• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/fs/ecryptfs/
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 *   		Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37#include <asm/unaligned.h>
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42			     struct page *dst_page, int dst_offset,
43			     struct page *src_page, int src_offset, int size,
44			     unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47			     struct page *dst_page, int dst_offset,
48			     struct page *src_page, int src_offset, int size,
49			     unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 *       src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60	int x;
61
62	for (x = 0; x < src_size; x++)
63		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 *       size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75	int x;
76	char tmp[3] = { 0, };
77
78	for (x = 0; x < dst_size; x++) {
79		tmp[0] = src[x * 2];
80		tmp[1] = src[x * 2 + 1];
81		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82	}
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96				  struct ecryptfs_crypt_stat *crypt_stat,
97				  char *src, int len)
98{
99	struct scatterlist sg;
100	struct hash_desc desc = {
101		.tfm = crypt_stat->hash_tfm,
102		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103	};
104	int rc = 0;
105
106	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107	sg_init_one(&sg, (u8 *)src, len);
108	if (!desc.tfm) {
109		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110					     CRYPTO_ALG_ASYNC);
111		if (IS_ERR(desc.tfm)) {
112			rc = PTR_ERR(desc.tfm);
113			ecryptfs_printk(KERN_ERR, "Error attempting to "
114					"allocate crypto context; rc = [%d]\n",
115					rc);
116			goto out;
117		}
118		crypt_stat->hash_tfm = desc.tfm;
119	}
120	rc = crypto_hash_init(&desc);
121	if (rc) {
122		printk(KERN_ERR
123		       "%s: Error initializing crypto hash; rc = [%d]\n",
124		       __func__, rc);
125		goto out;
126	}
127	rc = crypto_hash_update(&desc, &sg, len);
128	if (rc) {
129		printk(KERN_ERR
130		       "%s: Error updating crypto hash; rc = [%d]\n",
131		       __func__, rc);
132		goto out;
133	}
134	rc = crypto_hash_final(&desc, dst);
135	if (rc) {
136		printk(KERN_ERR
137		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138		       __func__, rc);
139		goto out;
140	}
141out:
142	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143	return rc;
144}
145
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147						  char *cipher_name,
148						  char *chaining_modifier)
149{
150	int cipher_name_len = strlen(cipher_name);
151	int chaining_modifier_len = strlen(chaining_modifier);
152	int algified_name_len;
153	int rc;
154
155	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157	if (!(*algified_name)) {
158		rc = -ENOMEM;
159		goto out;
160	}
161	snprintf((*algified_name), algified_name_len, "%s(%s)",
162		 chaining_modifier, cipher_name);
163	rc = 0;
164out:
165	return rc;
166}
167
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180		       loff_t offset)
181{
182	int rc = 0;
183	char dst[MD5_DIGEST_SIZE];
184	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186	if (unlikely(ecryptfs_verbosity > 0)) {
187		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189	}
190	/* TODO: It is probably secure to just cast the least
191	 * significant bits of the root IV into an unsigned long and
192	 * add the offset to that rather than go through all this
193	 * hashing business. -Halcrow */
194	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195	memset((src + crypt_stat->iv_bytes), 0, 16);
196	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197	if (unlikely(ecryptfs_verbosity > 0)) {
198		ecryptfs_printk(KERN_DEBUG, "source:\n");
199		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200	}
201	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202				    (crypt_stat->iv_bytes + 16));
203	if (rc) {
204		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205				"MD5 while generating IV for a page\n");
206		goto out;
207	}
208	memcpy(iv, dst, crypt_stat->iv_bytes);
209	if (unlikely(ecryptfs_verbosity > 0)) {
210		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212	}
213out:
214	return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228	mutex_init(&crypt_stat->keysig_list_mutex);
229	mutex_init(&crypt_stat->cs_mutex);
230	mutex_init(&crypt_stat->cs_tfm_mutex);
231	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233}
234
235/**
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242{
243	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
245	if (crypt_stat->tfm)
246		crypto_free_blkcipher(crypt_stat->tfm);
247	if (crypt_stat->hash_tfm)
248		crypto_free_hash(crypt_stat->hash_tfm);
249	list_for_each_entry_safe(key_sig, key_sig_tmp,
250				 &crypt_stat->keysig_list, crypt_stat_list) {
251		list_del(&key_sig->crypt_stat_list);
252		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253	}
254	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
257void ecryptfs_destroy_mount_crypt_stat(
258	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
260	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263		return;
264	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266				 &mount_crypt_stat->global_auth_tok_list,
267				 mount_crypt_stat_list) {
268		list_del(&auth_tok->mount_crypt_stat_list);
269		mount_crypt_stat->num_global_auth_toks--;
270		if (auth_tok->global_auth_tok_key
271		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272			key_put(auth_tok->global_auth_tok_key);
273		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274	}
275	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277}
278
279/**
280 * virt_to_scatterlist
281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 *      the number of scatterlist structs required in array
285 * @sg_size: Max array size
286 *
287 * Fills in a scatterlist array with page references for a passed
288 * virtual address.
289 *
290 * Returns the number of scatterlist structs in array used
291 */
292int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293			int sg_size)
294{
295	int i = 0;
296	struct page *pg;
297	int offset;
298	int remainder_of_page;
299
300	sg_init_table(sg, sg_size);
301
302	while (size > 0 && i < sg_size) {
303		pg = virt_to_page(addr);
304		offset = offset_in_page(addr);
305		if (sg)
306			sg_set_page(&sg[i], pg, 0, offset);
307		remainder_of_page = PAGE_CACHE_SIZE - offset;
308		if (size >= remainder_of_page) {
309			if (sg)
310				sg[i].length = remainder_of_page;
311			addr += remainder_of_page;
312			size -= remainder_of_page;
313		} else {
314			if (sg)
315				sg[i].length = size;
316			addr += size;
317			size = 0;
318		}
319		i++;
320	}
321	if (size > 0)
322		return -ENOMEM;
323	return i;
324}
325
326/**
327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption
333 *
334 * Returns the number of bytes encrypted; negative value on error
335 */
336static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337			       struct scatterlist *dest_sg,
338			       struct scatterlist *src_sg, int size,
339			       unsigned char *iv)
340{
341	struct blkcipher_desc desc = {
342		.tfm = crypt_stat->tfm,
343		.info = iv,
344		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
345	};
346	int rc = 0;
347
348	BUG_ON(!crypt_stat || !crypt_stat->tfm
349	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350	if (unlikely(ecryptfs_verbosity > 0)) {
351		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352				crypt_stat->key_size);
353		ecryptfs_dump_hex(crypt_stat->key,
354				  crypt_stat->key_size);
355	}
356	/* Consider doing this once, when the file is opened */
357	mutex_lock(&crypt_stat->cs_tfm_mutex);
358	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360					     crypt_stat->key_size);
361		crypt_stat->flags |= ECRYPTFS_KEY_SET;
362	}
363	if (rc) {
364		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365				rc);
366		mutex_unlock(&crypt_stat->cs_tfm_mutex);
367		rc = -EINVAL;
368		goto out;
369	}
370	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372	mutex_unlock(&crypt_stat->cs_tfm_mutex);
373out:
374	return rc;
375}
376
377/**
378 * ecryptfs_lower_offset_for_extent
379 *
380 * Convert an eCryptfs page index into a lower byte offset
381 */
382static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383					     struct ecryptfs_crypt_stat *crypt_stat)
384{
385	(*offset) = ecryptfs_lower_header_size(crypt_stat)
386		    + (crypt_stat->extent_size * extent_num);
387}
388
389/**
390 * ecryptfs_encrypt_extent
391 * @enc_extent_page: Allocated page into which to encrypt the data in
392 *                   @page
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 *              encryption operation
395 * @page: Page containing plaintext data extent to encrypt
396 * @extent_offset: Page extent offset for use in generating IV
397 *
398 * Encrypts one extent of data.
