1#include "ceph_debug.h"
2
3#include <linux/fs.h>
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/slab.h>
7#include <linux/vmalloc.h>
8#include <linux/wait.h>
9#include <linux/writeback.h>
10
11#include "super.h"
12#include "decode.h"
13#include "messenger.h"
14
15/*
16 * Capability management
17 *
18 * The Ceph metadata servers control client access to inode metadata
19 * and file data by issuing capabilities, granting clients permission
20 * to read and/or write both inode field and file data to OSDs
21 * (storage nodes).  Each capability consists of a set of bits
22 * indicating which operations are allowed.
23 *
24 * If the client holds a *_SHARED cap, the client has a coherent value
25 * that can be safely read from the cached inode.
26 *
27 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28 * client is allowed to change inode attributes (e.g., file size,
29 * mtime), note its dirty state in the ceph_cap, and asynchronously
30 * flush that metadata change to the MDS.
31 *
32 * In the event of a conflicting operation (perhaps by another
33 * client), the MDS will revoke the conflicting client capabilities.
34 *
35 * In order for a client to cache an inode, it must hold a capability
36 * with at least one MDS server.  When inodes are released, release
37 * notifications are batched and periodically sent en masse to the MDS
38 * cluster to release server state.
39 */
40
41
42/*
43 * Generate readable cap strings for debugging output.
44 */
45#define MAX_CAP_STR 20
46static char cap_str[MAX_CAP_STR][40];
47static DEFINE_SPINLOCK(cap_str_lock);
48static int last_cap_str;
49
50static char *gcap_string(char *s, int c)
51{
52	if (c & CEPH_CAP_GSHARED)
53		*s++ = 's';
54	if (c & CEPH_CAP_GEXCL)
55		*s++ = 'x';
56	if (c & CEPH_CAP_GCACHE)
57		*s++ = 'c';
58	if (c & CEPH_CAP_GRD)
59		*s++ = 'r';
60	if (c & CEPH_CAP_GWR)
61		*s++ = 'w';
62	if (c & CEPH_CAP_GBUFFER)
63		*s++ = 'b';
64	if (c & CEPH_CAP_GLAZYIO)
65		*s++ = 'l';
66	return s;
67}
68
69const char *ceph_cap_string(int caps)
70{
71	int i;
72	char *s;
73	int c;
74
75	spin_lock(&cap_str_lock);
76	i = last_cap_str++;
77	if (last_cap_str == MAX_CAP_STR)
78		last_cap_str = 0;
79	spin_unlock(&cap_str_lock);
80
81	s = cap_str[i];
82
83	if (caps & CEPH_CAP_PIN)
84		*s++ = 'p';
85
86	c = (caps >> CEPH_CAP_SAUTH) & 3;
87	if (c) {
88		*s++ = 'A';
89		s = gcap_string(s, c);
90	}
91
92	c = (caps >> CEPH_CAP_SLINK) & 3;
93	if (c) {
94		*s++ = 'L';
95		s = gcap_string(s, c);
96	}
97
98	c = (caps >> CEPH_CAP_SXATTR) & 3;
99	if (c) {
100		*s++ = 'X';
101		s = gcap_string(s, c);
102	}
103
104	c = caps >> CEPH_CAP_SFILE;
105	if (c) {
106		*s++ = 'F';
107		s = gcap_string(s, c);
108	}
109
110	if (s == cap_str[i])
111		*s++ = '-';
112	*s = 0;
113	return cap_str[i];
114}
115
116void ceph_caps_init(struct ceph_mds_client *mdsc)
117{
118	INIT_LIST_HEAD(&mdsc->caps_list);
119	spin_lock_init(&mdsc->caps_list_lock);
120}
121
122void ceph_caps_finalize(struct ceph_mds_client *mdsc)
123{
124	struct ceph_cap *cap;
125
126	spin_lock(&mdsc->caps_list_lock);
127	while (!list_empty(&mdsc->caps_list)) {
128		cap = list_first_entry(&mdsc->caps_list,
129				       struct ceph_cap, caps_item);
130		list_del(&cap->caps_item);
131		kmem_cache_free(ceph_cap_cachep, cap);
132	}
133	mdsc->caps_total_count = 0;
134	mdsc->caps_avail_count = 0;
135	mdsc->caps_use_count = 0;
136	mdsc->caps_reserve_count = 0;
137	mdsc->caps_min_count = 0;
138	spin_unlock(&mdsc->caps_list_lock);
139}
140
141void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
142{
143	spin_lock(&mdsc->caps_list_lock);
144	mdsc->caps_min_count += delta;
145	BUG_ON(mdsc->caps_min_count < 0);
146	spin_unlock(&mdsc->caps_list_lock);
147}
148
149int ceph_reserve_caps(struct ceph_mds_client *mdsc,
150		      struct ceph_cap_reservation *ctx, int need)
151{
152	int i;
153	struct ceph_cap *cap;
154	int have;
155	int alloc = 0;
156	LIST_HEAD(newcaps);
157	int ret = 0;
158
159	dout("reserve caps ctx=%p need=%d\n", ctx, need);
160
161	/* first reserve any caps that are already allocated */
162	spin_lock(&mdsc->caps_list_lock);
163	if (mdsc->caps_avail_count >= need)
164		have = need;
165	else
166		have = mdsc->caps_avail_count;
167	mdsc->caps_avail_count -= have;
168	mdsc->caps_reserve_count += have;
169	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
170					 mdsc->caps_reserve_count +
171					 mdsc->caps_avail_count);
172	spin_unlock(&mdsc->caps_list_lock);
173
174	for (i = have; i < need; i++) {
175		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
176		if (!cap) {
177			ret = -ENOMEM;
178			goto out_alloc_count;
179		}
180		list_add(&cap->caps_item, &newcaps);
181		alloc++;
182	}
183	BUG_ON(have + alloc != need);
184
185	spin_lock(&mdsc->caps_list_lock);
186	mdsc->caps_total_count += alloc;
187	mdsc->caps_reserve_count += alloc;
188	list_splice(&newcaps, &mdsc->caps_list);
189
190	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
191					 mdsc->caps_reserve_count +
192					 mdsc->caps_avail_count);
193	spin_unlock(&mdsc->caps_list_lock);
194
195	ctx->count = need;
196	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
197	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
198	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
199	return 0;
200
201out_alloc_count:
202	/* we didn't manage to reserve as much as we needed */
203	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
204		   ctx, need, have);
205	return ret;
206}
207
208int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
209			struct ceph_cap_reservation *ctx)
210{
211	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
212	if (ctx->count) {
213		spin_lock(&mdsc->caps_list_lock);
214		BUG_ON(mdsc->caps_reserve_count < ctx->count);
215		mdsc->caps_reserve_count -= ctx->count;
216		mdsc->caps_avail_count += ctx->count;
217		ctx->count = 0;
218		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
219		     mdsc->caps_total_count, mdsc->caps_use_count,
220		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
221		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
222						 mdsc->caps_reserve_count +
223						 mdsc->caps_avail_count);
224		spin_unlock(&mdsc->caps_list_lock);
225	}
226	return 0;
227}
228
229static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
230				struct ceph_cap_reservation *ctx)
231{
232	struct ceph_cap *cap = NULL;
233
234	/* temporary, until we do something about cap import/export */
235	if (!ctx) {
236		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237		if (cap) {
238			mdsc->caps_use_count++;
239			mdsc->caps_total_count++;
240		}
241		return cap;
242	}
243
244	spin_lock(&mdsc->caps_list_lock);
245	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
246	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
247	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
248	BUG_ON(!ctx->count);
249	BUG_ON(ctx->count > mdsc->caps_reserve_count);
250	BUG_ON(list_empty(&mdsc->caps_list));
251
252	ctx->count--;
253	mdsc->caps_reserve_count--;
254	mdsc->caps_use_count++;
255
256	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
257	list_del(&cap->caps_item);
258
259	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
260	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
261	spin_unlock(&mdsc->caps_list_lock);
262	return cap;
263}
264
265void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
266{
267	spin_lock(&mdsc->caps_list_lock);
268	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
269	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
270	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
271	mdsc->caps_use_count--;
272	/*
273	 * Keep some preallocated caps around (ceph_min_count), to
274	 * avoid lots of free/alloc churn.
275	 */
276	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
277				      mdsc->caps_min_count) {
278		mdsc->caps_total_count--;
279		kmem_cache_free(ceph_cap_cachep, cap);
280	} else {
281		mdsc->caps_avail_count++;
282		list_add(&cap->caps_item, &mdsc->caps_list);
283	}
284
285	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
286	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
287	spin_unlock(&mdsc->caps_list_lock);
288}
289
290void ceph_reservation_status(struct ceph_client *client,
291			     int *total, int *avail, int *used, int *reserved,
292			     int *min)
293{
294	struct ceph_mds_client *mdsc = &client->mdsc;
295
296	if (total)
297		*total = mdsc->caps_total_count;
298	if (avail)
299		*avail = mdsc->caps_avail_count;
300	if (used)
301		*used = mdsc->caps_use_count;
302	if (reserved)
303		*reserved = mdsc->caps_reserve_count;
304	if (min)
305		*min = mdsc->caps_min_count;
306}
307
308/*
309 * Find ceph_cap for given mds, if any.
310 *
311 * Called with i_lock held.
312 */
313static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
314{
315	struct ceph_cap *cap;
316	struct rb_node *n = ci->i_caps.rb_node;
317
318	while (n) {
319		cap = rb_entry(n, struct ceph_cap, ci_node);
320		if (mds < cap->mds)
321			n = n->rb_left;
322		else if (mds > cap->mds)
323			n = n->rb_right;
324		else
325			return cap;
326	}
327	return NULL;
328}
329
330struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
331{
332	struct ceph_cap *cap;
333
334	spin_lock(&ci->vfs_inode.i_lock);
335	cap = __get_cap_for_mds(ci, mds);
336	spin_unlock(&ci->vfs_inode.i_lock);
337	return cap;
338}
339
340/*
341 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
342 */
343static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
344{
345	struct ceph_cap *cap;
346	int mds = -1;
347	struct rb_node *p;
348
349	/* prefer mds with WR|BUFFER|EXCL caps */
350	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
351		cap = rb_entry(p, struct ceph_cap, ci_node);
352		mds = cap->mds;
353		if (cap->issued & (CEPH_CAP_FILE_WR |
354				   CEPH_CAP_FILE_BUFFER |
355				   CEPH_CAP_FILE_EXCL))
356			break;
357	}
358	return mds;
359}
360
361int ceph_get_cap_mds(struct inode *inode)
362{
363	int mds;
364	spin_lock(&inode->i_lock);
365	mds = __ceph_get_cap_mds(ceph_inode(inode));
366	spin_unlock(&inode->i_lock);
367	return mds;
368}
369
370/*
371 * Called under i_lock.
372 */
373static void __insert_cap_node(struct ceph_inode_info *ci,
374			      struct ceph_cap *new)
375{
376	struct rb_node **p = &ci->i_caps.rb_node;
377	struct rb_node *parent = NULL;
378	struct ceph_cap *cap = NULL;
379
380	while (*p) {
381		parent = *p;
382		cap = rb_entry(parent, struct ceph_cap, ci_node);
383		if (new->mds < cap->mds)
384			p = &(*p)->rb_left;
385		else if (new->mds > cap->mds)
386			p = &(*p)->rb_right;
387		else
388			BUG();
389	}
390
391	rb_link_node(&new->ci_node, parent, p);
392	rb_insert_color(&new->ci_node, &ci->i_caps);
393}
394
395/*
396 * (re)set cap hold timeouts, which control the delayed release
397 * of unused caps back to the MDS.  Should be called on cap use.
398 */
399static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
400			       struct ceph_inode_info *ci)
401{
402	struct ceph_mount_args *ma = mdsc->client->mount_args;
403
404	ci->i_hold_caps_min = round_jiffies(jiffies +
405					    ma->caps_wanted_delay_min * HZ);
406	ci->i_hold_caps_max = round_jiffies(jiffies +
407					    ma->caps_wanted_delay_max * HZ);
408	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
409	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
410}
411
412/*
413 * (Re)queue cap at the end of the delayed cap release list.
414 *
415 * If I_FLUSH is set, leave the inode at the front of the list.
