• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/video/intelfb/
1/*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright �� 2002, 2003 David Dawes <dawes@xfree86.org>
7 *                   2004 Sylvain Meyer
8 *
9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12 * provides the code to program the hardware.  Most of it is derived from
13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/errno.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/delay.h>
28#include <linux/fb.h>
29#include <linux/ioport.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/interrupt.h>
35
36#include <asm/io.h>
37
38#include "intelfb.h"
39#include "intelfbhw.h"
40
41struct pll_min_max {
42	int min_m, max_m, min_m1, max_m1;
43	int min_m2, max_m2, min_n, max_n;
44	int min_p, max_p, min_p1, max_p1;
45	int min_vco, max_vco, p_transition_clk, ref_clk;
46	int p_inc_lo, p_inc_hi;
47};
48
49#define PLLS_I8xx 0
50#define PLLS_I9xx 1
51#define PLLS_MAX 2
52
53static struct pll_min_max plls[PLLS_MAX] = {
54	{ 108, 140, 18, 26,
55	  6, 16, 3, 16,
56	  4, 128, 0, 31,
57	  930000, 1400000, 165000, 48000,
58	  4, 2 },		/* I8xx */
59
60	{ 75, 120, 10, 20,
61	  5, 9, 4, 7,
62	  5, 80, 1, 8,
63	  1400000, 2800000, 200000, 96000,
64	  10, 5 }		/* I9xx */
65};
66
67int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68{
69	u32 tmp;
70	if (!pdev || !dinfo)
71		return 1;
72
73	switch (pdev->device) {
74	case PCI_DEVICE_ID_INTEL_830M:
75		dinfo->name = "Intel(R) 830M";
76		dinfo->chipset = INTEL_830M;
77		dinfo->mobile = 1;
78		dinfo->pll_index = PLLS_I8xx;
79		return 0;
80	case PCI_DEVICE_ID_INTEL_845G:
81		dinfo->name = "Intel(R) 845G";
82		dinfo->chipset = INTEL_845G;
83		dinfo->mobile = 0;
84		dinfo->pll_index = PLLS_I8xx;
85		return 0;
86	case PCI_DEVICE_ID_INTEL_854:
87		dinfo->mobile = 1;
88		dinfo->name = "Intel(R) 854";
89		dinfo->chipset = INTEL_854;
90		return 0;
91	case PCI_DEVICE_ID_INTEL_85XGM:
92		tmp = 0;
93		dinfo->mobile = 1;
94		dinfo->pll_index = PLLS_I8xx;
95		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97			INTEL_85X_VARIANT_MASK) {
98		case INTEL_VAR_855GME:
99			dinfo->name = "Intel(R) 855GME";
100			dinfo->chipset = INTEL_855GME;
101			return 0;
102		case INTEL_VAR_855GM:
103			dinfo->name = "Intel(R) 855GM";
104			dinfo->chipset = INTEL_855GM;
105			return 0;
106		case INTEL_VAR_852GME:
107			dinfo->name = "Intel(R) 852GME";
108			dinfo->chipset = INTEL_852GME;
109			return 0;
110		case INTEL_VAR_852GM:
111			dinfo->name = "Intel(R) 852GM";
112			dinfo->chipset = INTEL_852GM;
113			return 0;
114		default:
115			dinfo->name = "Intel(R) 852GM/855GM";
116			dinfo->chipset = INTEL_85XGM;
117			return 0;
118		}
119		break;
120	case PCI_DEVICE_ID_INTEL_865G:
121		dinfo->name = "Intel(R) 865G";
122		dinfo->chipset = INTEL_865G;
123		dinfo->mobile = 0;
124		dinfo->pll_index = PLLS_I8xx;
125		return 0;
126	case PCI_DEVICE_ID_INTEL_915G:
127		dinfo->name = "Intel(R) 915G";
128		dinfo->chipset = INTEL_915G;
129		dinfo->mobile = 0;
130		dinfo->pll_index = PLLS_I9xx;
131		return 0;
132	case PCI_DEVICE_ID_INTEL_915GM:
133		dinfo->name = "Intel(R) 915GM";
134		dinfo->chipset = INTEL_915GM;
135		dinfo->mobile = 1;
136		dinfo->pll_index = PLLS_I9xx;
137		return 0;
138	case PCI_DEVICE_ID_INTEL_945G:
139		dinfo->name = "Intel(R) 945G";
140		dinfo->chipset = INTEL_945G;
141		dinfo->mobile = 0;
142		dinfo->pll_index = PLLS_I9xx;
143		return 0;
144	case PCI_DEVICE_ID_INTEL_945GM:
145		dinfo->name = "Intel(R) 945GM";
146		dinfo->chipset = INTEL_945GM;
147		dinfo->mobile = 1;
148		dinfo->pll_index = PLLS_I9xx;
149		return 0;
150	case PCI_DEVICE_ID_INTEL_945GME:
151		dinfo->name = "Intel(R) 945GME";
152		dinfo->chipset = INTEL_945GME;
153		dinfo->mobile = 1;
154		dinfo->pll_index = PLLS_I9xx;
155		return 0;
156	case PCI_DEVICE_ID_INTEL_965G:
157		dinfo->name = "Intel(R) 965G";
158		dinfo->chipset = INTEL_965G;
159		dinfo->mobile = 0;
160		dinfo->pll_index = PLLS_I9xx;
161		return 0;
162	case PCI_DEVICE_ID_INTEL_965GM:
163		dinfo->name = "Intel(R) 965GM";
164		dinfo->chipset = INTEL_965GM;
165		dinfo->mobile = 1;
166		dinfo->pll_index = PLLS_I9xx;
167		return 0;
168	default:
169		return 1;
170	}
171}
172
173int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174			 int *stolen_size)
175{
176	struct pci_dev *bridge_dev;
177	u16 tmp;
178	int stolen_overhead;
179
180	if (!pdev || !aperture_size || !stolen_size)
181		return 1;
182
183	/* Find the bridge device.  It is always 0:0.0 */
184	if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185		ERR_MSG("cannot find bridge device\n");
186		return 1;
187	}
188
189	/* Get the fb aperture size and "stolen" memory amount. */
190	tmp = 0;
191	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192	pci_dev_put(bridge_dev);
193
194	switch (pdev->device) {
195	case PCI_DEVICE_ID_INTEL_915G:
196	case PCI_DEVICE_ID_INTEL_915GM:
197	case PCI_DEVICE_ID_INTEL_945G:
198	case PCI_DEVICE_ID_INTEL_945GM:
199	case PCI_DEVICE_ID_INTEL_945GME:
200	case PCI_DEVICE_ID_INTEL_965G:
201	case PCI_DEVICE_ID_INTEL_965GM:
202		/* 915, 945 and 965 chipsets support a 256MB aperture.
203		   Aperture size is determined by inspected the
204		   base address of the aperture. */
205		if (pci_resource_start(pdev, 2) & 0x08000000)
206			*aperture_size = MB(128);
207		else
208			*aperture_size = MB(256);
209		break;
210	default:
211		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212			*aperture_size = MB(64);
213		else
214			*aperture_size = MB(128);
215		break;
216	}
217
218	/* Stolen memory size is reduced by the GTT and the popup.
