• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/watchdog/
1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
6 * Some parts derived from wdt.c
7 *
8 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 *						All Rights Reserved.
10 *
11 *	This program is free software; you can redistribute it and/or
12 *	modify it under the terms of the GNU General Public License
13 *	as published by the Free Software Foundation; either version
14 *	2 of the License, or (at your option) any later version.
15 *
16 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 *	warranty for any of this software. This material is provided
18 *	"AS-IS" and at no charge.
19 *
20 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License.  See the file "COPYING" in the main directory of this archive
24 * for more details.
25 *
26 *
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate.  If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested.  But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
35 *
36 * The hardware watchdog interval we call the period.  The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter.  But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed.  Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
45 *
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
49 *
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
52 *
53 */
54
55#include <linux/miscdevice.h>
56#include <linux/interrupt.h>
57#include <linux/watchdog.h>
58#include <linux/cpumask.h>
59#include <linux/bitops.h>
60#include <linux/kernel.h>
61#include <linux/module.h>
62#include <linux/string.h>
63#include <linux/delay.h>
64#include <linux/cpu.h>
65#include <linux/smp.h>
66#include <linux/fs.h>
67
68#include <asm/mipsregs.h>
69#include <asm/uasm.h>
70
71#include <asm/octeon/octeon.h>
72
73/* The count needed to achieve timeout_sec. */
74static unsigned int timeout_cnt;
75
76/* The maximum period supported. */
77static unsigned int max_timeout_sec;
78
79/* The current period.  */
80static unsigned int timeout_sec;
81
82/* Set to non-zero when userspace countdown mode active */
83static int do_coundown;
84static unsigned int countdown_reset;
85static unsigned int per_cpu_countdown[NR_CPUS];
86
87static cpumask_t irq_enabled_cpus;
88
89#define WD_TIMO 60			/* Default heartbeat = 60 seconds */
90
91static int heartbeat = WD_TIMO;
92module_param(heartbeat, int, S_IRUGO);
93MODULE_PARM_DESC(heartbeat,
94	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
95				__MODULE_STRING(WD_TIMO) ")");
96
97static int nowayout = WATCHDOG_NOWAYOUT;
98module_param(nowayout, int, S_IRUGO);
99MODULE_PARM_DESC(nowayout,
100	"Watchdog cannot be stopped once started (default="
101				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
102
103static unsigned long octeon_wdt_is_open;
104static char expect_close;
105
106static u32 __initdata nmi_stage1_insns[64];
107/* We need one branch and therefore one relocation per target label. */
108static struct uasm_label __initdata labels[5];
109static struct uasm_reloc __initdata relocs[5];
110
111enum lable_id {
112	label_enter_bootloader = 1
113};
114
115/* Some CP0 registers */
116#define K0		26
117#define C0_CVMMEMCTL 11, 7
118#define C0_STATUS 12, 0
119#define C0_EBASE 15, 1
120#define C0_DESAVE 31, 0
121
122void octeon_wdt_nmi_stage2(void);
123
124static void __init octeon_wdt_build_stage1(void)
125{
126	int i;
127	int len;
128	u32 *p = nmi_stage1_insns;
129#ifdef CONFIG_HOTPLUG_CPU
130	struct uasm_label *l = labels;
131	struct uasm_reloc *r = relocs;
132#endif
133
134	/*
135	 * For the next few instructions running the debugger may
136	 * cause corruption of k0 in the saved registers. Since we're
137	 * about to crash, nobody probably cares.
138	 *
139	 * Save K0 into the debug scratch register
140	 */
141	uasm_i_dmtc0(&p, K0, C0_DESAVE);
142
143	uasm_i_mfc0(&p, K0, C0_STATUS);
144#ifdef CONFIG_HOTPLUG_CPU
145	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
146#endif
147	/* Force 64-bit addressing enabled */
148	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
149	uasm_i_mtc0(&p, K0, C0_STATUS);
150
151#ifdef CONFIG_HOTPLUG_CPU
152	uasm_i_mfc0(&p, K0, C0_EBASE);
153	/* Coreid number in K0 */
154	uasm_i_andi(&p, K0, K0, 0xf);
155	/* 8 * coreid in bits 16-31 */
156	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
157	uasm_i_ori(&p, K0, K0, 0x8001);
158	uasm_i_dsll_safe(&p, K0, K0, 16);
159	uasm_i_ori(&p, K0, K0, 0x0700);
160	uasm_i_drotr_safe(&p, K0, K0, 32);
161	/*
162	 * Should result in: 0x8001,0700,0000,8*coreid which is
163	 * CVMX_CIU_WDOGX(coreid) - 0x0500
164	 *
165	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
166	 */
167	uasm_i_ld(&p, K0, 0x500, K0);
168	/*
169	 * If bit one set handle the NMI as a watchdog event.
