• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/scsi/
1/*
2 *    Disk Array driver for HP Smart Array SAS controllers
3 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/delay.h>
29#include <linux/fs.h>
30#include <linux/timer.h>
31#include <linux/seq_file.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp_lock.h>
35#include <linux/compat.h>
36#include <linux/blktrace_api.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/dma-mapping.h>
40#include <linux/completion.h>
41#include <linux/moduleparam.h>
42#include <scsi/scsi.h>
43#include <scsi/scsi_cmnd.h>
44#include <scsi/scsi_device.h>
45#include <scsi/scsi_host.h>
46#include <scsi/scsi_tcq.h>
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
50#include <asm/atomic.h>
51#include <linux/kthread.h>
52#include "hpsa_cmd.h"
53#include "hpsa.h"
54
55/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56#define HPSA_DRIVER_VERSION "2.0.2-1"
57#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59/* How long to wait (in milliseconds) for board to go into simple mode */
60#define MAX_CONFIG_WAIT 30000
61#define MAX_IOCTL_CONFIG_WAIT 1000
62
63/*define how many times we will try a command because of bus resets */
64#define MAX_CMD_RETRIES 3
65
66/* Embedded module documentation macros - see modules.h */
67MODULE_AUTHOR("Hewlett-Packard Company");
68MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69	HPSA_DRIVER_VERSION);
70MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71MODULE_VERSION(HPSA_DRIVER_VERSION);
72MODULE_LICENSE("GPL");
73
74static int hpsa_allow_any;
75module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76MODULE_PARM_DESC(hpsa_allow_any,
77		"Allow hpsa driver to access unknown HP Smart Array hardware");
78
79/* define the PCI info for the cards we can control */
80static const struct pci_device_id hpsa_pci_device_id[] = {
81	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
94#define PCI_DEVICE_ID_HP_CISSF 0x333f
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
96	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
97		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
98	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
99		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
100	{0,}
101};
102
103MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
104
105/*  board_id = Subsystem Device ID & Vendor ID
106 *  product = Marketing Name for the board
107 *  access = Address of the struct of function pointers
108 */
109static struct board_type products[] = {
110	{0x3241103C, "Smart Array P212", &SA5_access},
111	{0x3243103C, "Smart Array P410", &SA5_access},
112	{0x3245103C, "Smart Array P410i", &SA5_access},
113	{0x3247103C, "Smart Array P411", &SA5_access},
114	{0x3249103C, "Smart Array P812", &SA5_access},
115	{0x324a103C, "Smart Array P712m", &SA5_access},
116	{0x324b103C, "Smart Array P711m", &SA5_access},
117	{0x3233103C, "StorageWorks P1210m", &SA5_access},
118	{0x333F103C, "StorageWorks P1210m", &SA5_access},
119	{0x3250103C, "Smart Array", &SA5_access},
120	{0x3250113C, "Smart Array", &SA5_access},
121	{0x3250123C, "Smart Array", &SA5_access},
122	{0x3250133C, "Smart Array", &SA5_access},
123	{0x3250143C, "Smart Array", &SA5_access},
124	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
125};
126
127static int number_of_controllers;
128
129static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
130static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
131static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
132static void start_io(struct ctlr_info *h);
133
134#ifdef CONFIG_COMPAT
135static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
136#endif
137
138static void cmd_free(struct ctlr_info *h, struct CommandList *c);
139static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
140static struct CommandList *cmd_alloc(struct ctlr_info *h);
141static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