399 *
400 * Return zero on success; non-zero otherwise
401 */
402static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403				   struct ecryptfs_crypt_stat *crypt_stat,
404				   struct page *page,
405				   unsigned long extent_offset)
406{
407	loff_t extent_base;
408	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409	int rc;
410
411	extent_base = (((loff_t)page->index)
412		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414				(extent_base + extent_offset));
415	if (rc) {
416		ecryptfs_printk(KERN_ERR, "Error attempting to "
417				"derive IV for extent [0x%.16x]; "
418				"rc = [%d]\n", (extent_base + extent_offset),
419				rc);
420		goto out;
421	}
422	if (unlikely(ecryptfs_verbosity > 0)) {
423		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
424				"with iv:\n");
425		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
426		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
427				"encryption:\n");
428		ecryptfs_dump_hex((char *)
429				  (page_address(page)
430				   + (extent_offset * crypt_stat->extent_size)),
431				  8);
432	}
433	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
434					  page, (extent_offset
435						 * crypt_stat->extent_size),
436					  crypt_stat->extent_size, extent_iv);
437	if (rc < 0) {
438		printk(KERN_ERR "%s: Error attempting to encrypt page with "
439		       "page->index = [%ld], extent_offset = [%ld]; "
440		       "rc = [%d]\n", __func__, page->index, extent_offset,
441		       rc);
442		goto out;
443	}
444	rc = 0;
445	if (unlikely(ecryptfs_verbosity > 0)) {
446		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
447				"rc = [%d]\n", (extent_base + extent_offset),
448				rc);
449		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
450				"encryption:\n");
451		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
452	}
453out:
454	return rc;
455}
456
457/**
458 * ecryptfs_encrypt_page
459 * @page: Page mapped from the eCryptfs inode for the file; contains
460 *        decrypted content that needs to be encrypted (to a temporary
461 *        page; not in place) and written out to the lower file
462 *
463 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
464 * that eCryptfs pages may straddle the lower pages -- for instance,
465 * if the file was created on a machine with an 8K page size
466 * (resulting in an 8K header), and then the file is copied onto a
467 * host with a 32K page size, then when reading page 0 of the eCryptfs
468 * file, 24K of page 0 of the lower file will be read and decrypted,
469 * and then 8K of page 1 of the lower file will be read and decrypted.
470 *
471 * Returns zero on success; negative on error
472 */
473int ecryptfs_encrypt_page(struct page *page)
474{
475	struct inode *ecryptfs_inode;
476	struct ecryptfs_crypt_stat *crypt_stat;
477	char *enc_extent_virt;
478	struct page *enc_extent_page = NULL;
479	loff_t extent_offset;
480	int rc = 0;
481
482	ecryptfs_inode = page->mapping->host;
483	crypt_stat =
484		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
485	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
486	enc_extent_page = alloc_page(GFP_USER);
487	if (!enc_extent_page) {
488		rc = -ENOMEM;
489		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
490				"encrypted extent\n");
491		goto out;
492	}
493	enc_extent_virt = kmap(enc_extent_page);
494	for (extent_offset = 0;
495	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
496	     extent_offset++) {
497		loff_t offset;
498
499		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
500					     extent_offset);
501		if (rc) {
502			printk(KERN_ERR "%s: Error encrypting extent; "
503			       "rc = [%d]\n", __func__, rc);
504			goto out;
505		}
506		ecryptfs_lower_offset_for_extent(
507			&offset, ((((loff_t)page->index)
508				   * (PAGE_CACHE_SIZE
509				      / crypt_stat->extent_size))
510				  + extent_offset), crypt_stat);
511		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
512					  offset, crypt_stat->extent_size);
513		if (rc < 0) {
514			ecryptfs_printk(KERN_ERR, "Error attempting "
515					"to write lower page; rc = [%d]"
516					"\n", rc);
517			goto out;
518		}
519	}
520	rc = 0;
521out:
522	if (enc_extent_page) {
523		kunmap(enc_extent_page);
524		__free_page(enc_extent_page);
525	}
526	return rc;
527}
528
529static int ecryptfs_decrypt_extent(struct page *page,
530				   struct ecryptfs_crypt_stat *crypt_stat,
531				   struct page *enc_extent_page,
532				   unsigned long extent_offset)
533{
534	loff_t extent_base;
535	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536	int rc;
537
538	extent_base = (((loff_t)page->index)
539		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541				(extent_base + extent_offset));
542	if (rc) {
543		ecryptfs_printk(KERN_ERR, "Error attempting to "
544				"derive IV for extent [0x%.16x]; "
545				"rc = [%d]\n", (extent_base + extent_offset),
546				rc);
547		goto out;
548	}
549	if (unlikely(ecryptfs_verbosity > 0)) {
550		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551				"with iv:\n");
552		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554				"decryption:\n");
555		ecryptfs_dump_hex((char *)
556				  (page_address(enc_extent_page)
557				   + (extent_offset * crypt_stat->extent_size)),
558				  8);
559	}
560	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561					  (extent_offset
562					   * crypt_stat->extent_size),
563					  enc_extent_page, 0,
564					  crypt_stat->extent_size, extent_iv);
565	if (rc < 0) {
566		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567		       "page->index = [%ld], extent_offset = [%ld]; "
568		       "rc = [%d]\n", __func__, page->index, extent_offset,
569		       rc);
570		goto out;
571	}
572	rc = 0;
573	if (unlikely(ecryptfs_verbosity > 0)) {
574		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575				"rc = [%d]\n", (extent_base + extent_offset),
576				rc);
577		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578				"decryption:\n");
579		ecryptfs_dump_hex((char *)(page_address(page)
580					   + (extent_offset
581					      * crypt_stat->extent_size)), 8);
582	}
583out:
584	return rc;
585}
586
587/**
588 * ecryptfs_decrypt_page
589 * @page: Page mapped from the eCryptfs inode for the file; data read
590 *        and decrypted from the lower file will be written into this
591 *        page
592 *
593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594 * that eCryptfs pages may straddle the lower pages -- for instance,
595 * if the file was created on a machine with an 8K page size
596 * (resulting in an 8K header), and then the file is copied onto a
597 * host with a 32K page size, then when reading page 0 of the eCryptfs
598 * file, 24K of page 0 of the lower file will be read and decrypted,
599 * and then 8K of page 1 of the lower file will be read and decrypted.