170	 * otherwise transfer control to bootloader.
171	 */
172	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
173	uasm_i_nop(&p);
174#endif
175
176	/* Clear Dcache so cvmseg works right. */
177	uasm_i_cache(&p, 1, 0, 0);
178
179	/* Use K0 to do a read/modify/write of CVMMEMCTL */
180	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
181	/* Clear out the size of CVMSEG	*/
182	uasm_i_dins(&p, K0, 0, 0, 6);
183	/* Set CVMSEG to its largest value */
184	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
185	/* Store the CVMMEMCTL value */
186	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
187
188	/* Load the address of the second stage handler */
189	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
190	uasm_i_jr(&p, K0);
191	uasm_i_dmfc0(&p, K0, C0_DESAVE);
192
193#ifdef CONFIG_HOTPLUG_CPU
194	uasm_build_label(&l, p, label_enter_bootloader);
195	/* Jump to the bootloader and restore K0 */
196	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
197	uasm_i_jr(&p, K0);
198	uasm_i_dmfc0(&p, K0, C0_DESAVE);
199#endif
200	uasm_resolve_relocs(relocs, labels);
201
202	len = (int)(p - nmi_stage1_insns);
203	pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
204
205	pr_debug("\t.set push\n");
206	pr_debug("\t.set noreorder\n");
207	for (i = 0; i < len; i++)
208		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
209	pr_debug("\t.set pop\n");
210
211	if (len > 32)
212		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
213}
214
215static int cpu2core(int cpu)
216{
217#ifdef CONFIG_SMP
218	return cpu_logical_map(cpu);
219#else
220	return cvmx_get_core_num();
221#endif
222}
223
224static int core2cpu(int coreid)
225{
226#ifdef CONFIG_SMP
227	return cpu_number_map(coreid);
228#else
229	return 0;
230#endif
231}
232
233/**
234 * Poke the watchdog when an interrupt is received
235 *
236 * @cpl:
237 * @dev_id:
238 *
239 * Returns
240 */
241static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
242{
243	unsigned int core = cvmx_get_core_num();
244	int cpu = core2cpu(core);
245
246	if (do_coundown) {
247		if (per_cpu_countdown[cpu] > 0) {
248			/* We're alive, poke the watchdog */
249			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
250			per_cpu_countdown[cpu]--;
251		} else {
252			/* Bad news, you are about to reboot. */
253			disable_irq_nosync(cpl);
254			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
255		}
256	} else {
257		/* Not open, just ping away... */
258		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
259	}
260	return IRQ_HANDLED;
261}
262
263/* From setup.c */
264extern int prom_putchar(char c);
265
266/**
267 * Write a string to the uart
268 *
269 * @str:        String to write
270 */
271static void octeon_wdt_write_string(const char *str)
272{
273	/* Just loop writing one byte at a time */
274	while (*str)
275		prom_putchar(*str++);
276}
277
278/**
279 * Write a hex number out of the uart
280 *
281 * @value:      Number to display
282 * @digits:     Number of digits to print (1 to 16)
283 */
284static void octeon_wdt_write_hex(u64 value, int digits)
285{
286	int d;
287	int v;
288	for (d = 0; d < digits; d++) {
289		v = (value >> ((digits - d - 1) * 4)) & 0xf;
290		if (v >= 10)
291			prom_putchar('a' + v - 10);
292		else
293			prom_putchar('0' + v);
294	}
295}
296
297const char *reg_name[] = {
298	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
299	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
300	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
301	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
302};
303
304/**
305 * NMI stage 3 handler. NMIs are handled in the following manner:
306 * 1) The first NMI handler enables CVMSEG and transfers from
307 * the bootbus region into normal memory. It is careful to not
308 * destroy any registers.
309 * 2) The second stage handler uses CVMSEG to save the registers
310 * and create a stack for C code. It then calls the third level
311 * handler with one argument, a pointer to the register values.