142static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
143	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
144	int cmd_type);
145
146static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
147		void (*done)(struct scsi_cmnd *));
148static void hpsa_scan_start(struct Scsi_Host *);
149static int hpsa_scan_finished(struct Scsi_Host *sh,
150	unsigned long elapsed_time);
151static int hpsa_change_queue_depth(struct scsi_device *sdev,
152	int qdepth, int reason);
153
154static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155static int hpsa_slave_alloc(struct scsi_device *sdev);
156static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158static ssize_t raid_level_show(struct device *dev,
159	struct device_attribute *attr, char *buf);
160static ssize_t lunid_show(struct device *dev,
161	struct device_attribute *attr, char *buf);
162static ssize_t unique_id_show(struct device *dev,
163	struct device_attribute *attr, char *buf);
164static ssize_t host_show_firmware_revision(struct device *dev,
165	     struct device_attribute *attr, char *buf);
166static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167static ssize_t host_store_rescan(struct device *dev,
168	 struct device_attribute *attr, const char *buf, size_t count);
169static int check_for_unit_attention(struct ctlr_info *h,
170	struct CommandList *c);
171static void check_ioctl_unit_attention(struct ctlr_info *h,
172	struct CommandList *c);
173/* performant mode helper functions */
174static void calc_bucket_map(int *bucket, int num_buckets,
175	int nsgs, int *bucket_map);
176static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
177static inline u32 next_command(struct ctlr_info *h);
178static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
179	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
180	u64 *cfg_offset);
181static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
182	unsigned long *memory_bar);
183static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
184
185static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
186static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
187static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
188static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
189static DEVICE_ATTR(firmware_revision, S_IRUGO,
190	host_show_firmware_revision, NULL);
191
192static struct device_attribute *hpsa_sdev_attrs[] = {
193	&dev_attr_raid_level,
194	&dev_attr_lunid,
195	&dev_attr_unique_id,
196	NULL,
197};
198
199static struct device_attribute *hpsa_shost_attrs[] = {
200	&dev_attr_rescan,
201	&dev_attr_firmware_revision,
202	NULL,
203};
204
205static struct scsi_host_template hpsa_driver_template = {
206	.module			= THIS_MODULE,
207	.name			= "hpsa",
208	.proc_name		= "hpsa",
209	.queuecommand		= hpsa_scsi_queue_command,
210	.scan_start		= hpsa_scan_start,
211	.scan_finished		= hpsa_scan_finished,
212	.change_queue_depth	= hpsa_change_queue_depth,
213	.this_id		= -1,
214	.use_clustering		= ENABLE_CLUSTERING,
215	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
216	.ioctl			= hpsa_ioctl,
217	.slave_alloc		= hpsa_slave_alloc,
218	.slave_destroy		= hpsa_slave_destroy,
219#ifdef CONFIG_COMPAT
220	.compat_ioctl		= hpsa_compat_ioctl,
221#endif
222	.sdev_attrs = hpsa_sdev_attrs,
223	.shost_attrs = hpsa_shost_attrs,
224};
225
226static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
227{
228	unsigned long *priv = shost_priv(sdev->host);
229	return (struct ctlr_info *) *priv;
230}
231
232static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
233{
234	unsigned long *priv = shost_priv(sh);
235	return (struct ctlr_info *) *priv;
236}
237
238static int check_for_unit_attention(struct ctlr_info *h,
239	struct CommandList *c)
240{
241	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
242		return 0;
243
244	switch (c->err_info->SenseInfo[12]) {
245	case STATE_CHANGED:
246		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