416 *
417 * Caller holds i_lock
418 *    -> we take mdsc->cap_delay_lock
419 */
420static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
421				struct ceph_inode_info *ci)
422{
423	__cap_set_timeouts(mdsc, ci);
424	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
425	     ci->i_ceph_flags, ci->i_hold_caps_max);
426	if (!mdsc->stopping) {
427		spin_lock(&mdsc->cap_delay_lock);
428		if (!list_empty(&ci->i_cap_delay_list)) {
429			if (ci->i_ceph_flags & CEPH_I_FLUSH)
430				goto no_change;
431			list_del_init(&ci->i_cap_delay_list);
432		}
433		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
434no_change:
435		spin_unlock(&mdsc->cap_delay_lock);
436	}
437}
438
439/*
440 * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
441 * indicating we should send a cap message to flush dirty metadata
442 * asap, and move to the front of the delayed cap list.
443 */
444static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
445				      struct ceph_inode_info *ci)
446{
447	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
448	spin_lock(&mdsc->cap_delay_lock);
449	ci->i_ceph_flags |= CEPH_I_FLUSH;
450	if (!list_empty(&ci->i_cap_delay_list))
451		list_del_init(&ci->i_cap_delay_list);
452	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
453	spin_unlock(&mdsc->cap_delay_lock);
454}
455
456/*
457 * Cancel delayed work on cap.
458 *
459 * Caller must hold i_lock.
460 */
461static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
462			       struct ceph_inode_info *ci)
463{
464	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
465	if (list_empty(&ci->i_cap_delay_list))
466		return;
467	spin_lock(&mdsc->cap_delay_lock);
468	list_del_init(&ci->i_cap_delay_list);
469	spin_unlock(&mdsc->cap_delay_lock);
470}
471
472/*
473 * Common issue checks for add_cap, handle_cap_grant.
474 */
475static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
476			      unsigned issued)
477{
478	unsigned had = __ceph_caps_issued(ci, NULL);
479
480	/*
481	 * Each time we receive FILE_CACHE anew, we increment
482	 * i_rdcache_gen.
483	 */
484	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
485	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
486		ci->i_rdcache_gen++;
487
488	/*
489	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
490	 * don't know what happened to this directory while we didn't
491	 * have the cap.
492	 */
493	if ((issued & CEPH_CAP_FILE_SHARED) &&
494	    (had & CEPH_CAP_FILE_SHARED) == 0) {
495		ci->i_shared_gen++;
496		if (S_ISDIR(ci->vfs_inode.i_mode)) {
497			dout(" marking %p NOT complete\n", &ci->vfs_inode);
498			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
499		}
500	}
501}
502
503/*
504 * Add a capability under the given MDS session.
505 *
506 * Caller should hold session snap_rwsem (read) and s_mutex.
507 *
508 * @fmode is the open file mode, if we are opening a file, otherwise
509 * it is < 0.  (This is so we can atomically add the cap and add an
510 * open file reference to it.)
511 */
512int ceph_add_cap(struct inode *inode,
513		 struct ceph_mds_session *session, u64 cap_id,
514		 int fmode, unsigned issued, unsigned wanted,
515		 unsigned seq, unsigned mseq, u64 realmino, int flags,
516		 struct ceph_cap_reservation *caps_reservation)
517{
518	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
519	struct ceph_inode_info *ci = ceph_inode(inode);
520	struct ceph_cap *new_cap = NULL;
521	struct ceph_cap *cap;
522	int mds = session->s_mds;
523	int actual_wanted;
524
525	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
527
528	/*
529	 * If we are opening the file, include file mode wanted bits
530	 * in wanted.
531	 */
532	if (fmode >= 0)
533		wanted |= ceph_caps_for_mode(fmode);
534
535retry:
536	spin_lock(&inode->i_lock);
537	cap = __get_cap_for_mds(ci, mds);
538	if (!cap) {
539		if (new_cap) {
540			cap = new_cap;
541			new_cap = NULL;
542		} else {
543			spin_unlock(&inode->i_lock);
544			new_cap = get_cap(mdsc, caps_reservation);
545			if (new_cap == NULL)
546				return -ENOMEM;
547			goto retry;
548		}
549
550		cap->issued = 0;
551		cap->implemented = 0;
552		cap->mds = mds;
553		cap->mds_wanted = 0;
554
555		cap->ci = ci;
556		__insert_cap_node(ci, cap);
557
558		/* clear out old exporting info?  (i.e. on cap import) */
559		if (ci->i_cap_exporting_mds == mds) {
560			ci->i_cap_exporting_issued = 0;
561			ci->i_cap_exporting_mseq = 0;
562			ci->i_cap_exporting_mds = -1;
563		}
564
565		/* add to session cap list */
566		cap->session = session;
567		spin_lock(&session->s_cap_lock);
568		list_add_tail(&cap->session_caps, &session->s_caps);
569		session->s_nr_caps++;
570		spin_unlock(&session->s_cap_lock);
571	}
572
573	if (!ci->i_snap_realm) {
574		/*
575		 * add this inode to the appropriate snap realm
576		 */
577		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578							       realmino);
579		if (realm) {
580			ceph_get_snap_realm(mdsc, realm);
581			spin_lock(&realm->inodes_with_caps_lock);
582			ci->i_snap_realm = realm;
583			list_add(&ci->i_snap_realm_item,
584				 &realm->inodes_with_caps);
585			spin_unlock(&realm->inodes_with_caps_lock);
586		} else {
587			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
588			       realmino);
589			WARN_ON(!realm);
590		}
591	}
592
593	__check_cap_issue(ci, cap, issued);
594
595	/*
596	 * If we are issued caps we don't want, or the mds' wanted
597	 * value appears to be off, queue a check so we'll release
598	 * later and/or update the mds wanted value.
599	 */
600	actual_wanted = __ceph_caps_wanted(ci);
601	if ((wanted & ~actual_wanted) ||
602	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
603		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
604		     ceph_cap_string(issued), ceph_cap_string(wanted),
605		     ceph_cap_string(actual_wanted));
606		__cap_delay_requeue(mdsc, ci);
607	}
608
609	if (flags & CEPH_CAP_FLAG_AUTH)
610		ci->i_auth_cap = cap;
611	else if (ci->i_auth_cap == cap)
612		ci->i_auth_cap = NULL;
613
614	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
615	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
616	     ceph_cap_string(issued|cap->issued), seq, mds);
617	cap->cap_id = cap_id;
618	cap->issued = issued;
619	cap->implemented |= issued;
620	cap->mds_wanted |= wanted;
621	cap->seq = seq;
622	cap->issue_seq = seq;
623	cap->mseq = mseq;
624	cap->cap_gen = session->s_cap_gen;
625
626	if (fmode >= 0)
627		__ceph_get_fmode(ci, fmode);
628	spin_unlock(&inode->i_lock);
629	wake_up_all(&ci->i_cap_wq);
630	return 0;
631}
632
633/*
634 * Return true if cap has not timed out and belongs to the current
635 * generation of the MDS session (i.e. has not gone 'stale' due to
636 * us losing touch with the mds).
637 */
638static int __cap_is_valid(struct ceph_cap *cap)
639{
640	unsigned long ttl;
641	u32 gen;
642
643	spin_lock(&cap->session->s_cap_lock);
644	gen = cap->session->s_cap_gen;
645	ttl = cap->session->s_cap_ttl;
646	spin_unlock(&cap->session->s_cap_lock);
647
648	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
649		dout("__cap_is_valid %p cap %p issued %s "
650		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
651		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
652		return 0;
653	}
654
655	return 1;
656}
657
658/*
659 * Return set of valid cap bits issued to us.  Note that caps time
660 * out, and may be invalidated in bulk if the client session times out
661 * and session->s_cap_gen is bumped.
662 */
663int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
664{
665	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
666	struct ceph_cap *cap;
667	struct rb_node *p;
668
669	if (implemented)
670		*implemented = 0;
671	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
672		cap = rb_entry(p, struct ceph_cap, ci_node);
673		if (!__cap_is_valid(cap))
674			continue;
675		dout("__ceph_caps_issued %p cap %p issued %s\n",
676		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
677		have |= cap->issued;
678		if (implemented)
679			*implemented |= cap->implemented;
680	}
681	return have;
682}
683
684/*
685 * Get cap bits issued by caps other than @ocap
686 */
687int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
688{
689	int have = ci->i_snap_caps;
690	struct ceph_cap *cap;
691	struct rb_node *p;
692
693	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
694		cap = rb_entry(p, struct ceph_cap, ci_node);
695		if (cap == ocap)
696			continue;
697		if (!__cap_is_valid(cap))
698			continue;
699		have |= cap->issued;
700	}
701	return have;
702}
703
704/*
705 * Move a cap to the end of the LRU (oldest caps at list head, newest
706 * at list tail).
707 */
708static void __touch_cap(struct ceph_cap *cap)
709{
710	struct ceph_mds_session *s = cap->session;
711
712	spin_lock(&s->s_cap_lock);
713	if (s->s_cap_iterator == NULL) {
714		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
715		     s->s_mds);
716		list_move_tail(&cap->session_caps, &s->s_caps);
717	} else {
718		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
719		     &cap->ci->vfs_inode, cap, s->s_mds);
720	}
721	spin_unlock(&s->s_cap_lock);
722}
723
724/*
725 * Check if we hold the given mask.  If so, move the cap(s) to the
726 * front of their respective LRUs.  (This is the preferred way for
727 * callers to check for caps they want.)
728 */
729int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
730{
731	struct ceph_cap *cap;
732	struct rb_node *p;
733	int have = ci->i_snap_caps;
734
735	if ((have & mask) == mask) {
736		dout("__ceph_caps_issued_mask %p snap issued %s"
737		     " (mask %s)\n", &ci->vfs_inode,
738		     ceph_cap_string(have),
739		     ceph_cap_string(mask));
740		return 1;
741	}
742
743	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
744		cap = rb_entry(p, struct ceph_cap, ci_node);
745		if (!__cap_is_valid(cap))
746			continue;
747		if ((cap->issued & mask) == mask) {
748			dout("__ceph_caps_issued_mask %p cap %p issued %s"
749			     " (mask %s)\n", &ci->vfs_inode, cap,
750			     ceph_cap_string(cap->issued),
751			     ceph_cap_string(mask));
752			if (touch)
753				__touch_cap(cap);
754			return 1;
755		}
756
757		/* does a combination of caps satisfy mask? */
758		have |= cap->issued;
759		if ((have & mask) == mask) {
760			dout("__ceph_caps_issued_mask %p combo issued %s"
761			     " (mask %s)\n", &ci->vfs_inode,
762			     ceph_cap_string(cap->issued),
763			     ceph_cap_string(mask));
764			if (touch) {
765				struct rb_node *q;
766
767				/* touch this + preceeding caps */
768				__touch_cap(cap);
769				for (q = rb_first(&ci->i_caps); q != p;
770				     q = rb_next(q)) {
771					cap = rb_entry(q, struct ceph_cap,
772						       ci_node);
773					if (!__cap_is_valid(cap))
774						continue;
775					__touch_cap(cap);
776				}
777			}
778			return 1;
779		}
780	}
781
782	return 0;
783}
784
785/*
786 * Return true if mask caps are currently being revoked by an MDS.
787 */
788int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
789{
790	struct inode *inode = &ci->vfs_inode;
791	struct ceph_cap *cap;
792	struct rb_node *p;
793	int ret = 0;
794
795	spin_lock(&inode->i_lock);
796	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
797		cap = rb_entry(p, struct ceph_cap, ci_node);
798		if (__cap_is_valid(cap) &&
799		    (cap->implemented & ~cap->issued & mask)) {
800			ret = 1;
801			break;
802		}
803	}
804	spin_unlock(&inode->i_lock);
805	dout("ceph_caps_revoking %p %s = %d\n", inode,
806	     ceph_cap_string(mask), ret);
807	return ret;
808}
809
810int __ceph_caps_used(struct ceph_inode_info *ci)
811{
812	int used = 0;
813	if (ci->i_pin_ref)
814		used |= CEPH_CAP_PIN;
815	if (ci->i_rd_ref)
816		used |= CEPH_CAP_FILE_RD;
817	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
818		used |= CEPH_CAP_FILE_CACHE;
819	if (ci->i_wr_ref)
820		used |= CEPH_CAP_FILE_WR;
821	if (ci->i_wrbuffer_ref)
822		used |= CEPH_CAP_FILE_BUFFER;
823	return used;
824}
825
826/*
827 * wanted, by virtue of open file modes
828 */
829int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
830{
831	int want = 0;
832	int mode;
833	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
834		if (ci->i_nr_by_mode[mode])
835			want |= ceph_caps_for_mode(mode);
836	return want;
837}
838
839/*
840 * Return caps we have registered with the MDS(s) as 'wanted'.