219	   GTT is 1K per MB of aperture size, and popup is 4K. */
220	stolen_overhead = (*aperture_size / MB(1)) + 4;
221	switch(pdev->device) {
222	case PCI_DEVICE_ID_INTEL_830M:
223	case PCI_DEVICE_ID_INTEL_845G:
224		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225		case INTEL_830_GMCH_GMS_STOLEN_512:
226			*stolen_size = KB(512) - KB(stolen_overhead);
227			return 0;
228		case INTEL_830_GMCH_GMS_STOLEN_1024:
229			*stolen_size = MB(1) - KB(stolen_overhead);
230			return 0;
231		case INTEL_830_GMCH_GMS_STOLEN_8192:
232			*stolen_size = MB(8) - KB(stolen_overhead);
233			return 0;
234		case INTEL_830_GMCH_GMS_LOCAL:
235			ERR_MSG("only local memory found\n");
236			return 1;
237		case INTEL_830_GMCH_GMS_DISABLED:
238			ERR_MSG("video memory is disabled\n");
239			return 1;
240		default:
241			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242				tmp & INTEL_830_GMCH_GMS_MASK);
243			return 1;
244		}
245		break;
246	default:
247		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248		case INTEL_855_GMCH_GMS_STOLEN_1M:
249			*stolen_size = MB(1) - KB(stolen_overhead);
250			return 0;
251		case INTEL_855_GMCH_GMS_STOLEN_4M:
252			*stolen_size = MB(4) - KB(stolen_overhead);
253			return 0;
254		case INTEL_855_GMCH_GMS_STOLEN_8M:
255			*stolen_size = MB(8) - KB(stolen_overhead);
256			return 0;
257		case INTEL_855_GMCH_GMS_STOLEN_16M:
258			*stolen_size = MB(16) - KB(stolen_overhead);
259			return 0;
260		case INTEL_855_GMCH_GMS_STOLEN_32M:
261			*stolen_size = MB(32) - KB(stolen_overhead);
262			return 0;
263		case INTEL_915G_GMCH_GMS_STOLEN_48M:
264			*stolen_size = MB(48) - KB(stolen_overhead);
265			return 0;
266		case INTEL_915G_GMCH_GMS_STOLEN_64M:
267			*stolen_size = MB(64) - KB(stolen_overhead);
268			return 0;
269		case INTEL_855_GMCH_GMS_DISABLED:
270			ERR_MSG("video memory is disabled\n");
271			return 0;
272		default:
273			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274				tmp & INTEL_855_GMCH_GMS_MASK);
275			return 1;
276		}
277	}
278}
279
280int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
281{
282	int dvo = 0;
283
284	if (INREG(LVDS) & PORT_ENABLE)
285		dvo |= LVDS_PORT;
286	if (INREG(DVOA) & PORT_ENABLE)
287		dvo |= DVOA_PORT;
288	if (INREG(DVOB) & PORT_ENABLE)
289		dvo |= DVOB_PORT;
290	if (INREG(DVOC) & PORT_ENABLE)
291		dvo |= DVOC_PORT;
292
293	return dvo;
294}
295
296const char * intelfbhw_dvo_to_string(int dvo)
297{
298	if (dvo & DVOA_PORT)
299		return "DVO port A";
300	else if (dvo & DVOB_PORT)
301		return "DVO port B";
302	else if (dvo & DVOC_PORT)
303		return "DVO port C";
304	else if (dvo & LVDS_PORT)
305		return "LVDS port";
306	else
307		return NULL;
308}
309
310
311int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312			    struct fb_var_screeninfo *var)
313{
314	int bytes_per_pixel;
315	int tmp;
316
317#if VERBOSE > 0
318	DBG_MSG("intelfbhw_validate_mode\n");
319#endif
320
321	bytes_per_pixel = var->bits_per_pixel / 8;
322	if (bytes_per_pixel == 3)
323		bytes_per_pixel = 4;
324
325	/* Check if enough video memory. */
326	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327	if (tmp > dinfo->fb.size) {
328		WRN_MSG("Not enough video ram for mode "
329			"(%d KByte vs %d KByte).\n",
330			BtoKB(tmp), BtoKB(dinfo->fb.size));
331		return 1;
332	}
333
334	/* Check if x/y limits are OK. */
335	if (var->xres - 1 > HACTIVE_MASK) {
336		WRN_MSG("X resolution too large (%d vs %d).\n",
337			var->xres, HACTIVE_MASK + 1);
338		return 1;
339	}
340	if (var->yres - 1 > VACTIVE_MASK) {
341		WRN_MSG("Y resolution too large (%d vs %d).\n",
342			var->yres, VACTIVE_MASK + 1);
343		return 1;
344	}
345	if (var->xres < 4) {
346		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347		return 1;
348	}
349	if (var->yres < 4) {
350		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351		return 1;
352	}
353
354	/* Check for doublescan modes. */
355	if (var->vmode & FB_VMODE_DOUBLE) {
356		WRN_MSG("Mode is double-scan.\n");
357		return 1;
358	}
359
360	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361		WRN_MSG("Odd number of lines in interlaced mode\n");
362		return 1;
363	}
364
365	/* Check if clock is OK. */
366	tmp = 1000000000 / var->pixclock;
367	if (tmp < MIN_CLOCK) {
368		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369			(tmp + 500) / 1000, MIN_CLOCK / 1000);
370		return 1;
371	}
372	if (tmp > MAX_CLOCK) {
373		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374			(tmp + 500) / 1000, MAX_CLOCK / 1000);
375		return 1;
376	}
377
378	return 0;
379}
380
381int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
382{
383	struct intelfb_info *dinfo = GET_DINFO(info);
384	u32 offset, xoffset, yoffset;
385
386#if VERBOSE > 0
387	DBG_MSG("intelfbhw_pan_display\n");
388#endif
389
390	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391	yoffset = var->yoffset;
392
393	if ((xoffset + var->xres > var->xres_virtual) ||
394	    (yoffset + var->yres > var->yres_virtual))
395		return -EINVAL;
396
397	offset = (yoffset * dinfo->pitch) +
398		 (xoffset * var->bits_per_pixel) / 8;
399
400	offset += dinfo->fb.offset << 12;
401
402	dinfo->vsync.pan_offset = offset;
403	if ((var->activate & FB_ACTIVATE_VBL) &&
404	    !intelfbhw_enable_irq(dinfo))
405		dinfo->vsync.pan_display = 1;
406	else {
407		dinfo->vsync.pan_display = 0;
408		OUTREG(DSPABASE, offset);
409	}
410
411	return 0;
412}
413
414/* Blank the screen. */
415void intelfbhw_do_blank(int blank, struct fb_info *info)
416{
417	struct intelfb_info *dinfo = GET_DINFO(info);
418	u32 tmp;
419
420#if VERBOSE > 0
421	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422#endif
423
424	/* Turn plane A on or off */
425	tmp = INREG(DSPACNTR);
426	if (blank)
427		tmp &= ~DISPPLANE_PLANE_ENABLE;
428	else
429		tmp |= DISPPLANE_PLANE_ENABLE;
430	OUTREG(DSPACNTR, tmp);
431	/* Flush */
432	tmp = INREG(DSPABASE);
433	OUTREG(DSPABASE, tmp);
434
435	/* Turn off/on the HW cursor */
436#if VERBOSE > 0
437	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438#endif
439	if (dinfo->cursor_on) {
440		if (blank)
441			intelfbhw_cursor_hide(dinfo);
442		else
443			intelfbhw_cursor_show(dinfo);
444		dinfo->cursor_on = 1;
445	}
446	dinfo->cursor_blanked = blank;
447
448	/* Set DPMS level */
449	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450	switch (blank) {
451	case FB_BLANK_UNBLANK:
452	case FB_BLANK_NORMAL:
453		tmp |= ADPA_DPMS_D0;
454		break;
455	case FB_BLANK_VSYNC_SUSPEND:
456		tmp |= ADPA_DPMS_D1;
457		break;
458	case FB_BLANK_HSYNC_SUSPEND:
459		tmp |= ADPA_DPMS_D2;
460		break;
461	case FB_BLANK_POWERDOWN:
462		tmp |= ADPA_DPMS_D3;
463		break;
464	}
465	OUTREG(ADPA, tmp);
466
467	return;
468}
469
470
471/* Check which pipe is connected to an active display plane. */
472int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
473{
474	int pipe = -1;
475
476	/* keep old default behaviour - prefer PIPE_A */
477	if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478		pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479		pipe &= PIPE_MASK;
480		if (unlikely(pipe == PIPE_A))
481			return PIPE_A;
482	}
483	if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484		pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485		pipe &= PIPE_MASK;
486		if (likely(pipe == PIPE_A))
487			return PIPE_A;
488	}
489	/* Impossible that no pipe is selected - return PIPE_A */
490	WARN_ON(pipe == -1);
491	if (unlikely(pipe == -1))
492		pipe = PIPE_A;
493
494	return pipe;
495}
496
497void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498			 unsigned red, unsigned green, unsigned blue,
499			 unsigned transp)
500{
501	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502			  PALETTE_A : PALETTE_B;
503
504#if VERBOSE > 0
505	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506		regno, red, green, blue);