247			"detected, command retried\n", h->ctlr);
248		break;
249	case LUN_FAILED:
250		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
251			"detected, action required\n", h->ctlr);
252		break;
253	case REPORT_LUNS_CHANGED:
254		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
255			"changed, action required\n", h->ctlr);
256	/*
257	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
258	 */
259		break;
260	case POWER_OR_RESET:
261		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
262			"or device reset detected\n", h->ctlr);
263		break;
264	case UNIT_ATTENTION_CLEARED:
265		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
266		    "cleared by another initiator\n", h->ctlr);
267		break;
268	default:
269		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
270			"unit attention detected\n", h->ctlr);
271		break;
272	}
273	return 1;
274}
275
276static ssize_t host_store_rescan(struct device *dev,
277				 struct device_attribute *attr,
278				 const char *buf, size_t count)
279{
280	struct ctlr_info *h;
281	struct Scsi_Host *shost = class_to_shost(dev);
282	h = shost_to_hba(shost);
283	hpsa_scan_start(h->scsi_host);
284	return count;
285}
286
287static ssize_t host_show_firmware_revision(struct device *dev,
288	     struct device_attribute *attr, char *buf)
289{
290	struct ctlr_info *h;
291	struct Scsi_Host *shost = class_to_shost(dev);
292	unsigned char *fwrev;
293
294	h = shost_to_hba(shost);
295	if (!h->hba_inquiry_data)
296		return 0;
297	fwrev = &h->hba_inquiry_data[32];
298	return snprintf(buf, 20, "%c%c%c%c\n",
299		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
300}
301
302/* Enqueuing and dequeuing functions for cmdlists. */
303static inline void addQ(struct hlist_head *list, struct CommandList *c)
304{
305	hlist_add_head(&c->list, list);
306}
307
308static inline u32 next_command(struct ctlr_info *h)
309{
310	u32 a;
311
312	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
313		return h->access.command_completed(h);
314
315	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
316		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
317		(h->reply_pool_head)++;
318		h->commands_outstanding--;
319	} else {
320		a = FIFO_EMPTY;
321	}
322	/* Check for wraparound */
323	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
324		h->reply_pool_head = h->reply_pool;
325		h->reply_pool_wraparound ^= 1;
326	}
327	return a;
328}
329
330/* set_performant_mode: Modify the tag for cciss performant
331 * set bit 0 for pull model, bits 3-1 for block fetch
332 * register number
333 */
334static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
335{
336	if (likely(h->transMethod == CFGTBL_Trans_Performant))
337		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
338}
339
340static void enqueue_cmd_and_start_io(struct ctlr_info *h,
341	struct CommandList *c)
342{
343	unsigned long flags;
344
345	set_performant_mode(h, c);
346	spin_lock_irqsave(&h->lock, flags);
347	addQ(&h->reqQ, c);
348	h->Qdepth++;
349	start_io(h);
350	spin_unlock_irqrestore(&h->lock, flags);
351}
352
353static inline void removeQ(struct CommandList *c)
354{
355	if (WARN_ON(hlist_unhashed(&c->list)))
356		return;
357	hlist_del_init(&c->list);
358}
359
360static inline int is_hba_lunid(unsigned char scsi3addr[])
361{
362	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
363}
364
365static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
366{
367	return (scsi3addr[3] & 0xC0) == 0x40;
368}
369
370static inline int is_scsi_rev_5(struct ctlr_info *h)
371{
372	if (!h->hba_inquiry_data)
373		return 0;
374	if ((h->hba_inquiry_data[2] & 0x07) == 5)
375		return 1;
376	return 0;
377}
378
379static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
380	"UNKNOWN"
381};
382#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
383
384static ssize_t raid_level_show(struct device *dev,
385	     struct device_attribute *attr, char *buf)
386{
387	ssize_t l = 0;
388	unsigned char rlevel;