600 *
601 * Returns zero on success; negative on error
602 */
603int ecryptfs_decrypt_page(struct page *page)
604{
605	struct inode *ecryptfs_inode;
606	struct ecryptfs_crypt_stat *crypt_stat;
607	char *enc_extent_virt;
608	struct page *enc_extent_page = NULL;
609	unsigned long extent_offset;
610	int rc = 0;
611
612	ecryptfs_inode = page->mapping->host;
613	crypt_stat =
614		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616	enc_extent_page = alloc_page(GFP_USER);
617	if (!enc_extent_page) {
618		rc = -ENOMEM;
619		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620				"encrypted extent\n");
621		goto out;
622	}
623	enc_extent_virt = kmap(enc_extent_page);
624	for (extent_offset = 0;
625	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626	     extent_offset++) {
627		loff_t offset;
628
629		ecryptfs_lower_offset_for_extent(
630			&offset, ((page->index * (PAGE_CACHE_SIZE
631						  / crypt_stat->extent_size))
632				  + extent_offset), crypt_stat);
633		rc = ecryptfs_read_lower(enc_extent_virt, offset,
634					 crypt_stat->extent_size,
635					 ecryptfs_inode);
636		if (rc < 0) {
637			ecryptfs_printk(KERN_ERR, "Error attempting "
638					"to read lower page; rc = [%d]"
639					"\n", rc);
640			goto out;
641		}
642		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643					     extent_offset);
644		if (rc) {
645			printk(KERN_ERR "%s: Error encrypting extent; "
646			       "rc = [%d]\n", __func__, rc);
647			goto out;
648		}
649	}
650out:
651	if (enc_extent_page) {
652		kunmap(enc_extent_page);
653		__free_page(enc_extent_page);
654	}
655	return rc;
656}
657
658/**
659 * decrypt_scatterlist
660 * @crypt_stat: Cryptographic context
661 * @dest_sg: The destination scatterlist to decrypt into
662 * @src_sg: The source scatterlist to decrypt from
663 * @size: The number of bytes to decrypt
664 * @iv: The initialization vector to use for the decryption
665 *
666 * Returns the number of bytes decrypted; negative value on error
667 */
668static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669			       struct scatterlist *dest_sg,
670			       struct scatterlist *src_sg, int size,
671			       unsigned char *iv)
672{
673	struct blkcipher_desc desc = {
674		.tfm = crypt_stat->tfm,
675		.info = iv,
676		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
677	};
678	int rc = 0;
679
680	/* Consider doing this once, when the file is opened */
681	mutex_lock(&crypt_stat->cs_tfm_mutex);
682	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683				     crypt_stat->key_size);
684	if (rc) {
685		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686				rc);
687		mutex_unlock(&crypt_stat->cs_tfm_mutex);
688		rc = -EINVAL;
689		goto out;
690	}
691	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693	mutex_unlock(&crypt_stat->cs_tfm_mutex);
694	if (rc) {
695		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696				rc);
697		goto out;
698	}
699	rc = size;
700out:
701	return rc;
702}
703
704/**
705 * ecryptfs_encrypt_page_offset
706 * @crypt_stat: The cryptographic context
707 * @dst_page: The page to encrypt into
708 * @dst_offset: The offset in the page to encrypt into
709 * @src_page: The page to encrypt from
710 * @src_offset: The offset in the page to encrypt from
711 * @size: The number of bytes to encrypt
712 * @iv: The initialization vector to use for the encryption
713 *
714 * Returns the number of bytes encrypted
715 */
716static int
717ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718			     struct page *dst_page, int dst_offset,
719			     struct page *src_page, int src_offset, int size,
720			     unsigned char *iv)
721{
722	struct scatterlist src_sg, dst_sg;
723
724	sg_init_table(&src_sg, 1);
725	sg_init_table(&dst_sg, 1);
726
727	sg_set_page(&src_sg, src_page, size, src_offset);
728	sg_set_page(&dst_sg, dst_page, size, dst_offset);
729	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
730}
731
732/**
733 * ecryptfs_decrypt_page_offset
734 * @crypt_stat: The cryptographic context
735 * @dst_page: The page to decrypt into
736 * @dst_offset: The offset in the page to decrypt into
737 * @src_page: The page to decrypt from
738 * @src_offset: The offset in the page to decrypt from
739 * @size: The number of bytes to decrypt
740 * @iv: The initialization vector to use for the decryption
741 *
742 * Returns the number of bytes decrypted
743 */
744static int
745ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746			     struct page *dst_page, int dst_offset,
747			     struct page *src_page, int src_offset, int size,
748			     unsigned char *iv)
749{
750	struct scatterlist src_sg, dst_sg;
751
752	sg_init_table(&src_sg, 1);
753	sg_set_page(&src_sg, src_page, size, src_offset);
754
755	sg_init_table(&dst_sg, 1);
756	sg_set_page(&dst_sg, dst_page, size, dst_offset);
757
758	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
759}
760
761#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
762
763/**
764 * ecryptfs_init_crypt_ctx
765 * @crypt_stat: Uninitialized crypt stats structure
766 *
767 * Initialize the crypto context.
768 *
769 * TODO: Performance: Keep a cache of initialized cipher contexts;
770 * only init if needed
771 */
772int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
773{
774	char *full_alg_name;
775	int rc = -EINVAL;
776
777	if (!crypt_stat->cipher) {
778		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779		goto out;
780	}
781	ecryptfs_printk(KERN_DEBUG,
782			"Initializing cipher [%s]; strlen = [%d]; "
783			"key_size_bits = [%d]\n",
784			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785			crypt_stat->key_size << 3);
786	if (crypt_stat->tfm) {
787		rc = 0;
788		goto out;
789	}
790	mutex_lock(&crypt_stat->cs_tfm_mutex);
791	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792						    crypt_stat->cipher, "cbc");
793	if (rc)
794		goto out_unlock;
795	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796						 CRYPTO_ALG_ASYNC);
797	kfree(full_alg_name);
798	if (IS_ERR(crypt_stat->tfm)) {
799		rc = PTR_ERR(crypt_stat->tfm);
800		crypt_stat->tfm = NULL;
801		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
802				"Error initializing cipher [%s]\n",
803				crypt_stat->cipher);
804		goto out_unlock;
805	}
806	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
807	rc = 0;
808out_unlock:
809	mutex_unlock(&crypt_stat->cs_tfm_mutex);
810out:
811	return rc;
812}
813
814static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
815{
816	int extent_size_tmp;
817
818	crypt_stat->extent_mask = 0xFFFFFFFF;
819	crypt_stat->extent_shift = 0;
820	if (crypt_stat->extent_size == 0)
821		return;
822	extent_size_tmp = crypt_stat->extent_size;
823	while ((extent_size_tmp & 0x01) == 0) {
824		extent_size_tmp >>= 1;
825		crypt_stat->extent_mask <<= 1;
826		crypt_stat->extent_shift++;
827	}
828}
829
830void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
831{
832	/* Default values; may be overwritten as we are parsing the
833	 * packets. */
834	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
835	set_extent_mask_and_shift(crypt_stat);
836	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
837	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
838		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
839	else {
840		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
841			crypt_stat->metadata_size =
842				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
843		else
844			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
845	}
846}
847
848/**
849 * ecryptfs_compute_root_iv
850 * @crypt_stats
851 *
852 * On error, sets the root IV to all 0's.
853 */
854int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
855{
856	int rc = 0;
857	char dst[MD5_DIGEST_SIZE];
858
859	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
860	BUG_ON(crypt_stat->iv_bytes <= 0);
861	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
862		rc = -EINVAL;
863		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
864				"cannot generate root IV\n");
865		goto out;
866	}
867	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
868				    crypt_stat->key_size);
869	if (rc) {
870		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
871				"MD5 while generating root IV\n");
872		goto out;
873	}
874	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
875out:
876	if (rc) {
877		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
878		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
879	}
880	return rc;
881}
882
883static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
884{
885	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
886	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
887	ecryptfs_compute_root_iv(crypt_stat);
888	if (unlikely(ecryptfs_verbosity > 0)) {
889		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
890		ecryptfs_dump_hex(crypt_stat->key,
891				  crypt_stat->key_size);
892	}
893}
894
895/**
896 * ecryptfs_copy_mount_wide_flags_to_inode_flags
897 * @crypt_stat: The inode's cryptographic context
898 * @mount_crypt_stat: The mount point's cryptographic context
899 *
900 * This function propagates the mount-wide flags to individual inode
901 * flags.
902 */
903static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904	struct ecryptfs_crypt_stat *crypt_stat,
905	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
906{
907	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
908		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
909	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
910		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
911	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
912		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
913		if (mount_crypt_stat->flags
914		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
915			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
916		else if (mount_crypt_stat->flags
917			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
918			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
919	}
920}
921
922static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923	struct ecryptfs_crypt_stat *crypt_stat,
924	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
925{
926	struct ecryptfs_global_auth_tok *global_auth_tok;
927	int rc = 0;
928
929	mutex_lock(&crypt_stat->keysig_list_mutex);
930	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
931
932	list_for_each_entry(global_auth_tok,
933			    &mount_crypt_stat->global_auth_tok_list,
934			    mount_crypt_stat_list) {
935		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
936			continue;
937		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
938		if (rc) {
939			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
940			goto out;
941		}
942	}
943
944out:
945	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
946	mutex_unlock(&crypt_stat->keysig_list_mutex);
947	return rc;
948}
949
950/**
951 * ecryptfs_set_default_crypt_stat_vals
952 * @crypt_stat: The inode's cryptographic context
953 * @mount_crypt_stat: The mount point's cryptographic context
954 *
955 * Default values in the event that policy does not override them.