841 */
842int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
843{
844	struct ceph_cap *cap;
845	struct rb_node *p;
846	int mds_wanted = 0;
847
848	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
849		cap = rb_entry(p, struct ceph_cap, ci_node);
850		if (!__cap_is_valid(cap))
851			continue;
852		mds_wanted |= cap->mds_wanted;
853	}
854	return mds_wanted;
855}
856
857/*
858 * called under i_lock
859 */
860static int __ceph_is_any_caps(struct ceph_inode_info *ci)
861{
862	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
863}
864
865/*
866 * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
867 *
868 * caller should hold i_lock.
869 * caller will not hold session s_mutex if called from destroy_inode.
870 */
871void __ceph_remove_cap(struct ceph_cap *cap)
872{
873	struct ceph_mds_session *session = cap->session;
874	struct ceph_inode_info *ci = cap->ci;
875	struct ceph_mds_client *mdsc =
876		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
877	int removed = 0;
878
879	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
880
881	/* remove from session list */
882	spin_lock(&session->s_cap_lock);
883	if (session->s_cap_iterator == cap) {
884		/* not yet, we are iterating over this very cap */
885		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
886		     cap, cap->session);
887	} else {
888		list_del_init(&cap->session_caps);
889		session->s_nr_caps--;
890		cap->session = NULL;
891		removed = 1;
892	}
893	/* protect backpointer with s_cap_lock: see iterate_session_caps */
894	cap->ci = NULL;
895	spin_unlock(&session->s_cap_lock);
896
897	/* remove from inode list */
898	rb_erase(&cap->ci_node, &ci->i_caps);
899	if (ci->i_auth_cap == cap)
900		ci->i_auth_cap = NULL;
901
902	if (removed)
903		ceph_put_cap(mdsc, cap);
904
905	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
906		struct ceph_snap_realm *realm = ci->i_snap_realm;
907		spin_lock(&realm->inodes_with_caps_lock);
908		list_del_init(&ci->i_snap_realm_item);
909		ci->i_snap_realm_counter++;
910		ci->i_snap_realm = NULL;
911		spin_unlock(&realm->inodes_with_caps_lock);
912		ceph_put_snap_realm(mdsc, realm);
913	}
914	if (!__ceph_is_any_real_caps(ci))
915		__cap_delay_cancel(mdsc, ci);
916}
917
918/*
919 * Build and send a cap message to the given MDS.
920 *
921 * Caller should be holding s_mutex.
922 */
923static int send_cap_msg(struct ceph_mds_session *session,
924			u64 ino, u64 cid, int op,
925			int caps, int wanted, int dirty,
926			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
927			u64 size, u64 max_size,
928			struct timespec *mtime, struct timespec *atime,
929			u64 time_warp_seq,
930			uid_t uid, gid_t gid, mode_t mode,
931			u64 xattr_version,
932			struct ceph_buffer *xattrs_buf,
933			u64 follows)
934{
935	struct ceph_mds_caps *fc;
936	struct ceph_msg *msg;
937
938	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
939	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
940	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
941	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
942	     ceph_cap_string(dirty),
943	     seq, issue_seq, mseq, follows, size, max_size,
944	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
945
946	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
947	if (!msg)
948		return -ENOMEM;
949
950	msg->hdr.tid = cpu_to_le64(flush_tid);
951
952	fc = msg->front.iov_base;
953	memset(fc, 0, sizeof(*fc));
954
955	fc->cap_id = cpu_to_le64(cid);
956	fc->op = cpu_to_le32(op);
957	fc->seq = cpu_to_le32(seq);
958	fc->issue_seq = cpu_to_le32(issue_seq);
959	fc->migrate_seq = cpu_to_le32(mseq);
960	fc->caps = cpu_to_le32(caps);
961	fc->wanted = cpu_to_le32(wanted);
962	fc->dirty = cpu_to_le32(dirty);
963	fc->ino = cpu_to_le64(ino);
964	fc->snap_follows = cpu_to_le64(follows);
965
966	fc->size = cpu_to_le64(size);
967	fc->max_size = cpu_to_le64(max_size);
968	if (mtime)
969		ceph_encode_timespec(&fc->mtime, mtime);
970	if (atime)
971		ceph_encode_timespec(&fc->atime, atime);
972	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
973
974	fc->uid = cpu_to_le32(uid);
975	fc->gid = cpu_to_le32(gid);
976	fc->mode = cpu_to_le32(mode);
977
978	fc->xattr_version = cpu_to_le64(xattr_version);
979	if (xattrs_buf) {
980		msg->middle = ceph_buffer_get(xattrs_buf);
981		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
982		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983	}
984
985	ceph_con_send(&session->s_con, msg);
986	return 0;
987}
988
989static void __queue_cap_release(struct ceph_mds_session *session,
990				u64 ino, u64 cap_id, u32 migrate_seq,
991				u32 issue_seq)
992{
993	struct ceph_msg *msg;
994	struct ceph_mds_cap_release *head;
995	struct ceph_mds_cap_item *item;
996
997	spin_lock(&session->s_cap_lock);
998	BUG_ON(!session->s_num_cap_releases);
999	msg = list_first_entry(&session->s_cap_releases,
1000			       struct ceph_msg, list_head);
1001
1002	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1003	     ino, session->s_mds, msg, session->s_num_cap_releases);
1004
1005	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1006	head = msg->front.iov_base;
1007	head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1008	item = msg->front.iov_base + msg->front.iov_len;
1009	item->ino = cpu_to_le64(ino);
1010	item->cap_id = cpu_to_le64(cap_id);
1011	item->migrate_seq = cpu_to_le32(migrate_seq);
1012	item->seq = cpu_to_le32(issue_seq);
1013
1014	session->s_num_cap_releases--;
1015
1016	msg->front.iov_len += sizeof(*item);
1017	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1018		dout(" release msg %p full\n", msg);
1019		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1020	} else {
1021		dout(" release msg %p at %d/%d (%d)\n", msg,
1022		     (int)le32_to_cpu(head->num),
1023		     (int)CEPH_CAPS_PER_RELEASE,
1024		     (int)msg->front.iov_len);
1025	}
1026	spin_unlock(&session->s_cap_lock);
1027}
1028
1029/*
1030 * Queue cap releases when an inode is dropped from our cache.  Since
1031 * inode is about to be destroyed, there is no need for i_lock.
1032 */
1033void ceph_queue_caps_release(struct inode *inode)
1034{
1035	struct ceph_inode_info *ci = ceph_inode(inode);
1036	struct rb_node *p;
1037
1038	p = rb_first(&ci->i_caps);
1039	while (p) {
1040		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1041		struct ceph_mds_session *session = cap->session;
1042
1043		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1044				    cap->mseq, cap->issue_seq);
1045		p = rb_next(p);
1046		__ceph_remove_cap(cap);
1047	}
1048}
1049
1050/*
1051 * Send a cap msg on the given inode.  Update our caps state, then
1052 * drop i_lock and send the message.
1053 *
1054 * Make note of max_size reported/requested from mds, revoked caps
1055 * that have now been implemented.
1056 *
1057 * Make half-hearted attempt ot to invalidate page cache if we are
1058 * dropping RDCACHE.  Note that this will leave behind locked pages
1059 * that we'll then need to deal with elsewhere.
1060 *
1061 * Return non-zero if delayed release, or we experienced an error
1062 * such that the caller should requeue + retry later.
1063 *
1064 * called with i_lock, then drops it.
1065 * caller should hold snap_rwsem (read), s_mutex.
1066 */
1067static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1068		      int op, int used, int want, int retain, int flushing,
1069		      unsigned *pflush_tid)
1070	__releases(cap->ci->vfs_inode->i_lock)
1071{
1072	struct ceph_inode_info *ci = cap->ci;
1073	struct inode *inode = &ci->vfs_inode;
1074	u64 cap_id = cap->cap_id;
1075	int held, revoking, dropping, keep;
1076	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1077	u64 size, max_size;
1078	struct timespec mtime, atime;
1079	int wake = 0;
1080	mode_t mode;
1081	uid_t uid;
1082	gid_t gid;
1083	struct ceph_mds_session *session;
1084	u64 xattr_version = 0;
1085	struct ceph_buffer *xattr_blob = NULL;
1086	int delayed = 0;
1087	u64 flush_tid = 0;
1088	int i;
1089	int ret;
1090
1091	held = cap->issued | cap->implemented;
1092	revoking = cap->implemented & ~cap->issued;
1093	retain &= ~revoking;
1094	dropping = cap->issued & ~retain;
1095
1096	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1097	     inode, cap, cap->session,
1098	     ceph_cap_string(held), ceph_cap_string(held & retain),
1099	     ceph_cap_string(revoking));
1100	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1101
1102	session = cap->session;
1103
1104	/* don't release wanted unless we've waited a bit. */
1105	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1106	    time_before(jiffies, ci->i_hold_caps_min)) {
1107		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1108		     ceph_cap_string(cap->issued),
1109		     ceph_cap_string(cap->issued & retain),
1110		     ceph_cap_string(cap->mds_wanted),
1111		     ceph_cap_string(want));
1112		want |= cap->mds_wanted;
1113		retain |= cap->issued;
1114		delayed = 1;
1115	}
1116	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1117
1118	cap->issued &= retain;  /* drop bits we don't want */
1119	if (cap->implemented & ~cap->issued) {
1120		/*
1121		 * Wake up any waiters on wanted -> needed transition.
1122		 * This is due to the weird transition from buffered
1123		 * to sync IO... we need to flush dirty pages _before_
1124		 * allowing sync writes to avoid reordering.
1125		 */
1126		wake = 1;
1127	}
1128	cap->implemented &= cap->issued | used;
1129	cap->mds_wanted = want;
1130
1131	if (flushing) {
1132		/*
1133		 * assign a tid for flush operations so we can avoid
1134		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1135		 * clean type races.  track latest tid for every bit
1136		 * so we can handle flush AxFw, flush Fw, and have the
1137		 * first ack clean Ax.
1138		 */
1139		flush_tid = ++ci->i_cap_flush_last_tid;
1140		if (pflush_tid)
1141			*pflush_tid = flush_tid;
1142		dout(" cap_flush_tid %d\n", (int)flush_tid);
1143		for (i = 0; i < CEPH_CAP_BITS; i++)
1144			if (flushing & (1 << i))
1145				ci->i_cap_flush_tid[i] = flush_tid;
1146
1147		follows = ci->i_head_snapc->seq;
1148	} else {
1149		follows = 0;
1150	}
1151
1152	keep = cap->implemented;
1153	seq = cap->seq;
1154	issue_seq = cap->issue_seq;
1155	mseq = cap->mseq;
1156	size = inode->i_size;
1157	ci->i_reported_size = size;
1158	max_size = ci->i_wanted_max_size;
1159	ci->i_requested_max_size = max_size;
1160	mtime = inode->i_mtime;
1161	atime = inode->i_atime;
1162	time_warp_seq = ci->i_time_warp_seq;
1163	uid = inode->i_uid;
1164	gid = inode->i_gid;
1165	mode = inode->i_mode;
1166
1167	if (flushing & CEPH_CAP_XATTR_EXCL) {
1168		__ceph_build_xattrs_blob(ci);
1169		xattr_blob = ci->i_xattrs.blob;
1170		xattr_version = ci->i_xattrs.version;
1171	}
1172
1173	spin_unlock(&inode->i_lock);
1174
1175	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1176		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1177		size, max_size, &mtime, &atime, time_warp_seq,
1178		uid, gid, mode, xattr_version, xattr_blob,
1179		follows);
1180	if (ret < 0) {
1181		dout("error sending cap msg, must requeue %p\n", inode);
1182		delayed = 1;
1183	}
1184
1185	if (wake)
1186		wake_up_all(&ci->i_cap_wq);
1187
1188	return delayed;
1189}
1190
1191/*
1192 * When a snapshot is taken, clients accumulate dirty metadata on
1193 * inodes with capabilities in ceph_cap_snaps to describe the file
1194 * state at the time the snapshot was taken.  This must be flushed
1195 * asynchronously back to the MDS once sync writes complete and dirty
1196 * data is written out.
1197 *
1198 * Unless @again is true, skip cap_snaps that were already sent to
1199 * the MDS (i.e., during this session).
1200 *
1201 * Called under i_lock.  Takes s_mutex as needed.
1202 */
1203void __ceph_flush_snaps(struct ceph_inode_info *ci,
1204			struct ceph_mds_session **psession,
1205			int again)
1206		__releases(ci->vfs_inode->i_lock)
1207		__acquires(ci->vfs_inode->i_lock)
1208{
1209	struct inode *inode = &ci->vfs_inode;
1210	int mds;
1211	struct ceph_cap_snap *capsnap;
1212	u32 mseq;
1213	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1214	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1215						    session->s_mutex */
1216	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1217			     i_cap_snaps list, and skip these entries next time
1218			     around to avoid an infinite loop */
1219
1220	if (psession)
1221		session = *psession;
1222
1223	dout("__flush_snaps %p\n", inode);
1224retry:
1225	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1226		/* avoid an infiniute loop after retry */
1227		if (capsnap->follows < next_follows)
1228			continue;
1229		/*
1230		 * we need to wait for sync writes to complete and for dirty
1231		 * pages to be written out.