389	struct ctlr_info *h;
390	struct scsi_device *sdev;
391	struct hpsa_scsi_dev_t *hdev;
392	unsigned long flags;
393
394	sdev = to_scsi_device(dev);
395	h = sdev_to_hba(sdev);
396	spin_lock_irqsave(&h->lock, flags);
397	hdev = sdev->hostdata;
398	if (!hdev) {
399		spin_unlock_irqrestore(&h->lock, flags);
400		return -ENODEV;
401	}
402
403	/* Is this even a logical drive? */
404	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
405		spin_unlock_irqrestore(&h->lock, flags);
406		l = snprintf(buf, PAGE_SIZE, "N/A\n");
407		return l;
408	}
409
410	rlevel = hdev->raid_level;
411	spin_unlock_irqrestore(&h->lock, flags);
412	if (rlevel > RAID_UNKNOWN)
413		rlevel = RAID_UNKNOWN;
414	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
415	return l;
416}
417
418static ssize_t lunid_show(struct device *dev,
419	     struct device_attribute *attr, char *buf)
420{
421	struct ctlr_info *h;
422	struct scsi_device *sdev;
423	struct hpsa_scsi_dev_t *hdev;
424	unsigned long flags;
425	unsigned char lunid[8];
426
427	sdev = to_scsi_device(dev);
428	h = sdev_to_hba(sdev);
429	spin_lock_irqsave(&h->lock, flags);
430	hdev = sdev->hostdata;
431	if (!hdev) {
432		spin_unlock_irqrestore(&h->lock, flags);
433		return -ENODEV;
434	}
435	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
436	spin_unlock_irqrestore(&h->lock, flags);
437	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
438		lunid[0], lunid[1], lunid[2], lunid[3],
439		lunid[4], lunid[5], lunid[6], lunid[7]);
440}
441
442static ssize_t unique_id_show(struct device *dev,
443	     struct device_attribute *attr, char *buf)
444{
445	struct ctlr_info *h;
446	struct scsi_device *sdev;
447	struct hpsa_scsi_dev_t *hdev;
448	unsigned long flags;
449	unsigned char sn[16];
450
451	sdev = to_scsi_device(dev);
452	h = sdev_to_hba(sdev);
453	spin_lock_irqsave(&h->lock, flags);
454	hdev = sdev->hostdata;
455	if (!hdev) {
456		spin_unlock_irqrestore(&h->lock, flags);
457		return -ENODEV;
458	}
459	memcpy(sn, hdev->device_id, sizeof(sn));
460	spin_unlock_irqrestore(&h->lock, flags);
461	return snprintf(buf, 16 * 2 + 2,
462			"%02X%02X%02X%02X%02X%02X%02X%02X"
463			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
464			sn[0], sn[1], sn[2], sn[3],
465			sn[4], sn[5], sn[6], sn[7],
466			sn[8], sn[9], sn[10], sn[11],
467			sn[12], sn[13], sn[14], sn[15]);
468}
469
470static int hpsa_find_target_lun(struct ctlr_info *h,
471	unsigned char scsi3addr[], int bus, int *target, int *lun)
472{
473	/* finds an unused bus, target, lun for a new physical device
474	 * assumes h->devlock is held
475	 */
476	int i, found = 0;
477	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
478
479	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
480
481	for (i = 0; i < h->ndevices; i++) {
482		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
483			set_bit(h->dev[i]->target, lun_taken);
484	}
485
486	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
487		if (!test_bit(i, lun_taken)) {
488			/* *bus = 1; */
489			*target = i;
490			*lun = 0;
491			found = 1;
492			break;
493		}
494	}
495	return !found;
496}
497
498/* Add an entry into h->dev[] array. */
499static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
500		struct hpsa_scsi_dev_t *device,
501		struct hpsa_scsi_dev_t *added[], int *nadded)
502{
503	/* assumes h->devlock is held */
504	int n = h->ndevices;
505	int i;
506	unsigned char addr1[8], addr2[8];
507	struct hpsa_scsi_dev_t *sd;
508
509	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
510		dev_err(&h->pdev->dev, "too many devices, some will be "
511			"inaccessible.\n");
512		return -1;
513	}
514
515	/* physical devices do not have lun or target assigned until now. */
516	if (device->lun != -1)
517		/* Logical device, lun is already assigned. */
518		goto lun_assigned;
519
520	/* If this device a non-zero lun of a multi-lun device
521	 * byte 4 of the 8-byte LUN addr will contain the logical
522	 * unit no, zero otherise.