507#endif
508
509	OUTREG(palette_reg + (regno << 2),
510	       (red << PALETTE_8_RED_SHIFT) |
511	       (green << PALETTE_8_GREEN_SHIFT) |
512	       (blue << PALETTE_8_BLUE_SHIFT));
513}
514
515
516int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517			    struct intelfb_hwstate *hw, int flag)
518{
519	int i;
520
521#if VERBOSE > 0
522	DBG_MSG("intelfbhw_read_hw_state\n");
523#endif
524
525	if (!hw || !dinfo)
526		return -1;
527
528	/* Read in as much of the HW state as possible. */
529	hw->vga0_divisor = INREG(VGA0_DIVISOR);
530	hw->vga1_divisor = INREG(VGA1_DIVISOR);
531	hw->vga_pd = INREG(VGAPD);
532	hw->dpll_a = INREG(DPLL_A);
533	hw->dpll_b = INREG(DPLL_B);
534	hw->fpa0 = INREG(FPA0);
535	hw->fpa1 = INREG(FPA1);
536	hw->fpb0 = INREG(FPB0);
537	hw->fpb1 = INREG(FPB1);
538
539	if (flag == 1)
540		return flag;
541
542
543	if (flag == 2)
544		return flag;
545
546	hw->htotal_a = INREG(HTOTAL_A);
547	hw->hblank_a = INREG(HBLANK_A);
548	hw->hsync_a = INREG(HSYNC_A);
549	hw->vtotal_a = INREG(VTOTAL_A);
550	hw->vblank_a = INREG(VBLANK_A);
551	hw->vsync_a = INREG(VSYNC_A);
552	hw->src_size_a = INREG(SRC_SIZE_A);
553	hw->bclrpat_a = INREG(BCLRPAT_A);
554	hw->htotal_b = INREG(HTOTAL_B);
555	hw->hblank_b = INREG(HBLANK_B);
556	hw->hsync_b = INREG(HSYNC_B);
557	hw->vtotal_b = INREG(VTOTAL_B);
558	hw->vblank_b = INREG(VBLANK_B);
559	hw->vsync_b = INREG(VSYNC_B);
560	hw->src_size_b = INREG(SRC_SIZE_B);
561	hw->bclrpat_b = INREG(BCLRPAT_B);
562
563	if (flag == 3)
564		return flag;
565
566	hw->adpa = INREG(ADPA);
567	hw->dvoa = INREG(DVOA);
568	hw->dvob = INREG(DVOB);
569	hw->dvoc = INREG(DVOC);
570	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
571	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
572	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
573	hw->lvds = INREG(LVDS);
574
575	if (flag == 4)
576		return flag;
577
578	hw->pipe_a_conf = INREG(PIPEACONF);
579	hw->pipe_b_conf = INREG(PIPEBCONF);
580	hw->disp_arb = INREG(DISPARB);
581
582	if (flag == 5)
583		return flag;
584
585	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
586	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
587	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
588	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
589
590	if (flag == 6)
591		return flag;
592
593	for (i = 0; i < 4; i++) {
594		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
595		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
596	}
597
598	if (flag == 7)
599		return flag;
600
601	hw->cursor_size = INREG(CURSOR_SIZE);
602
603	if (flag == 8)
604		return flag;
605
606	hw->disp_a_ctrl = INREG(DSPACNTR);
607	hw->disp_b_ctrl = INREG(DSPBCNTR);
608	hw->disp_a_base = INREG(DSPABASE);
609	hw->disp_b_base = INREG(DSPBBASE);
610	hw->disp_a_stride = INREG(DSPASTRIDE);
611	hw->disp_b_stride = INREG(DSPBSTRIDE);
612
613	if (flag == 9)
614		return flag;
615
616	hw->vgacntrl = INREG(VGACNTRL);
617
618	if (flag == 10)
619		return flag;
620
621	hw->add_id = INREG(ADD_ID);
622
623	if (flag == 11)
624		return flag;
625
626	for (i = 0; i < 7; i++) {
627		hw->swf0x[i] = INREG(SWF00 + (i << 2));
628		hw->swf1x[i] = INREG(SWF10 + (i << 2));
629		if (i < 3)
630			hw->swf3x[i] = INREG(SWF30 + (i << 2));
631	}
632
633	for (i = 0; i < 8; i++)
634		hw->fence[i] = INREG(FENCE + (i << 2));
635
636	hw->instpm = INREG(INSTPM);
637	hw->mem_mode = INREG(MEM_MODE);
638	hw->fw_blc_0 = INREG(FW_BLC_0);
639	hw->fw_blc_1 = INREG(FW_BLC_1);
640
641	hw->hwstam = INREG16(HWSTAM);
642	hw->ier = INREG16(IER);
643	hw->iir = INREG16(IIR);
644	hw->imr = INREG16(IMR);
645
646	return 0;
647}
648
649
650static int calc_vclock3(int index, int m, int n, int p)
651{
652	if (p == 0 || n == 0)
653		return 0;
654	return plls[index].ref_clk * m / n / p;
655}
656
657static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
658		       int lvds)
659{
660	struct pll_min_max *pll = &plls[index];
661	u32 m, vco, p;
662
663	m = (5 * (m1 + 2)) + (m2 + 2);
664	n += 2;
665	vco = pll->ref_clk * m / n;
666
667	if (index == PLLS_I8xx)
668		p = ((p1 + 2) * (1 << (p2 + 1)));
669	else
670		p = ((p1) * (p2 ? 5 : 10));
671	return vco / p;
672}
673
674#if REGDUMP
675static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
676			       int *o_p1, int *o_p2)
677{
678	int p1, p2;
679
680	if (IS_I9XX(dinfo)) {
681		if (dpll & DPLL_P1_FORCE_DIV2)
682			p1 = 1;
683		else
684			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
685
686		p1 = ffs(p1);
687
688		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
689	} else {
690		if (dpll & DPLL_P1_FORCE_DIV2)
691			p1 = 0;
692		else
693			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
694		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
695	}
696
697	*o_p1 = p1;
698	*o_p2 = p2;
699}
700#endif
701
702
703void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
704			      struct intelfb_hwstate *hw)
705{
706#if REGDUMP
707	int i, m1, m2, n, p1, p2;
708	int index = dinfo->pll_index;
709	DBG_MSG("intelfbhw_print_hw_state\n");
710
711	if (!hw)
712		return;
713	/* Read in as much of the HW state as possible. */
714	printk("hw state dump start\n");
715	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
716	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
717	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
718	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
719	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
720	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
721
722	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
723
724	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
725	       m1, m2, n, p1, p2);
726	printk("	VGA0: clock is %d\n",
727	       calc_vclock(index, m1, m2, n, p1, p2, 0));
728
729	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
732
733	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
734	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
735	       m1, m2, n, p1, p2);
736	printk("	VGA1: clock is %d\n",
737	       calc_vclock(index, m1, m2, n, p1, p2, 0));
738
739	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
740	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
741	printk("	FPA0:			0x%08x\n", hw->fpa0);
742	printk("	FPA1:			0x%08x\n", hw->fpa1);
743	printk("	FPB0:			0x%08x\n", hw->fpb0);
744	printk("	FPB1:			0x%08x\n", hw->fpb1);
745
746	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
747	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
748	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
749
750	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
751
752	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
753	       m1, m2, n, p1, p2);
754	printk("	PLLA0: clock is %d\n",
755	       calc_vclock(index, m1, m2, n, p1, p2, 0));
756
757	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
758	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
759	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
760
761	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
762
763	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
764	       m1, m2, n, p1, p2);
765	printk("	PLLA1: clock is %d\n",
766	       calc_vclock(index, m1, m2, n, p1, p2, 0));
767
768
769	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
770	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
771	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
772	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
773	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
774	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
775	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
776	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
777	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