956 */
957static void ecryptfs_set_default_crypt_stat_vals(
958	struct ecryptfs_crypt_stat *crypt_stat,
959	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
960{
961	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
962						      mount_crypt_stat);
963	ecryptfs_set_default_sizes(crypt_stat);
964	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
965	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
966	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
967	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
968	crypt_stat->mount_crypt_stat = mount_crypt_stat;
969}
970
971/**
972 * ecryptfs_new_file_context
973 * @ecryptfs_dentry: The eCryptfs dentry
974 *
975 * If the crypto context for the file has not yet been established,
976 * this is where we do that.  Establishing a new crypto context
977 * involves the following decisions:
978 *  - What cipher to use?
979 *  - What set of authentication tokens to use?
980 * Here we just worry about getting enough information into the
981 * authentication tokens so that we know that they are available.
982 * We associate the available authentication tokens with the new file
983 * via the set of signatures in the crypt_stat struct.  Later, when
984 * the headers are actually written out, we may again defer to
985 * userspace to perform the encryption of the session key; for the
986 * foreseeable future, this will be the case with public key packets.
987 *
988 * Returns zero on success; non-zero otherwise
989 */
990int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
991{
992	struct ecryptfs_crypt_stat *crypt_stat =
993	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
994	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
995	    &ecryptfs_superblock_to_private(
996		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
997	int cipher_name_len;
998	int rc = 0;
999
1000	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1001	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1002	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1003						      mount_crypt_stat);
1004	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1005							 mount_crypt_stat);
1006	if (rc) {
1007		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1008		       "to the inode key sigs; rc = [%d]\n", rc);
1009		goto out;
1010	}
1011	cipher_name_len =
1012		strlen(mount_crypt_stat->global_default_cipher_name);
1013	memcpy(crypt_stat->cipher,
1014	       mount_crypt_stat->global_default_cipher_name,
1015	       cipher_name_len);
1016	crypt_stat->cipher[cipher_name_len] = '\0';
1017	crypt_stat->key_size =
1018		mount_crypt_stat->global_default_cipher_key_size;
1019	ecryptfs_generate_new_key(crypt_stat);
1020	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1021	if (rc)
1022		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1023				"context for cipher [%s]: rc = [%d]\n",
1024				crypt_stat->cipher, rc);
1025out:
1026	return rc;
1027}
1028
1029/**
1030 * contains_ecryptfs_marker - check for the ecryptfs marker
1031 * @data: The data block in which to check
1032 *
1033 * Returns one if marker found; zero if not found
1034 */
1035static int contains_ecryptfs_marker(char *data)
1036{
1037	u32 m_1, m_2;
1038
1039	m_1 = get_unaligned_be32(data);
1040	m_2 = get_unaligned_be32(data + 4);
1041	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1042		return 1;
1043	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1044			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1045			MAGIC_ECRYPTFS_MARKER);
1046	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1047			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1048	return 0;
1049}
1050
1051struct ecryptfs_flag_map_elem {
1052	u32 file_flag;
1053	u32 local_flag;
1054};
1055
1056/* Add support for additional flags by adding elements here. */
1057static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1058	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1059	{0x00000002, ECRYPTFS_ENCRYPTED},
1060	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1061	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1062};
1063
1064/**
1065 * ecryptfs_process_flags
1066 * @crypt_stat: The cryptographic context
1067 * @page_virt: Source data to be parsed
1068 * @bytes_read: Updated with the number of bytes read
1069 *
1070 * Returns zero on success; non-zero if the flag set is invalid
1071 */
1072static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1073				  char *page_virt, int *bytes_read)
1074{
1075	int rc = 0;
1076	int i;
1077	u32 flags;
1078
1079	flags = get_unaligned_be32(page_virt);
1080	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1081			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1082		if (flags & ecryptfs_flag_map[i].file_flag) {
1083			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1084		} else
1085			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1086	/* Version is in top 8 bits of the 32-bit flag vector */
1087	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1088	(*bytes_read) = 4;
1089	return rc;
1090}
1091
1092/**
1093 * write_ecryptfs_marker
1094 * @page_virt: The pointer to in a page to begin writing the marker
1095 * @written: Number of bytes written
1096 *
1097 * Marker = 0x3c81b7f5
1098 */
1099static void write_ecryptfs_marker(char *page_virt, size_t *written)
1100{
1101	u32 m_1, m_2;
1102
1103	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1104	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1105	put_unaligned_be32(m_1, page_virt);
1106	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1107	put_unaligned_be32(m_2, page_virt);
1108	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109}
1110
1111void ecryptfs_write_crypt_stat_flags(char *page_virt,
1112				     struct ecryptfs_crypt_stat *crypt_stat,
1113				     size_t *written)
1114{
1115	u32 flags = 0;
1116	int i;
1117
1118	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121			flags |= ecryptfs_flag_map[i].file_flag;
1122	/* Version is in top 8 bits of the 32-bit flag vector */
1123	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124	put_unaligned_be32(flags, page_virt);
1125	(*written) = 4;
1126}
1127
1128struct ecryptfs_cipher_code_str_map_elem {
1129	char cipher_str[16];
1130	u8 cipher_code;
1131};
1132
1133/* Add support for additional ciphers by adding elements here. The
1134 * cipher_code is whatever OpenPGP applicatoins use to identify the
1135 * ciphers. List in order of probability. */
1136static struct ecryptfs_cipher_code_str_map_elem
1137ecryptfs_cipher_code_str_map[] = {
1138	{"aes",RFC2440_CIPHER_AES_128 },
1139	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1140	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1141	{"cast5", RFC2440_CIPHER_CAST_5},
1142	{"twofish", RFC2440_CIPHER_TWOFISH},
1143	{"cast6", RFC2440_CIPHER_CAST_6},
1144	{"aes", RFC2440_CIPHER_AES_192},
1145	{"aes", RFC2440_CIPHER_AES_256}
1146};
1147
1148/**
1149 * ecryptfs_code_for_cipher_string
1150 * @cipher_name: The string alias for the cipher
1151 * @key_bytes: Length of key in bytes; used for AES code selection
1152 *
1153 * Returns zero on no match, or the cipher code on match
1154 */
1155u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1156{
1157	int i;
1158	u8 code = 0;
1159	struct ecryptfs_cipher_code_str_map_elem *map =
1160		ecryptfs_cipher_code_str_map;
1161
1162	if (strcmp(cipher_name, "aes") == 0) {
1163		switch (key_bytes) {
1164		case 16:
1165			code = RFC2440_CIPHER_AES_128;
1166			break;
1167		case 24:
1168			code = RFC2440_CIPHER_AES_192;
1169			break;
1170		case 32:
1171			code = RFC2440_CIPHER_AES_256;
1172		}
1173	} else {
1174		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1176				code = map[i].cipher_code;
1177				break;
1178			}
1179	}
1180	return code;
1181}
1182
1183/**
1184 * ecryptfs_cipher_code_to_string
1185 * @str: Destination to write out the cipher name
1186 * @cipher_code: The code to convert to cipher name string
1187 *
1188 * Returns zero on success
1189 */
1190int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1191{
1192	int rc = 0;
1193	int i;
1194
1195	str[0] = '\0';
1196	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199	if (str[0] == '\0') {
1200		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201				"[%d]\n", cipher_code);
1202		rc = -EINVAL;
1203	}
1204	return rc;
1205}
1206
1207int ecryptfs_read_and_validate_header_region(char *data,
1208					     struct inode *ecryptfs_inode)
1209{
1210	struct ecryptfs_crypt_stat *crypt_stat =
1211		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212	int rc;
1213
1214	if (crypt_stat->extent_size == 0)
1215		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1216	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1217				 ecryptfs_inode);
1218	if (rc < 0) {
1219		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220		       __func__, rc);
1221		goto out;
1222	}
1223	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224		rc = -EINVAL;
1225	} else
1226		rc = 0;
1227out:
1228	return rc;
1229}
1230
1231void
1232ecryptfs_write_header_metadata(char *virt,
1233			       struct ecryptfs_crypt_stat *crypt_stat,
1234			       size_t *written)
1235{
1236	u32 header_extent_size;
1237	u16 num_header_extents_at_front;
1238
1239	header_extent_size = (u32)crypt_stat->extent_size;
1240	num_header_extents_at_front =
1241		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1242	put_unaligned_be32(header_extent_size, virt);
1243	virt += 4;
1244	put_unaligned_be16(num_header_extents_at_front, virt);
1245	(*written) = 6;
1246}
1247
1248struct kmem_cache *ecryptfs_header_cache_1;
1249struct kmem_cache *ecryptfs_header_cache_2;
1250
1251/**
1252 * ecryptfs_write_headers_virt
1253 * @page_virt: The virtual address to write the headers to
1254 * @max: The size of memory allocated at page_virt
1255 * @size: Set to the number of bytes written by this function
1256 * @crypt_stat: The cryptographic context
1257 * @ecryptfs_dentry: The eCryptfs dentry
1258 *
1259 * Format version: 1
1260 *
1261 *   Header Extent:
1262 *     Octets 0-7:        Unencrypted file size (big-endian)
1263 *     Octets 8-15:       eCryptfs special marker
1264 *     Octets 16-19:      Flags
1265 *      Octet 16:         File format version number (between 0 and 255)
1266 *      Octets 17-18:     Reserved
1267 *      Octet 19:         Bit 1 (lsb): Reserved
1268 *                        Bit 2: Encrypted?