523	 */
524	if (device->scsi3addr[4] == 0) {
525		/* This is not a non-zero lun of a multi-lun device */
526		if (hpsa_find_target_lun(h, device->scsi3addr,
527			device->bus, &device->target, &device->lun) != 0)
528			return -1;
529		goto lun_assigned;
530	}
531
532	/* This is a non-zero lun of a multi-lun device.
533	 * Search through our list and find the device which
534	 * has the same 8 byte LUN address, excepting byte 4.
535	 * Assign the same bus and target for this new LUN.
536	 * Use the logical unit number from the firmware.
537	 */
538	memcpy(addr1, device->scsi3addr, 8);
539	addr1[4] = 0;
540	for (i = 0; i < n; i++) {
541		sd = h->dev[i];
542		memcpy(addr2, sd->scsi3addr, 8);
543		addr2[4] = 0;
544		/* differ only in byte 4? */
545		if (memcmp(addr1, addr2, 8) == 0) {
546			device->bus = sd->bus;
547			device->target = sd->target;
548			device->lun = device->scsi3addr[4];
549			break;
550		}
551	}
552	if (device->lun == -1) {
553		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
554			" suspect firmware bug or unsupported hardware "
555			"configuration.\n");
556			return -1;
557	}
558
559lun_assigned:
560
561	h->dev[n] = device;
562	h->ndevices++;
563	added[*nadded] = device;
564	(*nadded)++;
565
566	/* initially, (before registering with scsi layer) we don't
567	 * know our hostno and we don't want to print anything first
568	 * time anyway (the scsi layer's inquiries will show that info)
569	 */
570	/* if (hostno != -1) */
571		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
572			scsi_device_type(device->devtype), hostno,
573			device->bus, device->target, device->lun);
574	return 0;
575}
576
577/* Replace an entry from h->dev[] array. */
578static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
579	int entry, struct hpsa_scsi_dev_t *new_entry,
580	struct hpsa_scsi_dev_t *added[], int *nadded,
581	struct hpsa_scsi_dev_t *removed[], int *nremoved)
582{
583	/* assumes h->devlock is held */
584	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
585	removed[*nremoved] = h->dev[entry];
586	(*nremoved)++;
587	h->dev[entry] = new_entry;
588	added[*nadded] = new_entry;
589	(*nadded)++;
590	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
591		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
592			new_entry->target, new_entry->lun);
593}
594
595/* Remove an entry from h->dev[] array. */
596static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
597	struct hpsa_scsi_dev_t *removed[], int *nremoved)
598{
599	/* assumes h->devlock is held */
600	int i;
601	struct hpsa_scsi_dev_t *sd;
602
603	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
604
605	sd = h->dev[entry];
606	removed[*nremoved] = h->dev[entry];
607	(*nremoved)++;
608
609	for (i = entry; i < h->ndevices-1; i++)
610		h->dev[i] = h->dev[i+1];
611	h->ndevices--;
612	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
613		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
614		sd->lun);
615}
616
617#define SCSI3ADDR_EQ(a, b) ( \
618	(a)[7] == (b)[7] && \
619	(a)[6] == (b)[6] && \
620	(a)[5] == (b)[5] && \
621	(a)[4] == (b)[4] && \
622	(a)[3] == (b)[3] && \
623	(a)[2] == (b)[2] && \
624	(a)[1] == (b)[1] && \
625	(a)[0] == (b)[0])
626
627static void fixup_botched_add(struct ctlr_info *h,
628	struct hpsa_scsi_dev_t *added)
629{
630	/* called when scsi_add_device fails in order to re-adjust
631	 * h->dev[] to match the mid layer's view.