778	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
779	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
780	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
781	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
782	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
783	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
784	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
785
786	printk("	ADPA:			0x%08x\n", hw->adpa);
787	printk("	DVOA:			0x%08x\n", hw->dvoa);
788	printk("	DVOB:			0x%08x\n", hw->dvob);
789	printk("	DVOC:			0x%08x\n", hw->dvoc);
790	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
791	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
792	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
793	printk("	LVDS:			0x%08x\n", hw->lvds);
794
795	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
796	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
797	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
798
799	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
800	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
801	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
802	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
803
804	printk("	CURSOR_A_PALETTE:	");
805	for (i = 0; i < 4; i++) {
806		printk("0x%08x", hw->cursor_a_palette[i]);
807		if (i < 3)
808			printk(", ");
809	}
810	printk("\n");
811	printk("	CURSOR_B_PALETTE:	");
812	for (i = 0; i < 4; i++) {
813		printk("0x%08x", hw->cursor_b_palette[i]);
814		if (i < 3)
815			printk(", ");
816	}
817	printk("\n");
818
819	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
820
821	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
822	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
823	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
824	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
825	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
826	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
827
828	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
829	printk("	ADD_ID:			0x%08x\n", hw->add_id);
830
831	for (i = 0; i < 7; i++) {
832		printk("	SWF0%d			0x%08x\n", i,
833			hw->swf0x[i]);
834	}
835	for (i = 0; i < 7; i++) {
836		printk("	SWF1%d			0x%08x\n", i,
837			hw->swf1x[i]);
838	}
839	for (i = 0; i < 3; i++) {
840		printk("	SWF3%d			0x%08x\n", i,
841		       hw->swf3x[i]);
842	}
843	for (i = 0; i < 8; i++)
844		printk("	FENCE%d			0x%08x\n", i,
845		       hw->fence[i]);
846
847	printk("	INSTPM			0x%08x\n", hw->instpm);
848	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
849	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
850	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
851
852	printk("	HWSTAM			0x%04x\n", hw->hwstam);
853	printk("	IER			0x%04x\n", hw->ier);
854	printk("	IIR			0x%04x\n", hw->iir);
855	printk("	IMR			0x%04x\n", hw->imr);
856	printk("hw state dump end\n");
857#endif
858}
859
860
861
862/* Split the M parameter into M1 and M2. */
863static int splitm(int index, unsigned int m, unsigned int *retm1,
864		  unsigned int *retm2)
865{
866	int m1, m2;
867	int testm;
868	struct pll_min_max *pll = &plls[index];
869
870	/* no point optimising too much - brute force m */
871	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
872		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
873			testm = (5 * (m1 + 2)) + (m2 + 2);
874			if (testm == m) {
875				*retm1 = (unsigned int)m1;
876				*retm2 = (unsigned int)m2;
877				return 0;
878			}
879		}
880	}
881	return 1;
882}
883
884/* Split the P parameter into P1 and P2. */
885static int splitp(int index, unsigned int p, unsigned int *retp1,
886		  unsigned int *retp2)
887{
888	int p1, p2;
889	struct pll_min_max *pll = &plls[index];
890
891	if (index == PLLS_I9xx) {
892		p2 = (p % 10) ? 1 : 0;
893
894		p1 = p / (p2 ? 5 : 10);
895
896		*retp1 = (unsigned int)p1;
897		*retp2 = (unsigned int)p2;
898		return 0;
899	}
900
901	if (p % 4 == 0)
902		p2 = 1;
903	else
904		p2 = 0;
905	p1 = (p / (1 << (p2 + 1))) - 2;
906	if (p % 4 == 0 && p1 < pll->min_p1) {
907		p2 = 0;
908		p1 = (p / (1 << (p2 + 1))) - 2;
909	}
910	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
911	    (p1 + 2) * (1 << (p2 + 1)) != p) {
912		return 1;
913	} else {
914		*retp1 = (unsigned int)p1;
915		*retp2 = (unsigned int)p2;
916		return 0;
917	}
918}
919
920static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
921			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
922{
923	u32 m1, m2, n, p1, p2, n1, testm;
924	u32 f_vco, p, p_best = 0, m, f_out = 0;
925	u32 err_max, err_target, err_best = 10000000;
926	u32 n_best = 0, m_best = 0, f_best, f_err;
927	u32 p_min, p_max, p_inc, div_max;
928	struct pll_min_max *pll = &plls[index];
929
930	/* Accept 0.5% difference, but aim for 0.1% */
931	err_max = 5 * clock / 1000;
932	err_target = clock / 1000;
933
934	DBG_MSG("Clock is %d\n", clock);
935
936	div_max = pll->max_vco / clock;
937
938	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
939	p_min = p_inc;
940	p_max = ROUND_DOWN_TO(div_max, p_inc);
941	if (p_min < pll->min_p)
942		p_min = pll->min_p;
943	if (p_max > pll->max_p)
944		p_max = pll->max_p;
945
946	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
947
948	p = p_min;
949	do {
950		if (splitp(index, p, &p1, &p2)) {
951			WRN_MSG("cannot split p = %d\n", p);
952			p += p_inc;
953			continue;
954		}
955		n = pll->min_n;
956		f_vco = clock * p;
957
958		do {
959			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
960			if (m < pll->min_m)
961				m = pll->min_m + 1;
962			if (m > pll->max_m)
963				m = pll->max_m - 1;
964			for (testm = m - 1; testm <= m; testm++) {
965				f_out = calc_vclock3(index, testm, n, p);
966				if (splitm(index, testm, &m1, &m2)) {
967					WRN_MSG("cannot split m = %d\n",
968						testm);
969					continue;
970				}
971				if (clock > f_out)
972					f_err = clock - f_out;
973				else/* slightly bias the error for bigger clocks */
974					f_err = f_out - clock + 1;
975
976				if (f_err < err_best) {
977					m_best = testm;
978					n_best = n;
979					p_best = p;
980					f_best = f_out;
981					err_best = f_err;
982				}
983			}
984			n++;
985		} while ((n <= pll->max_n) && (f_out >= clock));
986		p += p_inc;
987	} while ((p <= p_max));
988
989	if (!m_best) {
990		WRN_MSG("cannot find parameters for clock %d\n", clock);
991		return 1;
992	}
993	m = m_best;
994	n = n_best;
995	p = p_best;
996	splitm(index, m, &m1, &m2);
997	splitp(index, p, &p1, &p2);
998	n1 = n - 2;
999
1000	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1001		"f: %d (%d), VCO: %d\n",
1002		m, m1, m2, n, n1, p, p1, p2,
1003		calc_vclock3(index, m, n, p),
1004		calc_vclock(index, m1, m2, n1, p1, p2, 0),
1005		calc_vclock3(index, m, n, p) * p);
1006	*retm1 = m1;
1007	*retm2 = m2;
1008	*retn = n1;
1009	*retp1 = p1;
1010	*retp2 = p2;
1011	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1012
1013	return 0;
1014}
1015
1016static __inline__ int check_overflow(u32 value, u32 limit,
1017				     const char *description)
1018{
1019	if (value > limit) {
1020		WRN_MSG("%s value %d exceeds limit %d\n",
1021			description, value, limit);
1022		return 1;
1023	}
1024	return 0;
1025}
1026
1027/* It is assumed that hw is filled in with the initial state information. */
1028int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1029			 struct intelfb_hwstate *hw,
1030			 struct fb_var_screeninfo *var)
1031{
1032	int pipe = intelfbhw_active_pipe(hw);
1033	u32 *dpll, *fp0, *fp1;
1034	u32 m1, m2, n, p1, p2, clock_target, clock;
1035	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1036	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1037	u32 vsync_pol, hsync_pol;
1038	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1039	u32 stride_alignment;
