dirty.
1564 *
1565 * The latter also marks the vfs inode the ntfs record belongs to dirty
1566 * (I_DIRTY_PAGES only).
1567 *
1568 * If the page does not have buffers, we create them and set them uptodate.
1569 * The page may not be locked which is why we need to handle the buffers under
1570 * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1571 * need the lock since try_to_free_buffers() does not free dirty buffers.
1572 */
1573void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1574	struct address_space *mapping = page->mapping;
1575	ntfs_inode *ni = NTFS_I(mapping->host);
1576	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1577	unsigned int end, bh_size, bh_ofs;
1578
1579	BUG_ON(!PageUptodate(page));
1580	end = ofs + ni->itype.index.block_size;
1581	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1582	spin_lock(&mapping->private_lock);
1583	if (unlikely(!page_has_buffers(page))) {
1584		spin_unlock(&mapping->private_lock);
1585		bh = head = alloc_page_buffers(page, bh_size, 1);
1586		spin_lock(&mapping->private_lock);
1587		if (likely(!page_has_buffers(page))) {
1588			struct buffer_head *tail;
1589
1590			do {
1591				set_buffer_uptodate(bh);
1592				tail = bh;
1593				bh = bh->b_this_page;
1594			} while (bh);
1595			tail->b_this_page = head;
1596			attach_page_buffers(page, head);
1597		} else
1598			buffers_to_free = bh;
1599	}
1600	bh = head = page_buffers(page);
1601	BUG_ON(!bh);
1602	do {
1603		bh_ofs = bh_offset(bh);
1604		if (bh_ofs + bh_size <= ofs)
1605			continue;
1606		if (unlikely(bh_ofs >= end))
1607			break;
1608		set_buffer_dirty(bh);
1609	} while ((bh = bh->b_this_page) != head);
1610	spin_unlock(&mapping->private_lock);
1611	__set_page_dirty_nobuffers(page);
1612	if (unlikely(buffers_to_free)) {
1613		do {
1614			bh = buffers_to_free->b_this_page;
1615			free_buffer_head(buffers_to_free);
1616			buffers_to_free = bh;
1617		} while (buffers_to_free);
1618	}
1619}
1620
1621#endif /* NTFS_RW */
1622