632	 */
633	unsigned long flags;
634	int i, j;
635
636	spin_lock_irqsave(&h->lock, flags);
637	for (i = 0; i < h->ndevices; i++) {
638		if (h->dev[i] == added) {
639			for (j = i; j < h->ndevices-1; j++)
640				h->dev[j] = h->dev[j+1];
641			h->ndevices--;
642			break;
643		}
644	}
645	spin_unlock_irqrestore(&h->lock, flags);
646	kfree(added);
647}
648
649static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
650	struct hpsa_scsi_dev_t *dev2)
651{
652	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
653		(dev1->lun != -1 && dev2->lun != -1)) &&
654		dev1->devtype != 0x0C)
655		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
656
657	/* we compare everything except lun and target as these
658	 * are not yet assigned.  Compare parts likely
659	 * to differ first
660	 */
661	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
662		sizeof(dev1->scsi3addr)) != 0)
663		return 0;
664	if (memcmp(dev1->device_id, dev2->device_id,
665		sizeof(dev1->device_id)) != 0)
666		return 0;
667	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
668		return 0;
669	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
670		return 0;
671	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
672		return 0;
673	if (dev1->devtype != dev2->devtype)
674		return 0;
675	if (dev1->raid_level != dev2->raid_level)
676		return 0;
677	if (dev1->bus != dev2->bus)
678		return 0;
679	return 1;
680}
681
682/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
683 * and return needle location in *index.  If scsi3addr matches, but not
684 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
685 * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
686 */
687static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
688	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
689	int *index)
690{
691	int i;
692#define DEVICE_NOT_FOUND 0
693#define DEVICE_CHANGED 1
694#define DEVICE_SAME 2
695	for (i = 0; i < haystack_size; i++) {
696		if (haystack[i] == NULL) /* previously removed. */
697			continue;
698		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
699			*index = i;
700			if (device_is_the_same(needle, haystack[i]))
701				return DEVICE_SAME;
702			else
703				return DEVICE_CHANGED;
704		}
705	}
706	*index = -1;
707	return DEVICE_NOT_FOUND;
708}
709
710static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
711	struct hpsa_scsi_dev_t *sd[], int nsds)
712{
713	/* sd contains scsi3 addresses and devtypes, and inquiry
714	 * data.  This function takes what's in sd to be the current
715	 * reality and updates h->dev[] to reflect that reality.
716	 */
717	int i, entry, device_change, changes = 0;
718	struct hpsa_scsi_dev_t *csd;
719	unsigned long flags;
720	struct hpsa_scsi_dev_t **added, **removed;
721	int nadded, nremoved;
722	struct Scsi_Host *sh = NULL;
723
724	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
725		GFP_KERNEL);
726	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
727		GFP_KERNEL);
728
729	if (!added || !removed) {
730		dev_warn(&h->pdev->dev, "out of memory in "
731			"adjust_hpsa_scsi_table\n");
732		goto free_and_out;
733	}
734
735	spin_lock_irqsave(&h->devlock, flags);
736
737	/* find any devices in h->dev[] that are not in
738	 * sd[] and remove them from h->dev[], and for any
739	 * devices which have changed, remove the old device
740	 * info and add the new device info.
741	 */
742	i = 0;
743	nremoved = 0;
744	nadded = 0;
745	while (i < h->ndevices) {
746		csd = h->dev[i];
747		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
748		if (device_change == DEVICE_NOT_FOUND) {
749			changes++;
750			hpsa_scsi_remove_entry(h, hostno, i,
751				removed, &nremoved);
752			continue; /* remove ^^^, hence i not incremented */
753		} else if (device_change == DEVICE_CHANGED) {
754			changes++;
755			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
756				added, &nadded, removed, &nremoved);
757			/* Set it to NULL to prevent it from being freed
758			 * at the bottom of hpsa_update_scsi_devices()
759			 */
760			sd[entry] = NULL;
761		}
762		i++;
763	}
764
765	/* Now, make sure every device listed in sd[] is also
766	 * listed in h->dev[], adding them if they aren't found
767	 */
768
769	for (i = 0; i < nsds; i++) {
770		if (!sd[i]) /* if already added above. */
771			continue;
772		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
773					h->ndevices, &entry);
774		if (device_change == DEVICE_NOT_FOUND) {
775			changes++;
776			if (hpsa_scsi_add_entry(h, hostno, sd[i],
777				added, &nadded) != 0)
778				break;
779			sd[i] = NULL; /* prevent from being freed later. */
780		} else if (device_change == DEVICE_CHANGED) {
781			/* should never happen... */
782			changes++;
783			dev_warn(&h->pdev->dev,
784				"device unexpectedly changed.\n");
785			/* but if it does happen, we just ignore that device */
786		}
787	}
788	spin_unlock_irqrestore(&h->devlock, flags);
789
790	/* Don't notify scsi mid layer of any changes the first time through
791	 * (or if there are no changes) scsi_scan_host will do it later the
792	 * first time through.