1040
1041	DBG_MSG("intelfbhw_mode_to_hw\n");
1042
1043	/* Disable VGA */
1044	hw->vgacntrl |= VGA_DISABLE;
1045
1046	/* Set which pipe's registers will be set. */
1047	if (pipe == PIPE_B) {
1048		dpll = &hw->dpll_b;
1049		fp0 = &hw->fpb0;
1050		fp1 = &hw->fpb1;
1051		hs = &hw->hsync_b;
1052		hb = &hw->hblank_b;
1053		ht = &hw->htotal_b;
1054		vs = &hw->vsync_b;
1055		vb = &hw->vblank_b;
1056		vt = &hw->vtotal_b;
1057		ss = &hw->src_size_b;
1058		pipe_conf = &hw->pipe_b_conf;
1059	} else {
1060		dpll = &hw->dpll_a;
1061		fp0 = &hw->fpa0;
1062		fp1 = &hw->fpa1;
1063		hs = &hw->hsync_a;
1064		hb = &hw->hblank_a;
1065		ht = &hw->htotal_a;
1066		vs = &hw->vsync_a;
1067		vb = &hw->vblank_a;
1068		vt = &hw->vtotal_a;
1069		ss = &hw->src_size_a;
1070		pipe_conf = &hw->pipe_a_conf;
1071	}
1072
1073	/* Use ADPA register for sync control. */
1074	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1075
1076	/* sync polarity */
1077	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1078			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1079	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1080			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1081	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1082		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1083	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1084		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1085
1086	/* Connect correct pipe to the analog port DAC */
1087	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1088	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1089
1090	/* Set DPMS state to D0 (on) */
1091	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1092	hw->adpa |= ADPA_DPMS_D0;
1093
1094	hw->adpa |= ADPA_DAC_ENABLE;
1095
1096	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1097	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1098	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1099
1100	/* Desired clock in kHz */
1101	clock_target = 1000000000 / var->pixclock;
1102
1103	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1104			    &n, &p1, &p2, &clock)) {
1105		WRN_MSG("calc_pll_params failed\n");
1106		return 1;
1107	}
1108
1109	/* Check for overflow. */
1110	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1111		return 1;
1112	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1113		return 1;
1114	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1115		return 1;
1116	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1117		return 1;
1118	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1119		return 1;
1120
1121	*dpll &= ~DPLL_P1_FORCE_DIV2;
1122	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1123		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1124
1125	if (IS_I9XX(dinfo)) {
1126		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1127		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1128	} else
1129		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1130
1131	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1132	       (m1 << FP_M1_DIVISOR_SHIFT) |
1133	       (m2 << FP_M2_DIVISOR_SHIFT);
1134	*fp1 = *fp0;
1135
1136	hw->dvob &= ~PORT_ENABLE;
1137	hw->dvoc &= ~PORT_ENABLE;
1138
1139	/* Use display plane A. */
1140	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1141	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1142	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1143	switch (intelfb_var_to_depth(var)) {
1144	case 8:
1145		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1146		break;
1147	case 15:
1148		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1149		break;
1150	case 16:
1151		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1152		break;
1153	case 24:
1154		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1155		break;
1156	}
1157	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1158	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1159
1160	/* Set CRTC registers. */
1161	hactive = var->xres;
1162	hsync_start = hactive + var->right_margin;
1163	hsync_end = hsync_start + var->hsync_len;
1164	htotal = hsync_end + var->left_margin;
1165	hblank_start = hactive;
1166	hblank_end = htotal;
1167
1168	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1169		hactive, hsync_start, hsync_end, htotal, hblank_start,
1170		hblank_end);
1171
1172	vactive = var->yres;
1173	if (var->vmode & FB_VMODE_INTERLACED)
1174		vactive--; /* the chip adds 2 halflines automatically */
1175	vsync_start = vactive + var->lower_margin;
1176	vsync_end = vsync_start + var->vsync_len;
1177	vtotal = vsync_end + var->upper_margin;
1178	vblank_start = vactive;
1179	vblank_end = vtotal;
1180	vblank_end = vsync_end + 1;
1181
1182	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1183		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1184		vblank_end);
1185
1186	/* Adjust for register values, and check for overflow. */
1187	hactive--;
1188	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1189		return 1;
1190	hsync_start--;
1191	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1192		return 1;
1193	hsync_end--;
1194	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1195		return 1;
1196	htotal--;
1197	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1198		return 1;
1199	hblank_start--;
1200	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1201		return 1;
1202	hblank_end--;
1203	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1204		return 1;
1205
1206	vactive--;
1207	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1208		return 1;
1209	vsync_start--;
1210	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1211		return 1;
1212	vsync_end--;
1213	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1214		return 1;
1215	vtotal--;
1216	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1217		return 1;
1218	vblank_start--;
1219	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1220		return 1;
1221	vblank_end--;
1222	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1223		return 1;
1224
1225	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1226	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1227	      (hblank_end << HSYNCEND_SHIFT);
1228	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1229
1230	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1231	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1232	      (vblank_end << VSYNCEND_SHIFT);
1233	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1234	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1235	      (vactive << SRC_SIZE_VERT_SHIFT);
1236
1237	hw->disp_a_stride = dinfo->pitch;
1238	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1239
1240	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1241			  var->xoffset * var->bits_per_pixel / 8;
1242
1243	hw->disp_a_base += dinfo->fb.offset << 12;
1244
1245	/* Check stride alignment. */
1246	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1247					    STRIDE_ALIGNMENT;
1248	if (hw->disp_a_stride % stride_alignment != 0) {
1249		WRN_MSG("display stride %d has bad alignment %d\n",
1250			hw->disp_a_stride, stride_alignment);
1251		return 1;
1252	}
1253
1254	/* Set the palette to 8-bit mode. */
1255	*pipe_conf &= ~PIPECONF_GAMMA;
1256
1257	if (var->vmode & FB_VMODE_INTERLACED)
1258		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1259	else
1260		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1261
1262	return 0;
1263}
1264
1265/* Program a (non-VGA) video mode. */
1266int intelfbhw_program_mode(struct intelfb_info *dinfo,
1267			   const struct intelfb_hwstate *hw, int blank)
1268{
1269	u32 tmp;
1270	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1271	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1272	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1273	u32 hsync_reg, htotal_reg, hblank_reg;