1269 *                        Bits 3-8: Reserved
1270 *     Octets 20-23:      Header extent size (big-endian)
1271 *     Octets 24-25:      Number of header extents at front of file
1272 *                        (big-endian)
1273 *     Octet  26:         Begin RFC 2440 authentication token packet set
1274 *   Data Extent 0:
1275 *     Lower data (CBC encrypted)
1276 *   Data Extent 1:
1277 *     Lower data (CBC encrypted)
1278 *   ...
1279 *
1280 * Returns zero on success
1281 */
1282static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1283				       size_t *size,
1284				       struct ecryptfs_crypt_stat *crypt_stat,
1285				       struct dentry *ecryptfs_dentry)
1286{
1287	int rc;
1288	size_t written;
1289	size_t offset;
1290
1291	offset = ECRYPTFS_FILE_SIZE_BYTES;
1292	write_ecryptfs_marker((page_virt + offset), &written);
1293	offset += written;
1294	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1295					&written);
1296	offset += written;
1297	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1298				       &written);
1299	offset += written;
1300	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1301					      ecryptfs_dentry, &written,
1302					      max - offset);
1303	if (rc)
1304		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1305				"set; rc = [%d]\n", rc);
1306	if (size) {
1307		offset += written;
1308		*size = offset;
1309	}
1310	return rc;
1311}
1312
1313static int
1314ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1315				    char *virt, size_t virt_len)
1316{
1317	int rc;
1318
1319	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320				  0, virt_len);
1321	if (rc < 0)
1322		printk(KERN_ERR "%s: Error attempting to write header "
1323		       "information to lower file; rc = [%d]\n", __func__, rc);
1324	else
1325		rc = 0;
1326	return rc;
1327}
1328
1329static int
1330ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1331				 char *page_virt, size_t size)
1332{
1333	int rc;
1334
1335	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336			       size, 0);
1337	return rc;
1338}
1339
1340static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1341					       unsigned int order)
1342{
1343	struct page *page;
1344
1345	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1346	if (page)
1347		return (unsigned long) page_address(page);
1348	return 0;
1349}
1350
1351/**
1352 * ecryptfs_write_metadata
1353 * @ecryptfs_dentry: The eCryptfs dentry
1354 *
1355 * Write the file headers out.  This will likely involve a userspace
1356 * callout, in which the session key is encrypted with one or more
1357 * public keys and/or the passphrase necessary to do the encryption is
1358 * retrieved via a prompt.  Exactly what happens at this point should
1359 * be policy-dependent.
1360 *
1361 * Returns zero on success; non-zero on error
1362 */
1363int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1364{
1365	struct ecryptfs_crypt_stat *crypt_stat =
1366		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1367	unsigned int order;
1368	char *virt;
1369	size_t virt_len;
1370	size_t size = 0;
1371	int rc = 0;
1372
1373	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1374		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1375			printk(KERN_ERR "Key is invalid; bailing out\n");
1376			rc = -EINVAL;
1377			goto out;
1378		}
1379	} else {
1380		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1381		       __func__);
1382		rc = -EINVAL;
1383		goto out;
1384	}
1385	virt_len = crypt_stat->metadata_size;
1386	order = get_order(virt_len);
1387	/* Released in this function */
1388	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1389	if (!virt) {
1390		printk(KERN_ERR "%s: Out of memory\n", __func__);
1391		rc = -ENOMEM;
1392		goto out;
1393	}
1394	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1395					 ecryptfs_dentry);
1396	if (unlikely(rc)) {
1397		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1398		       __func__, rc);
1399		goto out_free;
1400	}
1401	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1402		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1403						      size);
1404	else
1405		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1406							 virt_len);
1407	if (rc) {
1408		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1409		       "rc = [%d]\n", __func__, rc);
1410		goto out_free;
1411	}
1412out_free:
1413	free_pages((unsigned long)virt, order);
1414out:
1415	return rc;
1416}
1417
1418#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1419#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1420static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1421				 char *virt, int *bytes_read,
1422				 int validate_header_size)
1423{
1424	int rc = 0;
1425	u32 header_extent_size;
1426	u16 num_header_extents_at_front;
1427
1428	header_extent_size = get_unaligned_be32(virt);
1429	virt += sizeof(__be32);
1430	num_header_extents_at_front = get_unaligned_be16(virt);
1431	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1432				     * (size_t)header_extent_size));
1433	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1434	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1435	    && (crypt_stat->metadata_size
1436		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1437		rc = -EINVAL;
1438		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1439		       crypt_stat->metadata_size);
1440	}
1441	return rc;
1442}
1443
1444/**
1445 * set_default_header_data
1446 * @crypt_stat: The cryptographic context
1447 *
1448 * For version 0 file format; this function is only for backwards
1449 * compatibility for files created with the prior versions of
1450 * eCryptfs.
1451 */
1452static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1453{
1454	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1455}
1456
1457/**
1458 * ecryptfs_read_headers_virt
1459 * @page_virt: The virtual address into which to read the headers
1460 * @crypt_stat: The cryptographic context
1461 * @ecryptfs_dentry: The eCryptfs dentry
1462 * @validate_header_size: Whether to validate the header size while reading
1463 *
1464 * Read/parse the header data. The header format is detailed in the
1465 * comment block for the ecryptfs_write_headers_virt() function.