312 * 3) The third, and final, level handler is the following C
313 * function that prints out some useful infomration.
314 *
315 * @reg:    Pointer to register state before the NMI
316 */
317void octeon_wdt_nmi_stage3(u64 reg[32])
318{
319	u64 i;
320
321	unsigned int coreid = cvmx_get_core_num();
322	/*
323	 * Save status and cause early to get them before any changes
324	 * might happen.
325	 */
326	u64 cp0_cause = read_c0_cause();
327	u64 cp0_status = read_c0_status();
328	u64 cp0_error_epc = read_c0_errorepc();
329	u64 cp0_epc = read_c0_epc();
330
331	/* Delay so output from all cores output is not jumbled together. */
332	__delay(100000000ull * coreid);
333
334	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
335	octeon_wdt_write_hex(coreid, 1);
336	octeon_wdt_write_string(" ***\r\n");
337	for (i = 0; i < 32; i++) {
338		octeon_wdt_write_string("\t");
339		octeon_wdt_write_string(reg_name[i]);
340		octeon_wdt_write_string("\t0x");
341		octeon_wdt_write_hex(reg[i], 16);
342		if (i & 1)
343			octeon_wdt_write_string("\r\n");
344	}
345	octeon_wdt_write_string("\terr_epc\t0x");
346	octeon_wdt_write_hex(cp0_error_epc, 16);
347
348	octeon_wdt_write_string("\tepc\t0x");
349	octeon_wdt_write_hex(cp0_epc, 16);
350	octeon_wdt_write_string("\r\n");
351
352	octeon_wdt_write_string("\tstatus\t0x");
353	octeon_wdt_write_hex(cp0_status, 16);
354	octeon_wdt_write_string("\tcause\t0x");
355	octeon_wdt_write_hex(cp0_cause, 16);
356	octeon_wdt_write_string("\r\n");
357
358	octeon_wdt_write_string("\tsum0\t0x");
359	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
360	octeon_wdt_write_string("\ten0\t0x");
361	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
362	octeon_wdt_write_string("\r\n");
363
364	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
365}
366
367static void octeon_wdt_disable_interrupt(int cpu)
368{
369	unsigned int core;
370	unsigned int irq;
371	union cvmx_ciu_wdogx ciu_wdog;
372
373	core = cpu2core(cpu);
374
375	irq = OCTEON_IRQ_WDOG0 + core;
376
377	/* Poke the watchdog to clear out its state */
378	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
379
380	/* Disable the hardware. */
381	ciu_wdog.u64 = 0;
382	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
383
384	free_irq(irq, octeon_wdt_poke_irq);
385}
386
387static void octeon_wdt_setup_interrupt(int cpu)
388{
389	unsigned int core;
390	unsigned int irq;
391	union cvmx_ciu_wdogx ciu_wdog;
392
393	core = cpu2core(cpu);
394
395	/* Disable it before doing anything with the interrupts. */
396	ciu_wdog.u64 = 0;
397	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
398
399	per_cpu_countdown[cpu] = countdown_reset;
400
401	irq = OCTEON_IRQ_WDOG0 + core;
402
403	if (request_irq(irq, octeon_wdt_poke_irq,
404			IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
405		panic("octeon_wdt: Couldn't obtain irq %d", irq);
406
407	cpumask_set_cpu(cpu, &irq_enabled_cpus);
408
409	/* Poke the watchdog to clear out its state */
410	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
411
412	/* Finally enable the watchdog now that all handlers are installed */
413	ciu_wdog.u64 = 0;
414	ciu_wdog.s.len = timeout_cnt;
415	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
416	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
417}
418
419static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
420					   unsigned long action, void *hcpu)
421{
422	unsigned int cpu = (unsigned long)hcpu;
423
424	switch (action) {
425	case CPU_DOWN_PREPARE:
426		octeon_wdt_disable_interrupt(cpu);
427		break;
428	case CPU_ONLINE:
429	case CPU_DOWN_FAILED:
430		octeon_wdt_setup_interrupt(cpu);
431		break;
432	default:
433		break;
434	}
435	return NOTIFY_OK;
436}
437
438static void octeon_wdt_ping(void)
439{
440	int cpu;
441	int coreid;
442
443	for_each_online_cpu(cpu) {
444		coreid = cpu2core(cpu);
445		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
446		per_cpu_countdown[cpu] = countdown_reset;
447		if ((countdown_reset || !do_coundown) &&
448		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
449			/* We have to enable the irq */
450			int irq = OCTEON_IRQ_WDOG0 + coreid;
451			enable_irq(irq);
452			cpumask_set_cpu(cpu, &irq_enabled_cpus);
453		}
454	}
455}
456
457static void octeon_wdt_calc_parameters(int t)
458{
459	unsigned int periods;
460
461	timeout_sec = max_timeout_sec;
462
463
464	/*
465	 * Find the largest interrupt period, that can evenly divide
466	 * the requested heartbeat time.