1274	u32 vsync_reg, vtotal_reg, vblank_reg;
1275	u32 src_size_reg;
1276	u32 count, tmp_val[3];
1277
1278	/* Assume single pipe */
1279
1280#if VERBOSE > 0
1281	DBG_MSG("intelfbhw_program_mode\n");
1282#endif
1283
1284	/* Disable VGA */
1285	tmp = INREG(VGACNTRL);
1286	tmp |= VGA_DISABLE;
1287	OUTREG(VGACNTRL, tmp);
1288
1289	dinfo->pipe = intelfbhw_active_pipe(hw);
1290
1291	if (dinfo->pipe == PIPE_B) {
1292		dpll = &hw->dpll_b;
1293		fp0 = &hw->fpb0;
1294		fp1 = &hw->fpb1;
1295		pipe_conf = &hw->pipe_b_conf;
1296		hs = &hw->hsync_b;
1297		hb = &hw->hblank_b;
1298		ht = &hw->htotal_b;
1299		vs = &hw->vsync_b;
1300		vb = &hw->vblank_b;
1301		vt = &hw->vtotal_b;
1302		ss = &hw->src_size_b;
1303		dpll_reg = DPLL_B;
1304		fp0_reg = FPB0;
1305		fp1_reg = FPB1;
1306		pipe_conf_reg = PIPEBCONF;
1307		pipe_stat_reg = PIPEBSTAT;
1308		hsync_reg = HSYNC_B;
1309		htotal_reg = HTOTAL_B;
1310		hblank_reg = HBLANK_B;
1311		vsync_reg = VSYNC_B;
1312		vtotal_reg = VTOTAL_B;
1313		vblank_reg = VBLANK_B;
1314		src_size_reg = SRC_SIZE_B;
1315	} else {
1316		dpll = &hw->dpll_a;
1317		fp0 = &hw->fpa0;
1318		fp1 = &hw->fpa1;
1319		pipe_conf = &hw->pipe_a_conf;
1320		hs = &hw->hsync_a;
1321		hb = &hw->hblank_a;
1322		ht = &hw->htotal_a;
1323		vs = &hw->vsync_a;
1324		vb = &hw->vblank_a;
1325		vt = &hw->vtotal_a;
1326		ss = &hw->src_size_a;
1327		dpll_reg = DPLL_A;
1328		fp0_reg = FPA0;
1329		fp1_reg = FPA1;
1330		pipe_conf_reg = PIPEACONF;
1331		pipe_stat_reg = PIPEASTAT;
1332		hsync_reg = HSYNC_A;
1333		htotal_reg = HTOTAL_A;
1334		hblank_reg = HBLANK_A;
1335		vsync_reg = VSYNC_A;
1336		vtotal_reg = VTOTAL_A;
1337		vblank_reg = VBLANK_A;
1338		src_size_reg = SRC_SIZE_A;
1339	}
1340
1341	/* turn off pipe */
1342	tmp = INREG(pipe_conf_reg);
1343	tmp &= ~PIPECONF_ENABLE;
1344	OUTREG(pipe_conf_reg, tmp);
1345
1346	count = 0;
1347	do {
1348		tmp_val[count % 3] = INREG(PIPEA_DSL);
1349		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1350			break;
1351		count++;
1352		udelay(1);
1353		if (count % 200 == 0) {
1354			tmp = INREG(pipe_conf_reg);
1355			tmp &= ~PIPECONF_ENABLE;
1356			OUTREG(pipe_conf_reg, tmp);
1357		}
1358	} while (count < 2000);
1359
1360	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1361
1362	/* Disable planes A and B. */
1363	tmp = INREG(DSPACNTR);
1364	tmp &= ~DISPPLANE_PLANE_ENABLE;
1365	OUTREG(DSPACNTR, tmp);
1366	tmp = INREG(DSPBCNTR);
1367	tmp &= ~DISPPLANE_PLANE_ENABLE;
1368	OUTREG(DSPBCNTR, tmp);
1369
1370	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1371	mdelay(20);
1372
1373	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1374	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1375	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1376
1377	/* Disable Sync */
1378	tmp = INREG(ADPA);
1379	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1380	tmp |= ADPA_DPMS_D3;
1381	OUTREG(ADPA, tmp);
1382
1383	/* do some funky magic - xyzzy */
1384	OUTREG(0x61204, 0xabcd0000);
1385
1386	/* turn off PLL */
1387	tmp = INREG(dpll_reg);
1388	tmp &= ~DPLL_VCO_ENABLE;
1389	OUTREG(dpll_reg, tmp);
1390
1391	/* Set PLL parameters */
1392	OUTREG(fp0_reg, *fp0);
1393	OUTREG(fp1_reg, *fp1);
1394
1395	/* Enable PLL */
1396	OUTREG(dpll_reg, *dpll);
1397
1398	/* Set DVOs B/C */
1399	OUTREG(DVOB, hw->dvob);
1400	OUTREG(DVOC, hw->dvoc);
1401
1402	/* undo funky magic */
1403	OUTREG(0x61204, 0x00000000);
1404
1405	/* Set ADPA */
1406	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1407	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1408
1409	/* Set pipe parameters */
1410	OUTREG(hsync_reg, *hs);
1411	OUTREG(hblank_reg, *hb);
1412	OUTREG(htotal_reg, *ht);
1413	OUTREG(vsync_reg, *vs);
1414	OUTREG(vblank_reg, *vb);
1415	OUTREG(vtotal_reg, *vt);
1416	OUTREG(src_size_reg, *ss);
1417
1418	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1419					  FB_VMODE_ODD_FLD_FIRST)) {
1420	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1421		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1422		break;
1423	case FB_VMODE_INTERLACED: /* even lines first */
1424		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1425		break;
1426	default:		/* non-interlaced */
1427		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1428	}
1429	/* Enable pipe */
1430	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1431
1432	/* Enable sync */
1433	tmp = INREG(ADPA);
1434	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1435	tmp |= ADPA_DPMS_D0;
1436	OUTREG(ADPA, tmp);
1437
1438	/* setup display plane */
1439	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1440		/*
1441		 *      i830M errata: the display plane must be enabled
1442		 *      to allow writes to the other bits in the plane
1443		 *      control register.
1444		 */
1445		tmp = INREG(DSPACNTR);
1446		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1447			tmp |= DISPPLANE_PLANE_ENABLE;
1448			OUTREG(DSPACNTR, tmp);
1449			OUTREG(DSPACNTR,
1450			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1451			mdelay(1);
1452		}
1453	}
1454
1455	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1456	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1457	OUTREG(DSPABASE, hw->disp_a_base);
1458
1459	/* Enable plane */
1460	if (!blank) {
1461		tmp = INREG(DSPACNTR);
1462		tmp |= DISPPLANE_PLANE_ENABLE;
1463		OUTREG(DSPACNTR, tmp);
1464		OUTREG(DSPABASE, hw->disp_a_base);
1465	}
1466
1467	return 0;
1468}
1469
1470/* forward declarations */
1471static void refresh_ring(struct intelfb_info *dinfo);
1472static void reset_state(struct intelfb_info *dinfo);
1473static void do_flush(struct intelfb_info *dinfo);
1474
1475static  u32 get_ring_space(struct intelfb_info *dinfo)
1476{
1477	u32 ring_space;
1478
1479	if (dinfo->ring_tail >= dinfo->ring_head)
1480		ring_space = dinfo->ring.size -
1481			(dinfo->ring_tail - dinfo->ring_head);
1482	else
1483		ring_space = dinfo->ring_head - dinfo->ring_tail;
1484
1485	if (ring_space > RING_MIN_FREE)
1486		ring_space -= RING_MIN_FREE;
1487	else
1488		ring_space = 0;
1489
1490	return ring_space;
1491}
1492
1493static int wait_ring(struct intelfb_info *dinfo, int n)
1494{
1495	int i = 0;
1496	unsigned long end;
1497	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1498
1499#if VERBOSE > 0
1500	DBG_MSG("wait_ring: %d\n", n);
1501#endif
1502
1503	end = jiffies + (HZ * 3);
1504	while (dinfo->ring_space < n) {
1505		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1506		dinfo->ring_space = get_ring_space(dinfo);
1507
1508		if (dinfo->ring_head != last_head) {
1509			end = jiffies + (HZ * 3);
1510			last_head = dinfo->ring_head;
1511		}
1512		i++;
1513		if (time_before(end, jiffies)) {
1514			if (!i) {
1515				/* Try again */
1516				reset_state(dinfo);
1517				refresh_ring(dinfo);
1518				do_flush(dinfo);
1519				end = jiffies + (HZ * 3);
1520				i = 1;
1521			} else {
1522				WRN_MSG("ring buffer : space: %d wanted %d\n",
1523					dinfo->ring_space, n);
1524				WRN_MSG("lockup - turning off hardware "
1525					"acceleration\n");
1526				dinfo->ring_lockup = 1;
1527				break;
1528			}
1529		}
1530		udelay(1);
1531	}
1532	return i;
1533}
1534
1535static void do_flush(struct intelfb_info *dinfo)
1536{
1537	START_RING(2);
1538	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1539	OUT_RING(MI_NOOP);
1540	ADVANCE_RING();
1541}
1542
1543void intelfbhw_do_sync(struct intelfb_info *dinfo)
1544{
1545#if VERBOSE > 0
1546	DBG_MSG("intelfbhw_do_sync\n");
1547#endif
1548
1549	if (!dinfo->accel)
1550		return;
1551
1552	/*
1553	 * Send a flush, then wait until the ring is empty.  This is what
1554	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1555	 * than the recommended method (both have problems).