1232		 */
1233		if (capsnap->dirty_pages || capsnap->writing)
1234			break;
1235
1236		/*
1237		 * if cap writeback already occurred, we should have dropped
1238		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1239		 */
1240		BUG_ON(capsnap->dirty == 0);
1241
1242		/* pick mds, take s_mutex */
1243		if (ci->i_auth_cap == NULL) {
1244			dout("no auth cap (migrating?), doing nothing\n");
1245			goto out;
1246		}
1247
1248		/* only flush each capsnap once */
1249		if (!again && !list_empty(&capsnap->flushing_item)) {
1250			dout("already flushed %p, skipping\n", capsnap);
1251			continue;
1252		}
1253
1254		mds = ci->i_auth_cap->session->s_mds;
1255		mseq = ci->i_auth_cap->mseq;
1256
1257		if (session && session->s_mds != mds) {
1258			dout("oops, wrong session %p mutex\n", session);
1259			mutex_unlock(&session->s_mutex);
1260			ceph_put_mds_session(session);
1261			session = NULL;
1262		}
1263		if (!session) {
1264			spin_unlock(&inode->i_lock);
1265			mutex_lock(&mdsc->mutex);
1266			session = __ceph_lookup_mds_session(mdsc, mds);
1267			mutex_unlock(&mdsc->mutex);
1268			if (session) {
1269				dout("inverting session/ino locks on %p\n",
1270				     session);
1271				mutex_lock(&session->s_mutex);
1272			}
1273			/*
1274			 * if session == NULL, we raced against a cap
1275			 * deletion or migration.  retry, and we'll
1276			 * get a better @mds value next time.
1277			 */
1278			spin_lock(&inode->i_lock);
1279			goto retry;
1280		}
1281
1282		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1283		atomic_inc(&capsnap->nref);
1284		if (!list_empty(&capsnap->flushing_item))
1285			list_del_init(&capsnap->flushing_item);
1286		list_add_tail(&capsnap->flushing_item,
1287			      &session->s_cap_snaps_flushing);
1288		spin_unlock(&inode->i_lock);
1289
1290		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1291		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1292		send_cap_msg(session, ceph_vino(inode).ino, 0,
1293			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1294			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1295			     capsnap->size, 0,
1296			     &capsnap->mtime, &capsnap->atime,
1297			     capsnap->time_warp_seq,
1298			     capsnap->uid, capsnap->gid, capsnap->mode,
1299			     capsnap->xattr_version, capsnap->xattr_blob,
1300			     capsnap->follows);
1301
1302		next_follows = capsnap->follows + 1;
1303		ceph_put_cap_snap(capsnap);
1304
1305		spin_lock(&inode->i_lock);
1306		goto retry;
1307	}
1308
1309	/* we flushed them all; remove this inode from the queue */
1310	spin_lock(&mdsc->snap_flush_lock);
1311	list_del_init(&ci->i_snap_flush_item);
1312	spin_unlock(&mdsc->snap_flush_lock);
1313
1314out:
1315	if (psession)
1316		*psession = session;
1317	else if (session) {
1318		mutex_unlock(&session->s_mutex);
1319		ceph_put_mds_session(session);
1320	}
1321}
1322
1323static void ceph_flush_snaps(struct ceph_inode_info *ci)
1324{
1325	struct inode *inode = &ci->vfs_inode;
1326
1327	spin_lock(&inode->i_lock);
1328	__ceph_flush_snaps(ci, NULL, 0);
1329	spin_unlock(&inode->i_lock);
1330}
1331
1332/*
1333 * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1334 * list.
1335 */
1336void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1337{
1338	struct ceph_mds_client *mdsc =
1339		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1340	struct inode *inode = &ci->vfs_inode;
1341	int was = ci->i_dirty_caps;
1342	int dirty = 0;
1343
1344	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1345	     ceph_cap_string(mask), ceph_cap_string(was),
1346	     ceph_cap_string(was | mask));
1347	ci->i_dirty_caps |= mask;
1348	if (was == 0) {
1349		if (!ci->i_head_snapc)
1350			ci->i_head_snapc = ceph_get_snap_context(
1351				ci->i_snap_realm->cached_context);
1352		dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
1353			ci->i_head_snapc);
1354		BUG_ON(!list_empty(&ci->i_dirty_item));
1355		spin_lock(&mdsc->cap_dirty_lock);
1356		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1357		spin_unlock(&mdsc->cap_dirty_lock);
1358		if (ci->i_flushing_caps == 0) {
1359			igrab(inode);
1360			dirty |= I_DIRTY_SYNC;
1361		}
1362	}
1363	BUG_ON(list_empty(&ci->i_dirty_item));
1364	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1365	    (mask & CEPH_CAP_FILE_BUFFER))
1366		dirty |= I_DIRTY_DATASYNC;
1367	if (dirty)
1368		__mark_inode_dirty(inode, dirty);
1369	__cap_delay_requeue(mdsc, ci);
1370}
1371
1372/*
1373 * Add dirty inode to the flushing list.  Assigned a seq number so we
1374 * can wait for caps to flush without starving.
1375 *
1376 * Called under i_lock.
1377 */
1378static int __mark_caps_flushing(struct inode *inode,
1379				 struct ceph_mds_session *session)
1380{
1381	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1382	struct ceph_inode_info *ci = ceph_inode(inode);
1383	int flushing;
1384
1385	BUG_ON(ci->i_dirty_caps == 0);
1386	BUG_ON(list_empty(&ci->i_dirty_item));
1387
1388	flushing = ci->i_dirty_caps;
1389	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1390	     ceph_cap_string(flushing),
1391	     ceph_cap_string(ci->i_flushing_caps),
1392	     ceph_cap_string(ci->i_flushing_caps | flushing));
1393	ci->i_flushing_caps |= flushing;
1394	ci->i_dirty_caps = 0;
1395	dout(" inode %p now !dirty\n", inode);
1396
1397	spin_lock(&mdsc->cap_dirty_lock);
1398	list_del_init(&ci->i_dirty_item);
1399
1400	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1401	if (list_empty(&ci->i_flushing_item)) {
1402		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1403		mdsc->num_cap_flushing++;
1404		dout(" inode %p now flushing seq %lld\n", inode,
1405		     ci->i_cap_flush_seq);
1406	} else {
1407		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1408		dout(" inode %p now flushing (more) seq %lld\n", inode,
1409		     ci->i_cap_flush_seq);
1410	}
1411	spin_unlock(&mdsc->cap_dirty_lock);
1412
1413	return flushing;
1414}
1415
1416/*
1417 * try to invalidate mapping pages without blocking.
1418 */
1419static int mapping_is_empty(struct address_space *mapping)
1420{
1421	struct page *page = find_get_page(mapping, 0);
1422
1423	if (!page)
1424		return 1;
1425
1426	put_page(page);
1427	return 0;
1428}
1429
1430static int try_nonblocking_invalidate(struct inode *inode)
1431{
1432	struct ceph_inode_info *ci = ceph_inode(inode);
1433	u32 invalidating_gen = ci->i_rdcache_gen;
1434
1435	spin_unlock(&inode->i_lock);
1436	invalidate_mapping_pages(&inode->i_data, 0, -1);
1437	spin_lock(&inode->i_lock);
1438
1439	if (mapping_is_empty(&inode->i_data) &&
1440	    invalidating_gen == ci->i_rdcache_gen) {
1441		/* success. */
1442		dout("try_nonblocking_invalidate %p success\n", inode);
1443		ci->i_rdcache_gen = 0;
1444		ci->i_rdcache_revoking = 0;
1445		return 0;
1446	}
1447	dout("try_nonblocking_invalidate %p failed\n", inode);
1448	return -1;
1449}
1450
1451/*
1452 * Swiss army knife function to examine currently used and wanted
1453 * versus held caps.  Release, flush, ack revoked caps to mds as
1454 * appropriate.
1455 *
1456 *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1457 *    cap release further.
1458 *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1459 *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1460 *    further delay.
1461 */
1462void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1463		     struct ceph_mds_session *session)
1464{
1465	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1466	struct ceph_mds_client *mdsc = &client->mdsc;
1467	struct inode *inode = &ci->vfs_inode;
1468	struct ceph_cap *cap;
1469	int file_wanted, used;
1470	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1471	int issued, implemented, want, retain, revoking, flushing = 0;
1472	int mds = -1;   /* keep track of how far we've gone through i_caps list
1473			   to avoid an infinite loop on retry */
1474	struct rb_node *p;
1475	int tried_invalidate = 0;
1476	int delayed = 0, sent = 0, force_requeue = 0, num;
1477	int queue_invalidate = 0;
1478	int is_delayed = flags & CHECK_CAPS_NODELAY;
1479
1480	/* if we are unmounting, flush any unused caps immediately. */
1481	if (mdsc->stopping)
1482		is_delayed = 1;
1483
1484	spin_lock(&inode->i_lock);
1485
1486	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1487		flags |= CHECK_CAPS_FLUSH;
1488
1489	/* flush snaps first time around only */
1490	if (!list_empty(&ci->i_cap_snaps))
1491		__ceph_flush_snaps(ci, &session, 0);
1492	goto retry_locked;
1493retry:
1494	spin_lock(&inode->i_lock);
1495retry_locked:
1496	file_wanted = __ceph_caps_file_wanted(ci);
1497	used = __ceph_caps_used(ci);
1498	want = file_wanted | used;
1499	issued = __ceph_caps_issued(ci, &implemented);
1500	revoking = implemented & ~issued;
1501
1502	retain = want | CEPH_CAP_PIN;
1503	if (!mdsc->stopping && inode->i_nlink > 0) {
1504		if (want) {
1505			retain |= CEPH_CAP_ANY;       /* be greedy */
1506		} else {
1507			retain |= CEPH_CAP_ANY_SHARED;
1508			/*
1509			 * keep RD only if we didn't have the file open RW,
1510			 * because then the mds would revoke it anyway to
1511			 * journal max_size=0.
1512			 */
1513			if (ci->i_max_size == 0)
1514				retain |= CEPH_CAP_ANY_RD;
1515		}
1516	}
1517
1518	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1519	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1520	     ceph_cap_string(file_wanted),
1521	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1522	     ceph_cap_string(ci->i_flushing_caps),
1523	     ceph_cap_string(issued), ceph_cap_string(revoking),
1524	     ceph_cap_string(retain),
1525	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1526	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1527	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1528
1529	/*
1530	 * If we no longer need to hold onto old our caps, and we may
1531	 * have cached pages, but don't want them, then try to invalidate.
1532	 * If we fail, it's because pages are locked.... try again later.