467	 */
468	while ((t % timeout_sec) != 0)
469		timeout_sec--;
470
471	periods = t / timeout_sec;
472
473	/*
474	 * The last two periods are after the irq is disabled, and
475	 * then to the nmi, so we subtract them off.
476	 */
477
478	countdown_reset = periods > 2 ? periods - 2 : 0;
479	heartbeat = t;
480	timeout_cnt = ((octeon_get_clock_rate() >> 8) * timeout_sec) >> 8;
481}
482
483static int octeon_wdt_set_heartbeat(int t)
484{
485	int cpu;
486	int coreid;
487	union cvmx_ciu_wdogx ciu_wdog;
488
489	if (t <= 0)
490		return -1;
491
492	octeon_wdt_calc_parameters(t);
493
494	for_each_online_cpu(cpu) {
495		coreid = cpu2core(cpu);
496		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
497		ciu_wdog.u64 = 0;
498		ciu_wdog.s.len = timeout_cnt;
499		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
500		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
501		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
502	}
503	octeon_wdt_ping(); /* Get the irqs back on. */
504	return 0;
505}
506
507/**
508 *	octeon_wdt_write:
509 *	@file: file handle to the watchdog
510 *	@buf: buffer to write (unused as data does not matter here
511 *	@count: count of bytes
512 *	@ppos: pointer to the position to write. No seeks allowed
513 *
514 *	A write to a watchdog device is defined as a keepalive signal. Any
515 *	write of data will do, as we we don't define content meaning.
516 */
517
518static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
519				size_t count, loff_t *ppos)
520{
521	if (count) {
522		if (!nowayout) {
523			size_t i;
524
525			/* In case it was set long ago */
526			expect_close = 0;
527
528			for (i = 0; i != count; i++) {
529				char c;
530				if (get_user(c, buf + i))
531					return -EFAULT;
532				if (c == 'V')
533					expect_close = 1;
534			}
535		}
536		octeon_wdt_ping();
537	}
538	return count;
539}
540
541/**
542 *	octeon_wdt_ioctl:
543 *	@file: file handle to the device
544 *	@cmd: watchdog command
545 *	@arg: argument pointer
546 *
547 *	The watchdog API defines a common set of functions for all
548 *	watchdogs according to their available features. We only
549 *	actually usefully support querying capabilities and setting
550 *	the timeout.
551 */
552
553static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
554			     unsigned long arg)
555{
556	void __user *argp = (void __user *)arg;
557	int __user *p = argp;
558	int new_heartbeat;
559
560	static struct watchdog_info ident = {
561		.options =		WDIOF_SETTIMEOUT|
562					WDIOF_MAGICCLOSE|
563					WDIOF_KEEPALIVEPING,
564		.firmware_version =	1,
565		.identity =		"OCTEON",
566	};
567
568	switch (cmd) {
569	case WDIOC_GETSUPPORT:
570		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
571	case WDIOC_GETSTATUS:
572	case WDIOC_GETBOOTSTATUS:
573		return put_user(0, p);
574	case WDIOC_KEEPALIVE:
575		octeon_wdt_ping();
576		return 0;
577	case WDIOC_SETTIMEOUT:
578		if (get_user(new_heartbeat, p))
579			return -EFAULT;
580		if (octeon_wdt_set_heartbeat(new_heartbeat))
581			return -EINVAL;
582		/* Fall through. */
583	case WDIOC_GETTIMEOUT:
584		return put_user(heartbeat, p);
585	default:
586		return -ENOTTY;
587	}
588}
589
590/**
591 *	octeon_wdt_open:
592 *	@inode: inode of device
593 *	@file: file handle to device
594 *
595 *	The watchdog device has been opened. The watchdog device is single
596 *	open and on opening we do a ping to reset the counters.