1556	 */
1557	do_flush(dinfo);
1558	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1559	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1560}
1561
1562static void refresh_ring(struct intelfb_info *dinfo)
1563{
1564#if VERBOSE > 0
1565	DBG_MSG("refresh_ring\n");
1566#endif
1567
1568	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1569	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1570	dinfo->ring_space = get_ring_space(dinfo);
1571}
1572
1573static void reset_state(struct intelfb_info *dinfo)
1574{
1575	int i;
1576	u32 tmp;
1577
1578#if VERBOSE > 0
1579	DBG_MSG("reset_state\n");
1580#endif
1581
1582	for (i = 0; i < FENCE_NUM; i++)
1583		OUTREG(FENCE + (i << 2), 0);
1584
1585	/* Flush the ring buffer if it's enabled. */
1586	tmp = INREG(PRI_RING_LENGTH);
1587	if (tmp & RING_ENABLE) {
1588#if VERBOSE > 0
1589		DBG_MSG("reset_state: ring was enabled\n");
1590#endif
1591		refresh_ring(dinfo);
1592		intelfbhw_do_sync(dinfo);
1593		DO_RING_IDLE();
1594	}
1595
1596	OUTREG(PRI_RING_LENGTH, 0);
1597	OUTREG(PRI_RING_HEAD, 0);
1598	OUTREG(PRI_RING_TAIL, 0);
1599	OUTREG(PRI_RING_START, 0);
1600}
1601
1602/* Stop the 2D engine, and turn off the ring buffer. */
1603void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1604{
1605#if VERBOSE > 0
1606	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1607		dinfo->accel, dinfo->ring_active);
1608#endif
1609
1610	if (!dinfo->accel)
1611		return;
1612
1613	dinfo->ring_active = 0;
1614	reset_state(dinfo);
1615}
1616
1617/*
1618 * Enable the ring buffer, and initialise the 2D engine.
1619 * It is assumed that the graphics engine has been stopped by previously
1620 * calling intelfb_2d_stop().
1621 */
1622void intelfbhw_2d_start(struct intelfb_info *dinfo)
1623{
1624#if VERBOSE > 0
1625	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1626		dinfo->accel, dinfo->ring_active);
1627#endif
1628
1629	if (!dinfo->accel)
1630		return;
1631
1632	/* Initialise the primary ring buffer. */
1633	OUTREG(PRI_RING_LENGTH, 0);
1634	OUTREG(PRI_RING_TAIL, 0);
1635	OUTREG(PRI_RING_HEAD, 0);
1636
1637	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1638	OUTREG(PRI_RING_LENGTH,
1639		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1640		RING_NO_REPORT | RING_ENABLE);
1641	refresh_ring(dinfo);
1642	dinfo->ring_active = 1;
1643}
1644
1645/* 2D fillrect (solid fill or invert) */
1646void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1647			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1648{
1649	u32 br00, br09, br13, br14, br16;
1650
1651#if VERBOSE > 0
1652	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1653		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1654#endif
1655
1656	br00 = COLOR_BLT_CMD;
1657	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1658	br13 = (rop << ROP_SHIFT) | pitch;
1659	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1660	br16 = color;
1661
1662	switch (bpp) {
1663	case 8:
1664		br13 |= COLOR_DEPTH_8;
1665		break;
1666	case 16:
1667		br13 |= COLOR_DEPTH_16;
1668		break;
1669	case 32:
1670		br13 |= COLOR_DEPTH_32;
1671		br00 |= WRITE_ALPHA | WRITE_RGB;
1672		break;
1673	}
1674
1675	START_RING(6);
1676	OUT_RING(br00);
1677	OUT_RING(br13);
1678	OUT_RING(br14);
1679	OUT_RING(br09);
1680	OUT_RING(br16);
1681	OUT_RING(MI_NOOP);
1682	ADVANCE_RING();
1683
1684#if VERBOSE > 0
1685	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1686		dinfo->ring_tail, dinfo->ring_space);
1687#endif
1688}
1689
1690void
1691intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1692		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1693{
1694	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1695
1696#if VERBOSE > 0
1697	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1698		curx, cury, dstx, dsty, w, h, pitch, bpp);
1699#endif
1700
1701	br00 = XY_SRC_COPY_BLT_CMD;
1702	br09 = dinfo->fb_start;
1703	br11 = (pitch << PITCH_SHIFT);
1704	br12 = dinfo->fb_start;
1705	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1706	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1707	br23 = ((dstx + w) << WIDTH_SHIFT) |
1708	       ((dsty + h) << HEIGHT_SHIFT);
1709	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1710
1711	switch (bpp) {
1712	case 8:
1713		br13 |= COLOR_DEPTH_8;
1714		break;
1715	case 16:
1716		br13 |= COLOR_DEPTH_16;
1717		break;
1718	case 32:
1719		br13 |= COLOR_DEPTH_32;
1720		br00 |= WRITE_ALPHA | WRITE_RGB;
1721		break;
1722	}
1723
1724	START_RING(8);
1725	OUT_RING(br00);
1726	OUT_RING(br13);
1727	OUT_RING(br22);
1728	OUT_RING(br23);
1729	OUT_RING(br09);
1730	OUT_RING(br26);
1731	OUT_RING(br11);
1732	OUT_RING(br12);
1733	ADVANCE_RING();
1734}
1735
1736int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1737			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1738			   u32 bpp)
1739{
1740	int nbytes, ndwords, pad, tmp;
1741	u32 br00, br09, br13, br18, br19, br22, br23;
1742	int dat, ix, iy, iw;
1743	int i, j;
1744
1745#if VERBOSE > 0
1746	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1747#endif
1748
1749	/* size in bytes of a padded scanline */
1750	nbytes = ROUND_UP_TO(w, 16) / 8;
1751
1752	/* Total bytes of padded scanline data to write out. */
1753	nbytes = nbytes * h;
1754
1755	/*
1756	 * Check if the glyph data exceeds the immediate mode limit.
1757	 * It would take a large font (1K pixels) to hit this limit.