1466 *
1467 * Returns zero on success
1468 */
1469static int ecryptfs_read_headers_virt(char *page_virt,
1470				      struct ecryptfs_crypt_stat *crypt_stat,
1471				      struct dentry *ecryptfs_dentry,
1472				      int validate_header_size)
1473{
1474	int rc = 0;
1475	int offset;
1476	int bytes_read;
1477
1478	ecryptfs_set_default_sizes(crypt_stat);
1479	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1480		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1481	offset = ECRYPTFS_FILE_SIZE_BYTES;
1482	rc = contains_ecryptfs_marker(page_virt + offset);
1483	if (rc == 0) {
1484		rc = -EINVAL;
1485		goto out;
1486	}
1487	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1488	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1489				    &bytes_read);
1490	if (rc) {
1491		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1492		goto out;
1493	}
1494	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1495		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1496				"file version [%d] is supported by this "
1497				"version of eCryptfs\n",
1498				crypt_stat->file_version,
1499				ECRYPTFS_SUPPORTED_FILE_VERSION);
1500		rc = -EINVAL;
1501		goto out;
1502	}
1503	offset += bytes_read;
1504	if (crypt_stat->file_version >= 1) {
1505		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1506					   &bytes_read, validate_header_size);
1507		if (rc) {
1508			ecryptfs_printk(KERN_WARNING, "Error reading header "
1509					"metadata; rc = [%d]\n", rc);
1510		}
1511		offset += bytes_read;
1512	} else
1513		set_default_header_data(crypt_stat);
1514	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1515				       ecryptfs_dentry);
1516out:
1517	return rc;
1518}
1519
1520/**
1521 * ecryptfs_read_xattr_region
1522 * @page_virt: The vitual address into which to read the xattr data
1523 * @ecryptfs_inode: The eCryptfs inode
1524 *
1525 * Attempts to read the crypto metadata from the extended attribute
1526 * region of the lower file.
1527 *
1528 * Returns zero on success; non-zero on error
1529 */
1530int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1531{
1532	struct dentry *lower_dentry =
1533		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1534	ssize_t size;
1535	int rc = 0;
1536
1537	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1538				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1539	if (size < 0) {
1540		if (unlikely(ecryptfs_verbosity > 0))
1541			printk(KERN_INFO "Error attempting to read the [%s] "
1542			       "xattr from the lower file; return value = "
1543			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1544		rc = -EINVAL;
1545		goto out;
1546	}
1547out:
1548	return rc;
1549}
1550
1551int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1552					    struct dentry *ecryptfs_dentry)
1553{
1554	int rc;
1555
1556	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1557	if (rc)
1558		goto out;
1559	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1560		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1561			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1562		rc = -EINVAL;
1563	}
1564out:
1565	return rc;
1566}
1567
1568/**
1569 * ecryptfs_read_metadata
1570 *
1571 * Common entry point for reading file metadata. From here, we could
1572 * retrieve the header information from the header region of the file,
1573 * the xattr region of the file, or some other repostory that is
1574 * stored separately from the file itself. The current implementation
1575 * supports retrieving the metadata information from the file contents
1576 * and from the xattr region.
1577 *
1578 * Returns zero if valid headers found and parsed; non-zero otherwise
1579 */
1580int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1581{
1582	int rc = 0;
1583	char *page_virt = NULL;
1584	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1585	struct ecryptfs_crypt_stat *crypt_stat =
1586	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1587	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1588		&ecryptfs_superblock_to_private(
1589			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1590
1591	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1592						      mount_crypt_stat);
1593	/* Read the first page from the underlying file */
1594	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1595	if (!page_virt) {
1596		rc = -ENOMEM;
1597		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1598		       __func__);
1599		goto out;
1600	}
1601	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1602				 ecryptfs_inode);
1603	if (rc >= 0)
1604		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1605						ecryptfs_dentry,
1606						ECRYPTFS_VALIDATE_HEADER_SIZE);
1607	if (rc) {
1608		memset(page_virt, 0, PAGE_CACHE_SIZE);
1609		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1610		if (rc) {
1611			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1612			       "file header region or xattr region\n");
1613			rc = -EINVAL;
1614			goto out;
1615		}
1616		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1617						ecryptfs_dentry,
1618						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1619		if (rc) {
1620			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621			       "file xattr region either\n");
1622			rc = -EINVAL;
1623		}
1624		if (crypt_stat->mount_crypt_stat->flags
1625		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1626			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1627		} else {
1628			printk(KERN_WARNING "Attempt to access file with "
1629			       "crypto metadata only in the extended attribute "
1630			       "region, but eCryptfs was mounted without "
1631			       "xattr support enabled. eCryptfs will not treat "
1632			       "this like an encrypted file.\n");
1633			rc = -EINVAL;
1634		}
1635	}
1636out:
1637	if (page_virt) {
1638		memset(page_virt, 0, PAGE_CACHE_SIZE);
1639		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1640	}
1641	return rc;
1642}
1643
1644/**
1645 * ecryptfs_encrypt_filename - encrypt filename
1646 *
1647 * CBC-encrypts the filename. We do not want to encrypt the same
1648 * filename with the same key and IV, which may happen with hard
1649 * links, so we prepend random bits to each filename.
1650 *
1651 * Returns zero on success; non-zero otherwise
1652 */
1653static int
1654ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1655			  struct ecryptfs_crypt_stat *crypt_stat,
1656			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1657{
1658	int rc = 0;
1659
1660	filename->encrypted_filename = NULL;
1661	filename->encrypted_filename_size = 0;
1662	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1663	    || (mount_crypt_stat && (mount_crypt_stat->flags
1664				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1665		size_t packet_size;
1666		size_t remaining_bytes;
1667
1668		rc = ecryptfs_write_tag_70_packet(
1669			NULL, NULL,
1670			&filename->encrypted_filename_size,
1671			mount_crypt_stat, NULL,
1672			filename->filename_size);
1673		if (rc) {
1674			printk(KERN_ERR "%s: Error attempting to get packet "
1675			       "size for tag 72; rc = [%d]\n", __func__,
1676			       rc);
1677			filename->encrypted_filename_size = 0;
1678			goto out;
1679		}
1680		filename->encrypted_filename =
1681			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1682		if (!filename->encrypted_filename) {
1683			printk(KERN_ERR "%s: Out of memory whilst attempting "
1684			       "to kmalloc [%zd] bytes\n", __func__,
1685			       filename->encrypted_filename_size);
1686			rc = -ENOMEM;
1687			goto out;
1688		}
1689		remaining_bytes = filename->encrypted_filename_size;
1690		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1691						  &remaining_bytes,
1692						  &packet_size,
1693						  mount_crypt_stat,
1694						  filename->filename,
1695						  filename->filename_size);
1696		if (rc) {
1697			printk(KERN_ERR "%s: Error attempting to generate "
1698			       "tag 70 packet; rc = [%d]\n", __func__,
1699			       rc);
1700			kfree(filename->encrypted_filename);
1701			filename->encrypted_filename = NULL;
1702			filename->encrypted_filename_size = 0;
1703			goto out;
1704		}
1705		filename->encrypted_filename_size = packet_size;
1706	} else {
1707		printk(KERN_ERR "%s: No support for requested filename "
1708		       "encryption method in this release\n", __func__);
1709		rc = -EOPNOTSUPP;
1710		goto out;
1711	}
1712out:
1713	return rc;
1714}
1715
1716static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1717				  const char *name, size_t name_size)
1718{
1719	int rc = 0;
1720
1721	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1722	if (!(*copied_name)) {
1723		rc = -ENOMEM;
1724		goto out;
1725	}
1726	memcpy((void *)(*copied_name), (void *)name, name_size);
1727	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1728						 * in printing out the
1729						 * string in debug
1730						 * messages */
1731	(*copied_name_size) = name_size;
1732out:
1733	return rc;
1734}
1735
1736/**
1737 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738 * @key_tfm: Crypto context for key material, set by this function
1739 * @cipher_name: Name of the cipher
1740 * @key_size: Size of the key in bytes
1741 *
1742 * Returns zero on success. Any crypto_tfm structs allocated here
1743 * should be released by other functions, such as on a superblock put
1744 * event, regardless of whether this function succeeds for fails.