597 */
598
599static int octeon_wdt_open(struct inode *inode, struct file *file)
600{
601	if (test_and_set_bit(0, &octeon_wdt_is_open))
602		return -EBUSY;
603	/*
604	 *	Activate
605	 */
606	octeon_wdt_ping();
607	do_coundown = 1;
608	return nonseekable_open(inode, file);
609}
610
611/**
612 *	octeon_wdt_release:
613 *	@inode: inode to board
614 *	@file: file handle to board
615 *
616 *	The watchdog has a configurable API. There is a religious dispute
617 *	between people who want their watchdog to be able to shut down and
618 *	those who want to be sure if the watchdog manager dies the machine
619 *	reboots. In the former case we disable the counters, in the latter
620 *	case you have to open it again very soon.
621 */
622
623static int octeon_wdt_release(struct inode *inode, struct file *file)
624{
625	if (expect_close) {
626		do_coundown = 0;
627		octeon_wdt_ping();
628	} else {
629		pr_crit("octeon_wdt: WDT device closed unexpectedly.  WDT will not stop!\n");
630	}
631	clear_bit(0, &octeon_wdt_is_open);
632	expect_close = 0;
633	return 0;
634}
635
636static const struct file_operations octeon_wdt_fops = {
637	.owner		= THIS_MODULE,
638	.llseek		= no_llseek,
639	.write		= octeon_wdt_write,
640	.unlocked_ioctl	= octeon_wdt_ioctl,
641	.open		= octeon_wdt_open,
642	.release	= octeon_wdt_release,
643};
644
645static struct miscdevice octeon_wdt_miscdev = {
646	.minor	= WATCHDOG_MINOR,
647	.name	= "watchdog",
648	.fops	= &octeon_wdt_fops,
649};
650
651static struct notifier_block octeon_wdt_cpu_notifier = {
652	.notifier_call = octeon_wdt_cpu_callback,
653};
654
655
656/**
657 * Module/ driver initialization.
658 *
659 * Returns Zero on success
660 */
661static int __init octeon_wdt_init(void)
662{
663	int i;
664	int ret;
665	int cpu;
666	u64 *ptr;
667
668	/*
669	 * Watchdog time expiration length = The 16 bits of LEN
670	 * represent the most significant bits of a 24 bit decrementer
671	 * that decrements every 256 cycles.
672	 *
673	 * Try for a timeout of 5 sec, if that fails a smaller number
674	 * of even seconds,
675	 */
676	max_timeout_sec = 6;
677	do {
678		max_timeout_sec--;
679		timeout_cnt = ((octeon_get_clock_rate() >> 8) * max_timeout_sec) >> 8;
680	} while (timeout_cnt > 65535);
681
682	BUG_ON(timeout_cnt == 0);
683
684	octeon_wdt_calc_parameters(heartbeat);
685
686	pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
687
688	ret = misc_register(&octeon_wdt_miscdev);
689	if (ret) {
690		pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
691			WATCHDOG_MINOR, ret);
692		goto out;
693	}
694
695	/* Build the NMI handler ... */
696	octeon_wdt_build_stage1();
697
698	/* ... and install it. */
699	ptr = (u64 *) nmi_stage1_insns;
700	for (i = 0; i < 16; i++) {
701		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
702		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
703	}
704	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
705
706	cpumask_clear(&irq_enabled_cpus);
707
708	for_each_online_cpu(cpu)
709		octeon_wdt_setup_interrupt(cpu);
710
711	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
712out:
713	return ret;
714}
715
716/**
717 * Module / driver shutdown
718 */
719static void __exit octeon_wdt_cleanup(void)
720{
721	int cpu;
722
723	misc_deregister(&octeon_wdt_miscdev);
724
725	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
726
727	for_each_online_cpu(cpu) {
728		int core = cpu2core(cpu);
729		/* Disable the watchdog */
730		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
731		/* Free the interrupt handler */
732		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
733	}
734	/*
735	 * Disable the boot-bus memory, the code it points to is soon
736	 * to go missing.
737	 */
738	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
739}
740
741MODULE_LICENSE("GPL");
742MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
743MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
744module_init(octeon_wdt_init);
745module_exit(octeon_wdt_cleanup);
746