1533	 */
1534	if ((!is_delayed || mdsc->stopping) &&
1535	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1536	    ci->i_rdcache_gen &&                     /* may have cached pages */
1537	    (file_wanted == 0 ||                     /* no open files */
1538	     (revoking & (CEPH_CAP_FILE_CACHE|
1539			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1540	    !tried_invalidate) {
1541		dout("check_caps trying to invalidate on %p\n", inode);
1542		if (try_nonblocking_invalidate(inode) < 0) {
1543			if (revoking & (CEPH_CAP_FILE_CACHE|
1544					CEPH_CAP_FILE_LAZYIO)) {
1545				dout("check_caps queuing invalidate\n");
1546				queue_invalidate = 1;
1547				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1548			} else {
1549				dout("check_caps failed to invalidate pages\n");
1550				/* we failed to invalidate pages.  check these
1551				   caps again later. */
1552				force_requeue = 1;
1553				__cap_set_timeouts(mdsc, ci);
1554			}
1555		}
1556		tried_invalidate = 1;
1557		goto retry_locked;
1558	}
1559
1560	num = 0;
1561	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1562		cap = rb_entry(p, struct ceph_cap, ci_node);
1563		num++;
1564
1565		/* avoid looping forever */
1566		if (mds >= cap->mds ||
1567		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1568			continue;
1569
1570		/* NOTE: no side-effects allowed, until we take s_mutex */
1571
1572		revoking = cap->implemented & ~cap->issued;
1573		if (revoking)
1574			dout(" mds%d revoking %s\n", cap->mds,
1575			     ceph_cap_string(revoking));
1576
1577		if (cap == ci->i_auth_cap &&
1578		    (cap->issued & CEPH_CAP_FILE_WR)) {
1579			/* request larger max_size from MDS? */
1580			if (ci->i_wanted_max_size > ci->i_max_size &&
1581			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1582				dout("requesting new max_size\n");
1583				goto ack;
1584			}
1585
1586			/* approaching file_max? */
1587			if ((inode->i_size << 1) >= ci->i_max_size &&
1588			    (ci->i_reported_size << 1) < ci->i_max_size) {
1589				dout("i_size approaching max_size\n");
1590				goto ack;
1591			}
1592		}
1593		/* flush anything dirty? */
1594		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1595		    ci->i_dirty_caps) {
1596			dout("flushing dirty caps\n");
1597			goto ack;
1598		}
1599
1600		/* completed revocation? going down and there are no caps? */
1601		if (revoking && (revoking & used) == 0) {
1602			dout("completed revocation of %s\n",
1603			     ceph_cap_string(cap->implemented & ~cap->issued));
1604			goto ack;
1605		}
1606
1607		/* want more caps from mds? */
1608		if (want & ~(cap->mds_wanted | cap->issued))
1609			goto ack;
1610
1611		/* things we might delay */
1612		if ((cap->issued & ~retain) == 0 &&
1613		    cap->mds_wanted == want)
1614			continue;     /* nope, all good */
1615
1616		if (is_delayed)
1617			goto ack;
1618
1619		/* delay? */
1620		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1621		    time_before(jiffies, ci->i_hold_caps_max)) {
1622			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1623			     ceph_cap_string(cap->issued),
1624			     ceph_cap_string(cap->issued & retain),
1625			     ceph_cap_string(cap->mds_wanted),
1626			     ceph_cap_string(want));
1627			delayed++;
1628			continue;
1629		}
1630
1631ack:
1632		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1633			dout(" skipping %p I_NOFLUSH set\n", inode);
1634			continue;
1635		}
1636
1637		if (session && session != cap->session) {
1638			dout("oops, wrong session %p mutex\n", session);
1639			mutex_unlock(&session->s_mutex);
1640			session = NULL;
1641		}
1642		if (!session) {
1643			session = cap->session;
1644			if (mutex_trylock(&session->s_mutex) == 0) {
1645				dout("inverting session/ino locks on %p\n",
1646				     session);
1647				spin_unlock(&inode->i_lock);
1648				if (took_snap_rwsem) {
1649					up_read(&mdsc->snap_rwsem);
1650					took_snap_rwsem = 0;
1651				}
1652				mutex_lock(&session->s_mutex);
1653				goto retry;
1654			}
1655		}
1656		/* take snap_rwsem after session mutex */
1657		if (!took_snap_rwsem) {
1658			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1659				dout("inverting snap/in locks on %p\n",
1660				     inode);
1661				spin_unlock(&inode->i_lock);
1662				down_read(&mdsc->snap_rwsem);
1663				took_snap_rwsem = 1;
1664				goto retry;
1665			}
1666			took_snap_rwsem = 1;
1667		}
1668
1669		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1670			flushing = __mark_caps_flushing(inode, session);
1671
1672		mds = cap->mds;  /* remember mds, so we don't repeat */
1673		sent++;
1674
1675		/* __send_cap drops i_lock */
1676		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1677				      retain, flushing, NULL);
1678		goto retry; /* retake i_lock and restart our cap scan. */
1679	}
1680
1681	/*
1682	 * Reschedule delayed caps release if we delayed anything,
1683	 * otherwise cancel.
1684	 */
1685	if (delayed && is_delayed)
1686		force_requeue = 1;   /* __send_cap delayed release; requeue */
1687	if (!delayed && !is_delayed)
1688		__cap_delay_cancel(mdsc, ci);
1689	else if (!is_delayed || force_requeue)
1690		__cap_delay_requeue(mdsc, ci);
1691
1692	spin_unlock(&inode->i_lock);
1693
1694	if (queue_invalidate)
1695		ceph_queue_invalidate(inode);
1696
1697	if (session)
1698		mutex_unlock(&session->s_mutex);
1699	if (took_snap_rwsem)
1700		up_read(&mdsc->snap_rwsem);
1701}
1702
1703/*
1704 * Try to flush dirty caps back to the auth mds.
1705 */
1706static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1707			  unsigned *flush_tid)
1708{
1709	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1710	struct ceph_inode_info *ci = ceph_inode(inode);
1711	int unlock_session = session ? 0 : 1;
1712	int flushing = 0;
1713
1714retry:
1715	spin_lock(&inode->i_lock);
1716	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1717		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1718		goto out;
1719	}
1720	if (ci->i_dirty_caps && ci->i_auth_cap) {
1721		struct ceph_cap *cap = ci->i_auth_cap;
1722		int used = __ceph_caps_used(ci);
1723		int want = __ceph_caps_wanted(ci);
1724		int delayed;
1725
1726		if (!session) {
1727			spin_unlock(&inode->i_lock);
1728			session = cap->session;
1729			mutex_lock(&session->s_mutex);
1730			goto retry;
1731		}
1732		BUG_ON(session != cap->session);
1733		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1734			goto out;
1735
1736		flushing = __mark_caps_flushing(inode, session);
1737
1738		/* __send_cap drops i_lock */
1739		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1740				     cap->issued | cap->implemented, flushing,
1741				     flush_tid);
1742		if (!delayed)
1743			goto out_unlocked;
1744
1745		spin_lock(&inode->i_lock);
1746		__cap_delay_requeue(mdsc, ci);
1747	}
1748out:
1749	spin_unlock(&inode->i_lock);
1750out_unlocked:
1751	if (session && unlock_session)
1752		mutex_unlock(&session->s_mutex);
1753	return flushing;
1754}
1755
1756/*
1757 * Return true if we've flushed caps through the given flush_tid.
1758 */
1759static int caps_are_flushed(struct inode *inode, unsigned tid)
1760{
1761	struct ceph_inode_info *ci = ceph_inode(inode);
1762	int i, ret = 1;
1763
1764	spin_lock(&inode->i_lock);
1765	for (i = 0; i < CEPH_CAP_BITS; i++)
1766		if ((ci->i_flushing_caps & (1 << i)) &&
1767		    ci->i_cap_flush_tid[i] <= tid) {
1768			/* still flushing this bit */
1769			ret = 0;
1770			break;
1771		}
1772	spin_unlock(&inode->i_lock);
1773	return ret;
1774}
1775
1776/*
1777 * Wait on any unsafe replies for the given inode.  First wait on the
1778 * newest request, and make that the upper bound.  Then, if there are
1779 * more requests, keep waiting on the oldest as long as it is still older
1780 * than the original request.
1781 */
1782static void sync_write_wait(struct inode *inode)
1783{
1784	struct ceph_inode_info *ci = ceph_inode(inode);
1785	struct list_head *head = &ci->i_unsafe_writes;
1786	struct ceph_osd_request *req;
1787	u64 last_tid;
1788
1789	spin_lock(&ci->i_unsafe_lock);
1790	if (list_empty(head))
1791		goto out;
1792
1793	/* set upper bound as _last_ entry in chain */
1794	req = list_entry(head->prev, struct ceph_osd_request,
1795			 r_unsafe_item);
1796	last_tid = req->r_tid;
1797
1798	do {
1799		ceph_osdc_get_request(req);
1800		spin_unlock(&ci->i_unsafe_lock);
1801		dout("sync_write_wait on tid %llu (until %llu)\n",
1802		     req->r_tid, last_tid);
1803		wait_for_completion(&req->r_safe_completion);
1804		spin_lock(&ci->i_unsafe_lock);
1805		ceph_osdc_put_request(req);
1806
1807		/*
1808		 * from here on look at first entry in chain, since we
1809		 * only want to wait for anything older than last_tid
1810		 */
1811		if (list_empty(head))
1812			break;
1813		req = list_entry(head->next, struct ceph_osd_request,
1814				 r_unsafe_item);
1815	} while (req->r_tid < last_tid);
1816out:
1817	spin_unlock(&ci->i_unsafe_lock);
1818}
1819
1820int ceph_fsync(struct file *file, int datasync)
1821{
1822	struct inode *inode = file->f_mapping->host;
1823	struct ceph_inode_info *ci = ceph_inode(inode);
1824	unsigned flush_tid;
1825	int ret;
1826	int dirty;
1827
1828	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1829	sync_write_wait(inode);
1830
1831	ret = filemap_write_and_wait(inode->i_mapping);
1832	if (ret < 0)
1833		return ret;
1834
1835	dirty = try_flush_caps(inode, NULL, &flush_tid);
1836	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1837
1838	/*
1839	 * only wait on non-file metadata writeback (the mds
1840	 * can recover size and mtime, so we don't need to
1841	 * wait for that)
1842	 */
1843	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1844		dout("fsync waiting for flush_tid %u\n", flush_tid);
1845		ret = wait_event_interruptible(ci->i_cap_wq,
1846				       caps_are_flushed(inode, flush_tid));
1847	}
1848
1849	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1850	return ret;
1851}
1852
1853/*
1854 * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1855 * queue inode for flush but don't do so immediately, because we can
1856 * get by with fewer MDS messages if we wait for data writeback to
1857 * complete first.
1858 */
1859int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1860{
1861	struct ceph_inode_info *ci = ceph_inode(inode);
1862	unsigned flush_tid;
1863	int err = 0;
1864	int dirty;
1865	int wait = wbc->sync_mode == WB_SYNC_ALL;
1866
1867	dout("write_inode %p wait=%d\n", inode, wait);
1868	if (wait) {
1869		dirty = try_flush_caps(inode, NULL, &flush_tid);
1870		if (dirty)
1871			err = wait_event_interruptible(ci->i_cap_wq,
1872				       caps_are_flushed(inode, flush_tid));
1873	} else {
1874		struct ceph_mds_client *mdsc =
1875			&ceph_sb_to_client(inode->i_sb)->mdsc;
1876
1877		spin_lock(&inode->i_lock);
1878		if (__ceph_caps_dirty(ci))
1879			__cap_delay_requeue_front(mdsc, ci);
1880		spin_unlock(&inode->i_lock);
1881	}
1882	return err;
1883}
1884
1885/*
1886 * After a recovering MDS goes active, we need to resend any caps
1887 * we were flushing.
1888 *
1889 * Caller holds session->s_mutex.
1890 */
1891static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1892				   struct ceph_mds_session *session)
1893{
1894	struct ceph_cap_snap *capsnap;
1895
1896	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1897	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1898			    flushing_item) {
1899		struct ceph_inode_info *ci = capsnap->ci;
1900		struct inode *inode = &ci->vfs_inode;
1901		struct ceph_cap *cap;
1902
1903		spin_lock(&inode->i_lock);
1904		cap = ci->i_auth_cap;
1905		if (cap && cap->session == session) {
1906			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1907			     cap, capsnap);
1908			__ceph_flush_snaps(ci, &session, 1);
1909		} else {
1910			pr_err("%p auth cap %p not mds%d ???\n", inode,
1911			       cap, session->s_mds);
1912		}
1913		spin_unlock(&inode->i_lock);
1914	}
1915}
1916
1917void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1918			     struct ceph_mds_session *session)
1919{
1920	struct ceph_inode_info *ci;
1921
1922	kick_flushing_capsnaps(mdsc, session);
1923
1924	dout("kick_flushing_caps mds%d\n", session->s_mds);
1925	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1926		struct inode *inode = &ci->vfs_inode;
1927		struct ceph_cap *cap;
1928		int delayed = 0;
1929
1930		spin_lock(&inode->i_lock);
1931		cap = ci->i_auth_cap;
1932		if (cap && cap->session == session) {
1933			dout("kick_flushing_caps %p cap %p %s\n", inode,
1934			     cap, ceph_cap_string(ci->i_flushing_caps));
1935			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1936					     __ceph_caps_used(ci),
1937					     __ceph_caps_wanted(ci),
1938					     cap->issued | cap->implemented,
1939					     ci->i_flushing_caps, NULL);
1940			if (delayed) {
1941				spin_lock(&inode->i_lock);
1942				__cap_delay_requeue(mdsc, ci);
1943				spin_unlock(&inode->i_lock);
1944			}
1945		} else {
1946			pr_err("%p auth cap %p not mds%d ???\n", inode,
1947			       cap, session->s_mds);
1948			spin_unlock(&inode->i_lock);
1949		}
1950	}
1951}
1952
1953
1954/*
1955 * Take references to capabilities we hold, so that we don't release
1956 * them to the MDS prematurely.
1957 *
1958 * Protected by i_lock.