1745 */
1746static int
1747ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1748			    char *cipher_name, size_t *key_size)
1749{
1750	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1751	char *full_alg_name = NULL;
1752	int rc;
1753
1754	*key_tfm = NULL;
1755	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1756		rc = -EINVAL;
1757		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1758		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1759		goto out;
1760	}
1761	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1762						    "ecb");
1763	if (rc)
1764		goto out;
1765	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1766	if (IS_ERR(*key_tfm)) {
1767		rc = PTR_ERR(*key_tfm);
1768		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1769		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1770		goto out;
1771	}
1772	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1773	if (*key_size == 0) {
1774		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1775
1776		*key_size = alg->max_keysize;
1777	}
1778	get_random_bytes(dummy_key, *key_size);
1779	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1780	if (rc) {
1781		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1782		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1783		       rc);
1784		rc = -EINVAL;
1785		goto out;
1786	}
1787out:
1788	kfree(full_alg_name);
1789	return rc;
1790}
1791
1792struct kmem_cache *ecryptfs_key_tfm_cache;
1793static struct list_head key_tfm_list;
1794struct mutex key_tfm_list_mutex;
1795
1796int __init ecryptfs_init_crypto(void)
1797{
1798	mutex_init(&key_tfm_list_mutex);
1799	INIT_LIST_HEAD(&key_tfm_list);
1800	return 0;
1801}
1802
1803/**
1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1805 *
1806 * Called only at module unload time
1807 */
1808int ecryptfs_destroy_crypto(void)
1809{
1810	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1811
1812	mutex_lock(&key_tfm_list_mutex);
1813	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1814				 key_tfm_list) {
1815		list_del(&key_tfm->key_tfm_list);
1816		if (key_tfm->key_tfm)
1817			crypto_free_blkcipher(key_tfm->key_tfm);
1818		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1819	}
1820	mutex_unlock(&key_tfm_list_mutex);
1821	return 0;
1822}
1823
1824int
1825ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1826			 size_t key_size)
1827{
1828	struct ecryptfs_key_tfm *tmp_tfm;
1829	int rc = 0;
1830
1831	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1832
1833	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1834	if (key_tfm != NULL)
1835		(*key_tfm) = tmp_tfm;
1836	if (!tmp_tfm) {
1837		rc = -ENOMEM;
1838		printk(KERN_ERR "Error attempting to allocate from "
1839		       "ecryptfs_key_tfm_cache\n");
1840		goto out;
1841	}
1842	mutex_init(&tmp_tfm->key_tfm_mutex);
1843	strncpy(tmp_tfm->cipher_name, cipher_name,
1844		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1845	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1846	tmp_tfm->key_size = key_size;
1847	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1848					 tmp_tfm->cipher_name,
1849					 &tmp_tfm->key_size);
1850	if (rc) {
1851		printk(KERN_ERR "Error attempting to initialize key TFM "
1852		       "cipher with name = [%s]; rc = [%d]\n",
1853		       tmp_tfm->cipher_name, rc);
1854		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1855		if (key_tfm != NULL)
1856			(*key_tfm) = NULL;
1857		goto out;
1858	}
1859	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1860out:
1861	return rc;
1862}
1863
1864/**
1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866 * @cipher_name: the name of the cipher to search for
1867 * @key_tfm: set to corresponding tfm if found
1868 *
1869 * Searches for cached key_tfm matching @cipher_name
1870 * Must be called with &key_tfm_list_mutex held
1871 * Returns 1 if found, with @key_tfm set
1872 * Returns 0 if not found, with @key_tfm set to NULL
1873 */
1874int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1875{
1876	struct ecryptfs_key_tfm *tmp_key_tfm;
1877
1878	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1879
1880	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1881		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1882			if (key_tfm)
1883				(*key_tfm) = tmp_key_tfm;
1884			return 1;
1885		}
1886	}
1887	if (key_tfm)
1888		(*key_tfm) = NULL;
1889	return 0;
1890}
1891
1892/**
1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1894 *
1895 * @tfm: set to cached tfm found, or new tfm created
1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897 * @cipher_name: the name of the cipher to search for and/or add
1898 *
1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900 * Searches for cached item first, and creates new if not found.
1901 * Returns 0 on success, non-zero if adding new cipher failed
1902 */
1903int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1904					       struct mutex **tfm_mutex,
1905					       char *cipher_name)
1906{
1907	struct ecryptfs_key_tfm *key_tfm;
1908	int rc = 0;
1909
1910	(*tfm) = NULL;
1911	(*tfm_mutex) = NULL;
1912
1913	mutex_lock(&key_tfm_list_mutex);
1914	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1915		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1916		if (rc) {
1917			printk(KERN_ERR "Error adding new key_tfm to list; "
1918					"rc = [%d]\n", rc);
1919			goto out;
1920		}
1921	}
1922	(*tfm) = key_tfm->key_tfm;
1923	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1924out:
1925	mutex_unlock(&key_tfm_list_mutex);
1926	return rc;
1927}
1928
1929/* 64 characters forming a 6-bit target field */
1930static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1931						 "EFGHIJKLMNOPQRST"
1932						 "UVWXYZabcdefghij"
1933						 "klmnopqrstuvwxyz");
1934
1935/* We could either offset on every reverse map or just pad some 0x00's
1936 * at the front here */
1937static const unsigned char filename_rev_map[] = {
1938	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1953	0x3D, 0x3E, 0x3F
1954};
1955
1956/**
1957 * ecryptfs_encode_for_filename
1958 * @dst: Destination location for encoded filename
1959 * @dst_size: Size of the encoded filename in bytes
1960 * @src: Source location for the filename to encode
1961 * @src_size: Size of the source in bytes
1962 */
1963void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1964				  unsigned char *src, size_t src_size)
1965{
1966	size_t num_blocks;
1967	size_t block_num = 0;
1968	size_t dst_offset = 0;
1969	unsigned char last_block[3];
1970
1971	if (src_size == 0) {
1972		(*dst_size) = 0;
1973		goto out;
1974	}
1975	num_blocks = (src_size / 3);
1976	if ((src_size % 3) == 0) {
1977		memcpy(last_block, (&src[src_size - 3]), 3);
1978	} else {
1979		num_blocks++;
1980		last_block[2] = 0x00;
1981		switch (src_size % 3) {
1982		case 1:
1983			last_block[0] = src[src_size - 1];
1984			last_block[1] = 0x00;
1985			break;
1986		case 2:
1987			last_block[0] = src[src_size - 2];
1988			last_block[1] = src[src_size - 1];
1989		}
1990	}
1991	(*dst_size) = (num_blocks * 4);
1992	if (!dst)
1993		goto out;
1994	while (block_num < num_blocks) {
1995		unsigned char *src_block;
1996		unsigned char dst_block[4];
1997
1998		if (block_num == (num_blocks - 1))
1999			src_block = last_block;
2000		else
2001			src_block = &src[block_num * 3];
2002		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2003		dst_block[1] = (((src_block[0] << 4) & 0x30)
2004				| ((src_block[1] >> 4) & 0x0F));
2005		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2006				| ((src_block[2] >> 6) & 0x03));
2007		dst_block[3] = (src_block[2] & 0x3F);
2008		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2009		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2010		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2011		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2012		block_num++;
2013	}
2014out:
2015	return;
2016}
2017
2018/**
2019 * ecryptfs_decode_from_filename
2020 * @dst: If NULL, this function only sets @dst_size and returns. If
2021 *       non-NULL, this function decodes the encoded octets in @src
2022 *       into the memory that @dst points to.
2023 * @dst_size: Set to the size of the decoded string.