1758	 */
1759	if (nbytes > MAX_MONO_IMM_SIZE)
1760		return 0;
1761
1762	/* Src data is packaged a dword (32-bit) at a time. */
1763	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1764
1765	/*
1766	 * Ring has to be padded to a quad word. But because the command starts
1767	   with 7 bytes, pad only if there is an even number of ndwords
1768	 */
1769	pad = !(ndwords % 2);
1770
1771	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1772	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1773	br09 = dinfo->fb_start;
1774	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1775	br18 = bg;
1776	br19 = fg;
1777	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1778	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1779
1780	switch (bpp) {
1781	case 8:
1782		br13 |= COLOR_DEPTH_8;
1783		break;
1784	case 16:
1785		br13 |= COLOR_DEPTH_16;
1786		break;
1787	case 32:
1788		br13 |= COLOR_DEPTH_32;
1789		br00 |= WRITE_ALPHA | WRITE_RGB;
1790		break;
1791	}
1792
1793	START_RING(8 + ndwords);
1794	OUT_RING(br00);
1795	OUT_RING(br13);
1796	OUT_RING(br22);
1797	OUT_RING(br23);
1798	OUT_RING(br09);
1799	OUT_RING(br18);
1800	OUT_RING(br19);
1801	ix = iy = 0;
1802	iw = ROUND_UP_TO(w, 8) / 8;
1803	while (ndwords--) {
1804		dat = 0;
1805		for (j = 0; j < 2; ++j) {
1806			for (i = 0; i < 2; ++i) {
1807				if (ix != iw || i == 0)
1808					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1809			}
1810			if (ix == iw && iy != (h-1)) {
1811				ix = 0;
1812				++iy;
1813			}
1814		}
1815		OUT_RING(dat);
1816	}
1817	if (pad)
1818		OUT_RING(MI_NOOP);
1819	ADVANCE_RING();
1820
1821	return 1;
1822}
1823
1824/* HW cursor functions. */
1825void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1826{
1827	u32 tmp;
1828
1829#if VERBOSE > 0
1830	DBG_MSG("intelfbhw_cursor_init\n");
1831#endif
1832
1833	if (dinfo->mobile || IS_I9XX(dinfo)) {
1834		if (!dinfo->cursor.physical)
1835			return;
1836		tmp = INREG(CURSOR_A_CONTROL);
1837		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1838			 CURSOR_MEM_TYPE_LOCAL |
1839			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1840		tmp |= CURSOR_MODE_DISABLE;
1841		OUTREG(CURSOR_A_CONTROL, tmp);
1842		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1843	} else {
1844		tmp = INREG(CURSOR_CONTROL);
1845		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1846			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1847		tmp = CURSOR_FORMAT_3C;
1848		OUTREG(CURSOR_CONTROL, tmp);
1849		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1850		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1851		      (64 << CURSOR_SIZE_V_SHIFT);
1852		OUTREG(CURSOR_SIZE, tmp);
1853	}
1854}
1855
1856void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1857{
1858	u32 tmp;
1859
1860#if VERBOSE > 0
1861	DBG_MSG("intelfbhw_cursor_hide\n");
1862#endif
1863
1864	dinfo->cursor_on = 0;
1865	if (dinfo->mobile || IS_I9XX(dinfo)) {
1866		if (!dinfo->cursor.physical)
1867			return;
1868		tmp = INREG(CURSOR_A_CONTROL);
1869		tmp &= ~CURSOR_MODE_MASK;
1870		tmp |= CURSOR_MODE_DISABLE;
1871		OUTREG(CURSOR_A_CONTROL, tmp);
1872		/* Flush changes */
1873		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1874	} else {
1875		tmp = INREG(CURSOR_CONTROL);
1876		tmp &= ~CURSOR_ENABLE;
1877		OUTREG(CURSOR_CONTROL, tmp);
1878	}
1879}
1880
1881void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1882{
1883	u32 tmp;
1884
1885#if VERBOSE > 0
1886	DBG_MSG("intelfbhw_cursor_show\n");
1887#endif
1888
1889	dinfo->cursor_on = 1;
1890
1891	if (dinfo->cursor_blanked)
1892		return;
1893
1894	if (dinfo->mobile || IS_I9XX(dinfo)) {
1895		if (!dinfo->cursor.physical)
1896			return;
1897		tmp = INREG(CURSOR_A_CONTROL);
1898		tmp &= ~CURSOR_MODE_MASK;
1899		tmp |= CURSOR_MODE_64_4C_AX;
1900		OUTREG(CURSOR_A_CONTROL, tmp);
1901		/* Flush changes */
1902		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1903	} else {
1904		tmp = INREG(CURSOR_CONTROL);
1905		tmp |= CURSOR_ENABLE;
1906		OUTREG(CURSOR_CONTROL, tmp);
1907	}
1908}
1909
1910void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1911{
1912	u32 tmp;
1913
1914#if VERBOSE > 0
1915	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1916#endif
1917
1918	/*
1919	 * Sets the position. The coordinates are assumed to already
1920	 * have any offset adjusted. Assume that the cursor is never
1921	 * completely off-screen, and that x, y are always >= 0.
1922	 */
1923
1924	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1925	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1926	OUTREG(CURSOR_A_POSITION, tmp);
1927
1928	if (IS_I9XX(dinfo))
1929		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1930}
1931
1932void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1933{
1934#if VERBOSE > 0
1935	DBG_MSG("intelfbhw_cursor_setcolor\n");
1936#endif
1937
1938	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1939	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1940	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1941	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1942}
1943
1944void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1945			   u8 *data)
1946{
1947	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1948	int i, j, w = width / 8;
1949	int mod = width % 8, t_mask, d_mask;
1950
1951#if VERBOSE > 0
1952	DBG_MSG("intelfbhw_cursor_load\n");
1953#endif
1954
1955	if (!dinfo->cursor.virtual)
1956		return;
1957
1958	t_mask = 0xff >> mod;
1959	d_mask = ~(0xff >> mod);
1960	for (i = height; i--; ) {
1961		for (j = 0; j < w; j++) {
1962			writeb(0x00, addr + j);
1963			writeb(*(data++), addr + j+8);
1964		}
1965		if (mod) {
1966			writeb(t_mask, addr + j);
1967			writeb(*(data++) & d_mask, addr + j+8);
1968		}
1969		addr += 16;
1970	}
1971}
1972
1973void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1974{
1975	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1976	int i, j;
1977
1978#if VERBOSE > 0
1979	DBG_MSG("intelfbhw_cursor_reset\n");
1980#endif
1981
1982	if (!dinfo->cursor.virtual)
1983		return;
1984
1985	for (i = 64; i--; ) {
1986		for (j = 0; j < 8; j++) {
1987			writeb(0xff, addr + j+0);
1988			writeb(0x00, addr + j+8);
1989		}
1990		addr += 16;
1991	}
1992}
1993
1994static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1995{
1996	u16 tmp;
1997	struct intelfb_info *dinfo = dev_id;
1998
1999	spin_lock(&dinfo->int_lock);
2000
2001	tmp = INREG16(IIR);
2002	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2003		tmp &= PIPE_A_EVENT_INTERRUPT;
2004	else
2005		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2006
2007	if (tmp == 0) {
2008		spin_unlock(&dinfo->int_lock);
2009		return IRQ_RETVAL(0); /* not us */
2010	}
2011
2012	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2013	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2014
2015	OUTREG16(IIR, tmp);
2016	if (dinfo->vsync.pan_display) {
2017		dinfo->vsync.pan_display = 0;
2018		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2019	}
2020
2021	dinfo->vsync.count++;
2022	wake_up_interruptible(&dinfo->vsync.wait);
2023
2024	spin_unlock(&dinfo->int_lock);
2025
2026	return IRQ_RETVAL(1);
2027}
2028
2029int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2030{
2031	u16 tmp;
2032	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2033		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2034				"intelfb", dinfo)) {
2035			clear_bit(0, &dinfo->irq_flags);
2036			return -EINVAL;
2037		}
2038
2039		spin_lock_irq(&dinfo->int_lock);
2040		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2041		OUTREG16(IMR, 0);
2042	} else
2043		spin_lock_irq(&dinfo->int_lock);
2044
2045	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2046		tmp = PIPE_A_EVENT_INTERRUPT;
2047	else
2048		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2049	if (tmp != INREG16(IER)) {
2050		DBG_MSG("changing IER to 0x%X\n", tmp);
2051		OUTREG16(IER, tmp);
2052	}
2053
2054	spin_unlock_irq(&dinfo->int_lock);
2055	return 0;
2056}
2057
2058void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2059{
2060	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2061		if (dinfo->vsync.pan_display) {
2062			dinfo->vsync.pan_display = 0;
2063			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2064		}
2065		spin_lock_irq(&dinfo->int_lock);
2066		OUTREG16(HWSTAM, 0xffff);
2067		OUTREG16(IMR, 0xffff);
2068		OUTREG16(IER, 0x0);
2069
2070		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2071		spin_unlock_irq(&dinfo->int_lock);
2072
2073		free_irq(dinfo->pdev->irq, dinfo);
2074	}
2075}
2076
2077int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2078{
2079	struct intelfb_vsync *vsync;
2080	unsigned int count;
2081	int ret;
2082
2083	switch (pipe) {
2084		case 0:
2085			vsync = &dinfo->vsync;
2086			break;
2087		default:
2088			return -ENODEV;
2089	}
2090
2091	ret = intelfbhw_enable_irq(dinfo);
2092	if (ret)
2093		return ret;
2094
2095	count = vsync->count;
2096	ret = wait_event_interruptible_timeout(vsync->wait,
2097					       count != vsync->count, HZ / 10);
2098	if (ret < 0)
2099		return ret;
2100	if (ret == 0) {
2101		DBG_MSG("wait_for_vsync timed out!\n");
2102		return -ETIMEDOUT;
2103	}
2104
2105	return 0;
2106}
2107