1959 */
1960static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1961{
1962	if (got & CEPH_CAP_PIN)
1963		ci->i_pin_ref++;
1964	if (got & CEPH_CAP_FILE_RD)
1965		ci->i_rd_ref++;
1966	if (got & CEPH_CAP_FILE_CACHE)
1967		ci->i_rdcache_ref++;
1968	if (got & CEPH_CAP_FILE_WR)
1969		ci->i_wr_ref++;
1970	if (got & CEPH_CAP_FILE_BUFFER) {
1971		if (ci->i_wrbuffer_ref == 0)
1972			igrab(&ci->vfs_inode);
1973		ci->i_wrbuffer_ref++;
1974		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1975		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1976	}
1977}
1978
1979/*
1980 * Try to grab cap references.  Specify those refs we @want, and the
1981 * minimal set we @need.  Also include the larger offset we are writing
1982 * to (when applicable), and check against max_size here as well.
1983 * Note that caller is responsible for ensuring max_size increases are
1984 * requested from the MDS.
1985 */
1986static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1987			    int *got, loff_t endoff, int *check_max, int *err)
1988{
1989	struct inode *inode = &ci->vfs_inode;
1990	int ret = 0;
1991	int have, implemented;
1992	int file_wanted;
1993
1994	dout("get_cap_refs %p need %s want %s\n", inode,
1995	     ceph_cap_string(need), ceph_cap_string(want));
1996	spin_lock(&inode->i_lock);
1997
1998	/* make sure file is actually open */
1999	file_wanted = __ceph_caps_file_wanted(ci);
2000	if ((file_wanted & need) == 0) {
2001		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2002		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2003		*err = -EBADF;
2004		ret = 1;
2005		goto out;
2006	}
2007
2008	if (need & CEPH_CAP_FILE_WR) {
2009		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2010			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2011			     inode, endoff, ci->i_max_size);
2012			if (endoff > ci->i_wanted_max_size) {
2013				*check_max = 1;
2014				ret = 1;
2015			}
2016			goto out;
2017		}
2018		/*
2019		 * If a sync write is in progress, we must wait, so that we
2020		 * can get a final snapshot value for size+mtime.
2021		 */
2022		if (__ceph_have_pending_cap_snap(ci)) {
2023			dout("get_cap_refs %p cap_snap_pending\n", inode);
2024			goto out;
2025		}
2026	}
2027	have = __ceph_caps_issued(ci, &implemented);
2028
2029	/*
2030	 * disallow writes while a truncate is pending
2031	 */
2032	if (ci->i_truncate_pending)
2033		have &= ~CEPH_CAP_FILE_WR;
2034
2035	if ((have & need) == need) {
2036		/*
2037		 * Look at (implemented & ~have & not) so that we keep waiting
2038		 * on transition from wanted -> needed caps.  This is needed
2039		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2040		 * going before a prior buffered writeback happens.
2041		 */
2042		int not = want & ~(have & need);
2043		int revoking = implemented & ~have;
2044		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2045		     inode, ceph_cap_string(have), ceph_cap_string(not),
2046		     ceph_cap_string(revoking));
2047		if ((revoking & not) == 0) {
2048			*got = need | (have & want);
2049			__take_cap_refs(ci, *got);
2050			ret = 1;
2051		}
2052	} else {
2053		dout("get_cap_refs %p have %s needed %s\n", inode,
2054		     ceph_cap_string(have), ceph_cap_string(need));
2055	}
2056out:
2057	spin_unlock(&inode->i_lock);
2058	dout("get_cap_refs %p ret %d got %s\n", inode,
2059	     ret, ceph_cap_string(*got));
2060	return ret;
2061}
2062
2063/*
2064 * Check the offset we are writing up to against our current
2065 * max_size.  If necessary, tell the MDS we want to write to
2066 * a larger offset.
2067 */
2068static void check_max_size(struct inode *inode, loff_t endoff)
2069{
2070	struct ceph_inode_info *ci = ceph_inode(inode);
2071	int check = 0;
2072
2073	/* do we need to explicitly request a larger max_size? */
2074	spin_lock(&inode->i_lock);
2075	if ((endoff >= ci->i_max_size ||
2076	     endoff > (inode->i_size << 1)) &&
2077	    endoff > ci->i_wanted_max_size) {
2078		dout("write %p at large endoff %llu, req max_size\n",
2079		     inode, endoff);
2080		ci->i_wanted_max_size = endoff;
2081		check = 1;
2082	}
2083	spin_unlock(&inode->i_lock);
2084	if (check)
2085		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2086}
2087
2088/*
2089 * Wait for caps, and take cap references.  If we can't get a WR cap
2090 * due to a small max_size, make sure we check_max_size (and possibly
2091 * ask the mds) so we don't get hung up indefinitely.
2092 */
2093int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2094		  loff_t endoff)
2095{
2096	int check_max, ret, err;
2097
2098retry:
2099	if (endoff > 0)
2100		check_max_size(&ci->vfs_inode, endoff);
2101	check_max = 0;
2102	err = 0;
2103	ret = wait_event_interruptible(ci->i_cap_wq,
2104				       try_get_cap_refs(ci, need, want,
2105							got, endoff,
2106							&check_max, &err));
2107	if (err)
2108		ret = err;
2109	if (check_max)
2110		goto retry;
2111	return ret;
2112}
2113
2114/*
2115 * Take cap refs.  Caller must already know we hold at least one ref
2116 * on the caps in question or we don't know this is safe.
2117 */
2118void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2119{
2120	spin_lock(&ci->vfs_inode.i_lock);
2121	__take_cap_refs(ci, caps);
2122	spin_unlock(&ci->vfs_inode.i_lock);
2123}
2124
2125/*
2126 * Release cap refs.
2127 *
2128 * If we released the last ref on any given cap, call ceph_check_caps
2129 * to release (or schedule a release).
2130 *
2131 * If we are releasing a WR cap (from a sync write), finalize any affected
2132 * cap_snap, and wake up any waiters.
2133 */
2134void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2135{
2136	struct inode *inode = &ci->vfs_inode;
2137	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2138	struct ceph_cap_snap *capsnap;
2139
2140	spin_lock(&inode->i_lock);
2141	if (had & CEPH_CAP_PIN)
2142		--ci->i_pin_ref;
2143	if (had & CEPH_CAP_FILE_RD)
2144		if (--ci->i_rd_ref == 0)
2145			last++;
2146	if (had & CEPH_CAP_FILE_CACHE)
2147		if (--ci->i_rdcache_ref == 0)
2148			last++;
2149	if (had & CEPH_CAP_FILE_BUFFER) {
2150		if (--ci->i_wrbuffer_ref == 0) {
2151			last++;
2152			put++;
2153		}
2154		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2155		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2156	}
2157	if (had & CEPH_CAP_FILE_WR)
2158		if (--ci->i_wr_ref == 0) {
2159			last++;
2160			if (!list_empty(&ci->i_cap_snaps)) {
2161				capsnap = list_first_entry(&ci->i_cap_snaps,
2162						     struct ceph_cap_snap,
2163						     ci_item);
2164				if (capsnap->writing) {
2165					capsnap->writing = 0;
2166					flushsnaps =
2167						__ceph_finish_cap_snap(ci,
2168								       capsnap);
2169					wake = 1;
2170				}
2171			}
2172		}
2173	spin_unlock(&inode->i_lock);
2174
2175	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2176	     last ? " last" : "", put ? " put" : "");
2177
2178	if (last && !flushsnaps)
2179		ceph_check_caps(ci, 0, NULL);
2180	else if (flushsnaps)
2181		ceph_flush_snaps(ci);
2182	if (wake)
2183		wake_up_all(&ci->i_cap_wq);
2184	if (put)
2185		iput(inode);
2186}
2187
2188/*
2189 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2190 * context.  Adjust per-snap dirty page accounting as appropriate.
2191 * Once all dirty data for a cap_snap is flushed, flush snapped file
2192 * metadata back to the MDS.  If we dropped the last ref, call
2193 * ceph_check_caps.
2194 */
2195void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2196				struct ceph_snap_context *snapc)
2197{
2198	struct inode *inode = &ci->vfs_inode;
2199	int last = 0;
2200	int complete_capsnap = 0;
2201	int drop_capsnap = 0;
2202	int found = 0;
2203	struct ceph_cap_snap *capsnap = NULL;
2204
2205	spin_lock(&inode->i_lock);
2206	ci->i_wrbuffer_ref -= nr;
2207	last = !ci->i_wrbuffer_ref;
2208
2209	if (ci->i_head_snapc == snapc) {
2210		ci->i_wrbuffer_ref_head -= nr;
2211		if (ci->i_wrbuffer_ref_head == 0 &&
2212		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2213			BUG_ON(!ci->i_head_snapc);
2214			ceph_put_snap_context(ci->i_head_snapc);
2215			ci->i_head_snapc = NULL;
2216		}
2217		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2218		     inode,
2219		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2220		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2221		     last ? " LAST" : "");
2222	} else {
2223		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2224			if (capsnap->context == snapc) {
2225				found = 1;
2226				break;
2227			}
2228		}
2229		BUG_ON(!found);
2230		capsnap->dirty_pages -= nr;
2231		if (capsnap->dirty_pages == 0) {
2232			complete_capsnap = 1;
2233			if (capsnap->dirty == 0)
2234				/* cap writeback completed before we created
2235				 * the cap_snap; no FLUSHSNAP is needed */
2236				drop_capsnap = 1;
2237		}
2238		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2239		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2240		     inode, capsnap, capsnap->context->seq,
2241		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2242		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2243		     last ? " (wrbuffer last)" : "",
2244		     complete_capsnap ? " (complete capsnap)" : "",
2245		     drop_capsnap ? " (drop capsnap)" : "");
2246		if (drop_capsnap) {
2247			ceph_put_snap_context(capsnap->context);
2248			list_del(&capsnap->ci_item);
2249			list_del(&capsnap->flushing_item);
2250			ceph_put_cap_snap(capsnap);
2251		}
2252	}
2253
2254	spin_unlock(&inode->i_lock);
2255
2256	if (last) {
2257		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2258		iput(inode);
2259	} else if (complete_capsnap) {
2260		ceph_flush_snaps(ci);
2261		wake_up_all(&ci->i_cap_wq);
2262	}
2263	if (drop_capsnap)
2264		iput(inode);
2265}
2266
2267/*
2268 * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2269 * actually be a revocation if it specifies a smaller cap set.)
2270 *
2271 * caller holds s_mutex and i_lock, we drop both.
2272 *
2273 * return value:
2274 *  0 - ok
2275 *  1 - check_caps on auth cap only (writeback)
2276 *  2 - check_caps (ack revoke)
2277 */
2278static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2279			     struct ceph_mds_session *session,
2280			     struct ceph_cap *cap,
2281			     struct ceph_buffer *xattr_buf)
2282		__releases(inode->i_lock)
2283{
2284	struct ceph_inode_info *ci = ceph_inode(inode);
2285	int mds = session->s_mds;
2286	unsigned seq = le32_to_cpu(grant->seq);
2287	unsigned issue_seq = le32_to_cpu(grant->issue_seq);
2288	int newcaps = le32_to_cpu(grant->caps);
2289	int issued, implemented, used, wanted, dirty;
2290	u64 size = le64_to_cpu(grant->size);
2291	u64 max_size = le64_to_cpu(grant->max_size);
2292	struct timespec mtime, atime, ctime;
2293	int check_caps = 0;
2294	int wake = 0;
2295	int writeback = 0;
2296	int revoked_rdcache = 0;
2297	int queue_invalidate = 0;
2298
2299	dout("handle_cap_grant inode %p cap %p mds%d seq %u/%u %s\n",
2300	     inode, cap, mds, seq, issue_seq, ceph_cap_string(newcaps));
2301	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2302		inode->i_size);
2303
2304	/*
2305	 * If CACHE is being revoked, and we have no dirty buffers,
2306	 * try to invalidate (once).  (If there are dirty buffers, we
2307	 * will invalidate _after_ writeback.)