2024 * @src: The encoded set of octets to decode.
2025 * @src_size: The size of the encoded set of octets to decode.
2026 */
2027static void
2028ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2029			      const unsigned char *src, size_t src_size)
2030{
2031	u8 current_bit_offset = 0;
2032	size_t src_byte_offset = 0;
2033	size_t dst_byte_offset = 0;
2034
2035	if (dst == NULL) {
2036		/* Not exact; conservatively long. Every block of 4
2037		 * encoded characters decodes into a block of 3
2038		 * decoded characters. This segment of code provides
2039		 * the caller with the maximum amount of allocated
2040		 * space that @dst will need to point to in a
2041		 * subsequent call. */
2042		(*dst_size) = (((src_size + 1) * 3) / 4);
2043		goto out;
2044	}
2045	while (src_byte_offset < src_size) {
2046		unsigned char src_byte =
2047				filename_rev_map[(int)src[src_byte_offset]];
2048
2049		switch (current_bit_offset) {
2050		case 0:
2051			dst[dst_byte_offset] = (src_byte << 2);
2052			current_bit_offset = 6;
2053			break;
2054		case 6:
2055			dst[dst_byte_offset++] |= (src_byte >> 4);
2056			dst[dst_byte_offset] = ((src_byte & 0xF)
2057						 << 4);
2058			current_bit_offset = 4;
2059			break;
2060		case 4:
2061			dst[dst_byte_offset++] |= (src_byte >> 2);
2062			dst[dst_byte_offset] = (src_byte << 6);
2063			current_bit_offset = 2;
2064			break;
2065		case 2:
2066			dst[dst_byte_offset++] |= (src_byte);
2067			dst[dst_byte_offset] = 0;
2068			current_bit_offset = 0;
2069			break;
2070		}
2071		src_byte_offset++;
2072	}
2073	(*dst_size) = dst_byte_offset;
2074out:
2075	return;
2076}
2077
2078/**
2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081 * @name: The plaintext name
2082 * @length: The length of the plaintext
2083 * @encoded_name: The encypted name
2084 *
2085 * Encrypts and encodes a filename into something that constitutes a
2086 * valid filename for a filesystem, with printable characters.
2087 *
2088 * We assume that we have a properly initialized crypto context,
2089 * pointed to by crypt_stat->tfm.
2090 *
2091 * Returns zero on success; non-zero on otherwise
2092 */
2093int ecryptfs_encrypt_and_encode_filename(
2094	char **encoded_name,
2095	size_t *encoded_name_size,
2096	struct ecryptfs_crypt_stat *crypt_stat,
2097	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2098	const char *name, size_t name_size)
2099{
2100	size_t encoded_name_no_prefix_size;
2101	int rc = 0;
2102
2103	(*encoded_name) = NULL;
2104	(*encoded_name_size) = 0;
2105	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2106	    || (mount_crypt_stat && (mount_crypt_stat->flags
2107				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2108		struct ecryptfs_filename *filename;
2109
2110		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2111		if (!filename) {
2112			printk(KERN_ERR "%s: Out of memory whilst attempting "
2113			       "to kzalloc [%zd] bytes\n", __func__,
2114			       sizeof(*filename));
2115			rc = -ENOMEM;
2116			goto out;
2117		}
2118		filename->filename = (char *)name;
2119		filename->filename_size = name_size;
2120		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2121					       mount_crypt_stat);
2122		if (rc) {
2123			printk(KERN_ERR "%s: Error attempting to encrypt "
2124			       "filename; rc = [%d]\n", __func__, rc);
2125			kfree(filename);
2126			goto out;
2127		}
2128		ecryptfs_encode_for_filename(
2129			NULL, &encoded_name_no_prefix_size,
2130			filename->encrypted_filename,
2131			filename->encrypted_filename_size);
2132		if ((crypt_stat && (crypt_stat->flags
2133				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2134		    || (mount_crypt_stat
2135			&& (mount_crypt_stat->flags
2136			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2137			(*encoded_name_size) =
2138				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139				 + encoded_name_no_prefix_size);
2140		else
2141			(*encoded_name_size) =
2142				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143				 + encoded_name_no_prefix_size);
2144		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2145		if (!(*encoded_name)) {
2146			printk(KERN_ERR "%s: Out of memory whilst attempting "
2147			       "to kzalloc [%zd] bytes\n", __func__,
2148			       (*encoded_name_size));
2149			rc = -ENOMEM;
2150			kfree(filename->encrypted_filename);
2151			kfree(filename);
2152			goto out;
2153		}
2154		if ((crypt_stat && (crypt_stat->flags
2155				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2156		    || (mount_crypt_stat
2157			&& (mount_crypt_stat->flags
2158			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2159			memcpy((*encoded_name),
2160			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2161			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2162			ecryptfs_encode_for_filename(
2163			    ((*encoded_name)
2164			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2165			    &encoded_name_no_prefix_size,
2166			    filename->encrypted_filename,
2167			    filename->encrypted_filename_size);
2168			(*encoded_name_size) =
2169				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170				 + encoded_name_no_prefix_size);
2171			(*encoded_name)[(*encoded_name_size)] = '\0';
2172		} else {
2173			rc = -EOPNOTSUPP;
2174		}
2175		if (rc) {
2176			printk(KERN_ERR "%s: Error attempting to encode "
2177			       "encrypted filename; rc = [%d]\n", __func__,
2178			       rc);
2179			kfree((*encoded_name));
2180			(*encoded_name) = NULL;
2181			(*encoded_name_size) = 0;
2182		}
2183		kfree(filename->encrypted_filename);
2184		kfree(filename);
2185	} else {
2186		rc = ecryptfs_copy_filename(encoded_name,
2187					    encoded_name_size,
2188					    name, name_size);
2189	}
2190out:
2191	return rc;
2192}
2193
2194/**
2195 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2196 * @plaintext_name: The plaintext name
2197 * @plaintext_name_size: The plaintext name size
2198 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2199 * @name: The filename in cipher text
2200 * @name_size: The cipher text name size
2201 *
2202 * Decrypts and decodes the filename.
2203 *
2204 * Returns zero on error; non-zero otherwise
2205 */
2206int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2207					 size_t *plaintext_name_size,
2208					 struct dentry *ecryptfs_dir_dentry,
2209					 const char *name, size_t name_size)
2210{
2211	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2212		&ecryptfs_superblock_to_private(
2213			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2214	char *decoded_name;
2215	size_t decoded_name_size;
2216	size_t packet_size;
2217	int rc = 0;
2218
2219	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2220	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2221	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2222	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2223			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2224		const char *orig_name = name;
2225		size_t orig_name_size = name_size;
2226
2227		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2228		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2229		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2230					      name, name_size);
2231		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2232		if (!decoded_name) {
2233			printk(KERN_ERR "%s: Out of memory whilst attempting "
2234			       "to kmalloc [%zd] bytes\n", __func__,
2235			       decoded_name_size);
2236			rc = -ENOMEM;
2237			goto out;
2238		}
2239		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2240					      name, name_size);
2241		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2242						  plaintext_name_size,
2243						  &packet_size,
2244						  mount_crypt_stat,
2245						  decoded_name,
2246						  decoded_name_size);
2247		if (rc) {
2248			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2249			       "from filename; copying through filename "
2250			       "as-is\n", __func__);
2251			rc = ecryptfs_copy_filename(plaintext_name,
2252						    plaintext_name_size,
2253						    orig_name, orig_name_size);
2254			goto out_free;
2255		}
2256	} else {
2257		rc = ecryptfs_copy_filename(plaintext_name,
2258					    plaintext_name_size,
2259					    name, name_size);
2260		goto out;
2261	}
2262out_free:
2263	kfree(decoded_name);
2264out:
2265	return rc;
2266}
2267