2308	 */
2309	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2310	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2311	    !ci->i_wrbuffer_ref) {
2312		if (try_nonblocking_invalidate(inode) == 0) {
2313			revoked_rdcache = 1;
2314		} else {
2315			/* there were locked pages.. invalidate later
2316			   in a separate thread. */
2317			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2318				queue_invalidate = 1;
2319				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2320			}
2321		}
2322	}
2323
2324	/* side effects now are allowed */
2325
2326	issued = __ceph_caps_issued(ci, &implemented);
2327	issued |= implemented | __ceph_caps_dirty(ci);
2328
2329	cap->cap_gen = session->s_cap_gen;
2330
2331	__check_cap_issue(ci, cap, newcaps);
2332
2333	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2334		inode->i_mode = le32_to_cpu(grant->mode);
2335		inode->i_uid = le32_to_cpu(grant->uid);
2336		inode->i_gid = le32_to_cpu(grant->gid);
2337		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2338		     inode->i_uid, inode->i_gid);
2339	}
2340
2341	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2342		inode->i_nlink = le32_to_cpu(grant->nlink);
2343
2344	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2345		int len = le32_to_cpu(grant->xattr_len);
2346		u64 version = le64_to_cpu(grant->xattr_version);
2347
2348		if (version > ci->i_xattrs.version) {
2349			dout(" got new xattrs v%llu on %p len %d\n",
2350			     version, inode, len);
2351			if (ci->i_xattrs.blob)
2352				ceph_buffer_put(ci->i_xattrs.blob);
2353			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2354			ci->i_xattrs.version = version;
2355		}
2356	}
2357
2358	/* size/ctime/mtime/atime? */
2359	ceph_fill_file_size(inode, issued,
2360			    le32_to_cpu(grant->truncate_seq),
2361			    le64_to_cpu(grant->truncate_size), size);
2362	ceph_decode_timespec(&mtime, &grant->mtime);
2363	ceph_decode_timespec(&atime, &grant->atime);
2364	ceph_decode_timespec(&ctime, &grant->ctime);
2365	ceph_fill_file_time(inode, issued,
2366			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2367			    &atime);
2368
2369	/* max size increase? */
2370	if (max_size != ci->i_max_size) {
2371		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2372		ci->i_max_size = max_size;
2373		if (max_size >= ci->i_wanted_max_size) {
2374			ci->i_wanted_max_size = 0;  /* reset */
2375			ci->i_requested_max_size = 0;
2376		}
2377		wake = 1;
2378	}
2379
2380	/* check cap bits */
2381	wanted = __ceph_caps_wanted(ci);
2382	used = __ceph_caps_used(ci);
2383	dirty = __ceph_caps_dirty(ci);
2384	dout(" my wanted = %s, used = %s, dirty %s\n",
2385	     ceph_cap_string(wanted),
2386	     ceph_cap_string(used),
2387	     ceph_cap_string(dirty));
2388	if (wanted != le32_to_cpu(grant->wanted)) {
2389		dout("mds wanted %s -> %s\n",
2390		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2391		     ceph_cap_string(wanted));
2392		grant->wanted = cpu_to_le32(wanted);
2393	}
2394
2395	cap->seq = seq;
2396	cap->issue_seq = issue_seq;
2397
2398	/* file layout may have changed */
2399	ci->i_layout = grant->layout;
2400
2401	/* revocation, grant, or no-op? */
2402	if (cap->issued & ~newcaps) {
2403		int revoking = cap->issued & ~newcaps;
2404
2405		dout("revocation: %s -> %s (revoking %s)\n",
2406		     ceph_cap_string(cap->issued),
2407		     ceph_cap_string(newcaps),
2408		     ceph_cap_string(revoking));
2409		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2410			writeback = 1;  /* initiate writeback; will delay ack */
2411		else if (revoking == CEPH_CAP_FILE_CACHE &&
2412			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2413			 queue_invalidate)
2414			; /* do nothing yet, invalidation will be queued */
2415		else if (cap == ci->i_auth_cap)
2416			check_caps = 1; /* check auth cap only */
2417		else
2418			check_caps = 2; /* check all caps */
2419		cap->issued = newcaps;
2420		cap->implemented |= newcaps;
2421	} else if (cap->issued == newcaps) {
2422		dout("caps unchanged: %s -> %s\n",
2423		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2424	} else {
2425		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2426		     ceph_cap_string(newcaps));
2427		cap->issued = newcaps;
2428		cap->implemented |= newcaps; /* add bits only, to
2429					      * avoid stepping on a
2430					      * pending revocation */
2431		wake = 1;
2432	}
2433	BUG_ON(cap->issued & ~cap->implemented);
2434
2435	spin_unlock(&inode->i_lock);
2436	if (writeback)
2437		/*
2438		 * queue inode for writeback: we can't actually call
2439		 * filemap_write_and_wait, etc. from message handler
2440		 * context.
2441		 */
2442		ceph_queue_writeback(inode);
2443	if (queue_invalidate)
2444		ceph_queue_invalidate(inode);
2445	if (wake)
2446		wake_up_all(&ci->i_cap_wq);
2447
2448	if (check_caps == 1)
2449		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2450				session);
2451	else if (check_caps == 2)
2452		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2453	else
2454		mutex_unlock(&session->s_mutex);
2455}
2456
2457/*
2458 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2459 * MDS has been safely committed.
2460 */
2461static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2462				 struct ceph_mds_caps *m,
2463				 struct ceph_mds_session *session,
2464				 struct ceph_cap *cap)
2465	__releases(inode->i_lock)
2466{
2467	struct ceph_inode_info *ci = ceph_inode(inode);
2468	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
2469	unsigned seq = le32_to_cpu(m->seq);
2470	int dirty = le32_to_cpu(m->dirty);
2471	int cleaned = 0;
2472	int drop = 0;
2473	int i;
2474
2475	for (i = 0; i < CEPH_CAP_BITS; i++)
2476		if ((dirty & (1 << i)) &&
2477		    flush_tid == ci->i_cap_flush_tid[i])
2478			cleaned |= 1 << i;
2479
2480	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2481	     " flushing %s -> %s\n",
2482	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2483	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2484	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2485
2486	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2487		goto out;
2488
2489	ci->i_flushing_caps &= ~cleaned;
2490
2491	spin_lock(&mdsc->cap_dirty_lock);
2492	if (ci->i_flushing_caps == 0) {
2493		list_del_init(&ci->i_flushing_item);
2494		if (!list_empty(&session->s_cap_flushing))
2495			dout(" mds%d still flushing cap on %p\n",
2496			     session->s_mds,
2497			     &list_entry(session->s_cap_flushing.next,
2498					 struct ceph_inode_info,
2499					 i_flushing_item)->vfs_inode);
2500		mdsc->num_cap_flushing--;
2501		wake_up_all(&mdsc->cap_flushing_wq);
2502		dout(" inode %p now !flushing\n", inode);
2503
2504		if (ci->i_dirty_caps == 0) {
2505			dout(" inode %p now clean\n", inode);
2506			BUG_ON(!list_empty(&ci->i_dirty_item));
2507			drop = 1;
2508			if (ci->i_wrbuffer_ref_head == 0) {
2509				BUG_ON(!ci->i_head_snapc);
2510				ceph_put_snap_context(ci->i_head_snapc);
2511				ci->i_head_snapc = NULL;
2512			}
2513		} else {
2514			BUG_ON(list_empty(&ci->i_dirty_item));
2515		}
2516	}
2517	spin_unlock(&mdsc->cap_dirty_lock);
2518	wake_up_all(&ci->i_cap_wq);
2519
2520out:
2521	spin_unlock(&inode->i_lock);
2522	if (drop)
2523		iput(inode);
2524}
2525
2526/*
2527 * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2528 * throw away our cap_snap.
2529 *
2530 * Caller hold s_mutex.
2531 */
2532static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2533				     struct ceph_mds_caps *m,
2534				     struct ceph_mds_session *session)
2535{
2536	struct ceph_inode_info *ci = ceph_inode(inode);
2537	u64 follows = le64_to_cpu(m->snap_follows);
2538	struct ceph_cap_snap *capsnap;
2539	int drop = 0;
2540
2541	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2542	     inode, ci, session->s_mds, follows);
2543
2544	spin_lock(&inode->i_lock);
2545	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2546		if (capsnap->follows == follows) {
2547			if (capsnap->flush_tid != flush_tid) {
2548				dout(" cap_snap %p follows %lld tid %lld !="
2549				     " %lld\n", capsnap, follows,
2550				     flush_tid, capsnap->flush_tid);
2551				break;
2552			}
2553			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2554			dout(" removing %p cap_snap %p follows %lld\n",
2555			     inode, capsnap, follows);
2556			ceph_put_snap_context(capsnap->context);
2557			list_del(&capsnap->ci_item);
2558			list_del(&capsnap->flushing_item);
2559			ceph_put_cap_snap(capsnap);
2560			drop = 1;
2561			break;
2562		} else {
2563			dout(" skipping cap_snap %p follows %lld\n",
2564			     capsnap, capsnap->follows);
2565		}
2566	}
2567	spin_unlock(&inode->i_lock);
2568	if (drop)
2569		iput(inode);
2570}
2571
2572/*
2573 * Handle TRUNC from MDS, indicating file truncation.
2574 *
2575 * caller hold s_mutex.
2576 */
2577static void handle_cap_trunc(struct inode *inode,
2578			     struct ceph_mds_caps *trunc,
2579			     struct ceph_mds_session *session)
2580	__releases(inode->i_lock)
2581{
2582	struct ceph_inode_info *ci = ceph_inode(inode);
2583	int mds = session->s_mds;
2584	int seq = le32_to_cpu(trunc->seq);
2585	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2586	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2587	u64 size = le64_to_cpu(trunc->size);
2588	int implemented = 0;
2589	int dirty = __ceph_caps_dirty(ci);
2590	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2591	int queue_trunc = 0;
2592
2593	issued |= implemented | dirty;
2594
2595	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2596	     inode, mds, seq, truncate_size, truncate_seq);
2597	queue_trunc = ceph_fill_file_size(inode, issued,
2598					  truncate_seq, truncate_size, size);
2599	spin_unlock(&inode->i_lock);
2600
2601	if (queue_trunc)
2602		ceph_queue_vmtruncate(inode);
2603}
2604
2605/*
2606 * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2607 * different one.  If we are the most recent migration we've seen (as
2608 * indicated by mseq), make note of the migrating cap bits for the
2609 * duration (until we see the corresponding IMPORT).
2610 *
2611 * caller holds s_mutex
2612 */
2613static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2614			      struct ceph_mds_session *session,
2615			      int *open_target_sessions)
2616{
2617	struct ceph_inode_info *ci = ceph_inode(inode);
2618	int mds = session->s_mds;
2619	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2620	struct ceph_cap *cap = NULL, *t;
2621	struct rb_node *p;
2622	int remember = 1;
2623
2624	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2625	     inode, ci, mds, mseq);
2626
2627	spin_lock(&inode->i_lock);
2628
2629	/* make sure we haven't seen a higher mseq */
2630	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2631		t = rb_entry(p, struct ceph_cap, ci_node);
2632		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2633			dout(" higher mseq on cap from mds%d\n",
2634			     t->session->s_mds);
2635			remember = 0;
2636		}
2637		if (t->session->s_mds == mds)
2638			cap = t;
2639	}
2640
2641	if (cap) {
2642		if (remember) {
2643			/* make note */
2644			ci->i_cap_exporting_mds = mds;
2645			ci->i_cap_exporting_mseq = mseq;
2646			ci->i_cap_exporting_issued = cap->issued;
2647
2648			/*
2649			 * make sure we have open sessions with all possible
2650			 * export targets, so that we get the matching IMPORT
2651			 */
2652			*open_target_sessions = 1;
2653		}
2654		__ceph_remove_cap(cap);
2655	}
2656	/* else, we already released it */
2657
2658	spin_unlock(&inode->i_lock);
2659}
2660
2661/*
2662 * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2663 * clean them up.
2664 *
2665 * caller holds s_mutex.
2666 */
2667static void handle_cap_import(struct ceph_mds_client *mdsc,
2668			      struct inode *inode, struct ceph_mds_caps *im,
2669			      struct ceph_mds_session *session,
2670			      void *snaptrace, int snaptrace_len)
2671{
2672	struct ceph_inode_info *ci = ceph_inode(inode);
2673	int mds = session->s_mds;
2674	unsigned issued = le32_to_cpu(im->caps);
2675	unsigned wanted = le32_to_cpu(im->wanted);
2676	unsigned seq = le32_to_cpu(im->seq);
2677	unsigned mseq = le32_to_cpu(im->migrate_seq);
2678	u64 realmino = le64_to_cpu(im->realm);
2679	u64 cap_id = le64_to_cpu(im->cap_id);
2680
2681	if (ci->i_cap_exporting_mds >= 0 &&
2682	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2683		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2684		     " - cleared exporting from mds%d\n",
2685		     inode, ci, mds, mseq,
2686		     ci->i_cap_exporting_mds);
2687		ci->i_cap_exporting_issued = 0;
2688		ci->i_cap_exporting_mseq = 0;
2689		ci->i_cap_exporting_mds = -1;
2690	} else {
2691		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2692		     inode, ci, mds, mseq);
2693	}
2694
2695	down_write(&mdsc->snap_rwsem);
2696	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2697			       false);
2698	downgrade_write(&mdsc->snap_rwsem);
2699	ceph_add_cap(inode, session, cap_id, -1,
2700		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2701		     NULL /* no caps context */);
2702	try_flush_caps(inode, session, NULL);
2703	up_read(&mdsc->snap_rwsem);
2704}
2705
2706/*
2707 * Handle a caps message from the MDS.
2708 *
2709 * Identify the appropriate session, inode, and call the right handler
2710 * based on the cap op.
2711 */
2712void ceph_handle_caps(struct ceph_mds_session *session,
2713		      struct ceph_msg *msg)
2714{
2715	struct ceph_mds_client *mdsc = session->s_mdsc;
2716	struct super_block *sb = mdsc->client->sb;
2717	struct inode *inode;
2718	struct ceph_cap *cap;
2719	struct ceph_mds_caps *h;
2720	int mds = session->s_mds;
2721	int op;
2722	u32 seq, mseq;
2723	struct ceph_vino vino;
2724	u64 cap_id;
2725	u64 size, max_size;
2726	u64 tid;
2727	void *snaptrace;
2728	size_t snaptrace_len;
2729	void *flock;
2730	u32 flock_len;
2731	int open_target_sessions = 0;
2732
2733	dout("handle_caps from mds%d\n", mds);
2734
2735	/* decode */
2736	tid = le64_to_cpu(msg->hdr.tid);
2737	if (msg->front.iov_len < sizeof(*h))
2738		goto bad;
2739	h = msg->front.iov_base;
2740	op = le32_to_cpu(h->op);
2741	vino.ino = le64_to_cpu(h->ino);
2742	vino.snap = CEPH_NOSNAP;
2743	cap_id = le64_to_cpu(h->cap_id);
2744	seq = le32_to_cpu(h->seq);
2745	mseq = le32_to_cpu(h->migrate_seq);
2746	size = le64_to_cpu(h->size);
2747	max_size = le64_to_cpu(h->max_size);
2748
2749	snaptrace = h + 1;
2750	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2751
2752	if (le16_to_cpu(msg->hdr.version) >= 2) {
2753		void *p, *end;
2754
2755		p = snaptrace + snaptrace_len;
2756		end = msg->front.iov_base + msg->front.iov_len;
2757		ceph_decode_32_safe(&p, end, flock_len, bad);
2758		flock = p;
2759	} else {
2760		flock = NULL;
2761		flock_len = 0;
2762	}
2763
2764	mutex_lock(&session->s_mutex);
2765	session->s_seq++;
2766	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2767	     (unsigned)seq);
2768
2769	/* lookup ino */
2770	inode = ceph_find_inode(sb, vino);
2771	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2772	     vino.snap, inode);
2773	if (!inode) {
2774		dout(" i don't have ino %llx\n", vino.ino);
2775
2776		if (op == CEPH_CAP_OP_IMPORT)
2777			__queue_cap_release(session, vino.ino, cap_id,
2778					    mseq, seq);
2779		goto flush_cap_releases;
2780	}
2781
2782	/* these will work even if we don't have a cap yet */
2783	switch (op) {
2784	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2785		handle_cap_flushsnap_ack(inode, tid, h, session);
2786		goto done;
2787
2788	case CEPH_CAP_OP_EXPORT:
2789		handle_cap_export(inode, h, session, &open_target_sessions);
2790		goto done;
2791
2792	case CEPH_CAP_OP_IMPORT:
2793		handle_cap_import(mdsc, inode, h, session,
2794				  snaptrace, snaptrace_len);
2795		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2796				session);
2797		goto done_unlocked;
2798	}
2799
2800	/* the rest require a cap */
2801	spin_lock(&inode->i_lock);
2802	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2803	if (!cap) {
2804		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2805		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2806		spin_unlock(&inode->i_lock);
2807		goto flush_cap_releases;
2808	}
2809
2810	/* note that each of these drops i_lock for us */
2811	switch (op) {
2812	case CEPH_CAP_OP_REVOKE:
2813	case CEPH_CAP_OP_GRANT:
2814		handle_cap_grant(inode, h, session, cap, msg->middle);
2815		goto done_unlocked;
2816
2817	case CEPH_CAP_OP_FLUSH_ACK:
2818		handle_cap_flush_ack(inode, tid, h, session, cap);
2819		break;
2820
2821	case CEPH_CAP_OP_TRUNC:
2822		handle_cap_trunc(inode, h, session);
2823		break;
2824
2825	default:
2826		spin_unlock(&inode->i_lock);
2827		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2828		       ceph_cap_op_name(op));
2829	}
2830
2831	goto done;
2832
2833flush_cap_releases:
2834	/*
2835	 * send any full release message to try to move things
2836	 * along for the mds (who clearly thinks we still have this
2837	 * cap).
2838	 */
2839	ceph_add_cap_releases(mdsc, session);
2840	ceph_send_cap_releases(mdsc, session);
2841
2842done:
2843	mutex_unlock(&session->s_mutex);
2844done_unlocked:
2845	if (inode)
2846		iput(inode);
2847	if (open_target_sessions)
2848		ceph_mdsc_open_export_target_sessions(mdsc, session);
2849	return;
2850
2851bad:
2852	pr_err("ceph_handle_caps: corrupt message\n");
2853	ceph_msg_dump(msg);
2854	return;
2855}
2856
2857/*
2858 * Delayed work handler to process end of delayed cap release LRU list.
2859 */
2860void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2861{
2862	struct ceph_inode_info *ci;
2863	int flags = CHECK_CAPS_NODELAY;
2864
2865	dout("check_delayed_caps\n");
2866	while (1) {
2867		spin_lock(&mdsc->cap_delay_lock);
2868		if (list_empty(&mdsc->cap_delay_list))
2869			break;
2870		ci = list_first_entry(&mdsc->cap_delay_list,
2871				      struct ceph_inode_info,
2872				      i_cap_delay_list);
2873		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2874		    time_before(jiffies, ci->i_hold_caps_max))
2875			break;
2876		list_del_init(&ci->i_cap_delay_list);
2877		spin_unlock(&mdsc->cap_delay_lock);
2878		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2879		ceph_check_caps(ci, flags, NULL);
2880	}
2881	spin_unlock(&mdsc->cap_delay_lock);
2882}
2883
2884/*
2885 * Flush all dirty caps to the mds
2886 */
2887void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2888{
2889	struct ceph_inode_info *ci, *nci = NULL;
2890	struct inode *inode, *ninode = NULL;
2891	struct list_head *p, *n;
2892
2893	dout("flush_dirty_caps\n");
2894	spin_lock(&mdsc->cap_dirty_lock);
2895	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2896		if (nci) {
2897			ci = nci;
2898			inode = ninode;
2899			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2900			dout("flush_dirty_caps inode %p (was next inode)\n",
2901			     inode);
2902		} else {
2903			ci = list_entry(p, struct ceph_inode_info,
2904					i_dirty_item);
2905			inode = igrab(&ci->vfs_inode);
2906			BUG_ON(!inode);
2907			dout("flush_dirty_caps inode %p\n", inode);
2908		}
2909		if (n != &mdsc->cap_dirty) {
2910			nci = list_entry(n, struct ceph_inode_info,
2911					 i_dirty_item);
2912			ninode = igrab(&nci->vfs_inode);
2913			BUG_ON(!ninode);
2914			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2915			dout("flush_dirty_caps next inode %p, noflush\n",
2916			     ninode);
2917		} else {
2918			nci = NULL;
2919			ninode = NULL;
2920		}
2921		spin_unlock(&mdsc->cap_dirty_lock);
2922		if (inode) {
2923			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2924					NULL);
2925			iput(inode);
2926		}
2927		spin_lock(&mdsc->cap_dirty_lock);
2928	}
2929	spin_unlock(&mdsc->cap_dirty_lock);
2930}
2931
2932/*
2933 * Drop open file reference.  If we were the last open file,
2934 * we may need to release capabilities to the MDS (or schedule
2935 * their delayed release).
2936 */
2937void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2938{
2939	struct inode *inode = &ci->vfs_inode;
2940	int last = 0;
2941
2942	spin_lock(&inode->i_lock);
2943	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2944	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2945	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2946	if (--ci->i_nr_by_mode[fmode] == 0)
2947		last++;
2948	spin_unlock(&inode->i_lock);
2949
2950	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2951		ceph_check_caps(ci, 0, NULL);
2952}
2953
2954/*
2955 * Helpers for embedding cap and dentry lease releases into mds
2956 * requests.
2957 *
2958 * @force is used by dentry_release (below) to force inclusion of a
2959 * record for the directory inode, even when there aren't any caps to
2960 * drop.
2961 */
2962int ceph_encode_inode_release(void **p, struct inode *inode,
2963			      int mds, int drop, int unless, int force)
2964{
2965	struct ceph_inode_info *ci = ceph_inode(inode);
2966	struct ceph_cap *cap;
2967	struct ceph_mds_request_release *rel = *p;
2968	int used, dirty;
2969	int ret = 0;
2970
2971	spin_lock(&inode->i_lock);
2972	used = __ceph_caps_used(ci);
2973	dirty = __ceph_caps_dirty(ci);
2974
2975	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
2976	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
2977	     ceph_cap_string(unless));
2978
2979	/* only drop unused, clean caps */
2980	drop &= ~(used | dirty);
2981
2982	cap = __get_cap_for_mds(ci, mds);
2983	if (cap && __cap_is_valid(cap)) {
2984		if (force ||
2985		    ((cap->issued & drop) &&
2986		     (cap->issued & unless) == 0)) {
2987			if ((cap->issued & drop) &&
2988			    (cap->issued & unless) == 0) {
2989				dout("encode_inode_release %p cap %p %s -> "
2990				     "%s\n", inode, cap,
2991				     ceph_cap_string(cap->issued),
2992				     ceph_cap_string(cap->issued & ~drop));
2993				cap->issued &= ~drop;
2994				cap->implemented &= ~drop;
2995				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2996					int wanted = __ceph_caps_wanted(ci);
2997					dout("  wanted %s -> %s (act %s)\n",
2998					     ceph_cap_string(cap->mds_wanted),
2999					     ceph_cap_string(cap->mds_wanted &
3000							     ~wanted),
3001					     ceph_cap_string(wanted));
3002					cap->mds_wanted &= wanted;
3003				}
3004			} else {
3005				dout("encode_inode_release %p cap %p %s"
3006				     " (force)\n", inode, cap,
3007				     ceph_cap_string(cap->issued));
3008			}
3009
3010			rel->ino = cpu_to_le64(ceph_ino(inode));
3011			rel->cap_id = cpu_to_le64(cap->cap_id);
3012			rel->seq = cpu_to_le32(cap->seq);
3013			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3014			rel->mseq = cpu_to_le32(cap->mseq);
3015			rel->caps = cpu_to_le32(cap->issued);
3016			rel->wanted = cpu_to_le32(cap->mds_wanted);
3017			rel->dname_len = 0;
3018			rel->dname_seq = 0;
3019			*p += sizeof(*rel);
3020			ret = 1;
3021		} else {
3022			dout("encode_inode_release %p cap %p %s\n",
3023			     inode, cap, ceph_cap_string(cap->issued));
3024		}
3025	}
3026	spin_unlock(&inode->i_lock);
3027	return ret;
3028}
3029
3030int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3031			       int mds, int drop, int unless)
3032{
3033	struct inode *dir = dentry->d_parent->d_inode;
3034	struct ceph_mds_request_release *rel = *p;
3035	struct ceph_dentry_info *di = ceph_dentry(dentry);
3036	int force = 0;
3037	int ret;
3038
3039	/*
3040	 * force an record for the directory caps if we have a dentry lease.
3041	 * this is racy (can't take i_lock and d_lock together), but it
3042	 * doesn't have to be perfect; the mds will revoke anything we don't
3043	 * release.
3044	 */
3045	spin_lock(&dentry->d_lock);
3046	if (di->lease_session && di->lease_session->s_mds == mds)
3047		force = 1;
3048	spin_unlock(&dentry->d_lock);
3049
3050	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3051
3052	spin_lock(&dentry->d_lock);
3053	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3054		dout("encode_dentry_release %p mds%d seq %d\n",
3055		     dentry, mds, (int)di->lease_seq);
3056		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3057		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3058		*p += dentry->d_name.len;
3059		rel->dname_seq = cpu_to_le32(di->lease_seq);
3060		__ceph_mdsc_drop_dentry_lease(dentry);
3061	}
3062	spin_unlock(&dentry->d_lock);
3063	return ret;
3064}
3065