793	 */
794	if (hostno == -1 || !changes)
795		goto free_and_out;
796
797	sh = h->scsi_host;
798	/* Notify scsi mid layer of any removed devices */
799	for (i = 0; i < nremoved; i++) {
800		struct scsi_device *sdev =
801			scsi_device_lookup(sh, removed[i]->bus,
802				removed[i]->target, removed[i]->lun);
803		if (sdev != NULL) {
804			scsi_remove_device(sdev);
805			scsi_device_put(sdev);
806		} else {
807			/* We don't expect to get here.
808			 * future cmds to this device will get selection
809			 * timeout as if the device was gone.
810			 */
811			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
812				" for removal.", hostno, removed[i]->bus,
813				removed[i]->target, removed[i]->lun);
814		}
815		kfree(removed[i]);
816		removed[i] = NULL;
817	}
818
819	/* Notify scsi mid layer of any added devices */
820	for (i = 0; i < nadded; i++) {
821		if (scsi_add_device(sh, added[i]->bus,
822			added[i]->target, added[i]->lun) == 0)
823			continue;
824		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
825			"device not added.\n", hostno, added[i]->bus,
826			added[i]->target, added[i]->lun);
827		/* now we have to remove it from h->dev,
828		 * since it didn't get added to scsi mid layer
829		 */
830		fixup_botched_add(h, added[i]);
831	}
832
833free_and_out:
834	kfree(added);
835	kfree(removed);
836}
837
838/*
839 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
840 * Assume's h->devlock is held.
841 */
842static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
843	int bus, int target, int lun)
844{
845	int i;
846	struct hpsa_scsi_dev_t *sd;
847
848	for (i = 0; i < h->ndevices; i++) {
849		sd = h->dev[i];
850		if (sd->bus == bus && sd->target == target && sd->lun == lun)
851			return sd;
852	}
853	return NULL;
854}
855
856/* link sdev->hostdata to our per-device structure. */
857static int hpsa_slave_alloc(struct scsi_device *sdev)
858{
859	struct hpsa_scsi_dev_t *sd;
860	unsigned long flags;
861	struct ctlr_info *h;
862
863	h = sdev_to_hba(sdev);
864	spin_lock_irqsave(&h->devlock, flags);
865	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
866		sdev_id(sdev), sdev->lun);
867	if (sd != NULL)
868		sdev->hostdata = sd;
869	spin_unlock_irqrestore(&h->devlock, flags);
870	return 0;
871}
872
873static void hpsa_slave_destroy(struct scsi_device *sdev)
874{
875	/* nothing to do. */
876}
877
878static void hpsa_scsi_setup(struct ctlr_info *h)
879{
880	h->ndevices = 0;
881	h->scsi_host = NULL;
882	spin_lock_init(&h->devlock);
883}
884
885static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
886{
887	int i;
888
889	if (!h->cmd_sg_list)
890		return;
891	for (i = 0; i < h->nr_cmds; i++) {
892		kfree(h->cmd_sg_list[i]);
893		h->cmd_sg_list[i] = NULL;
894	}
895	kfree(h->cmd_sg_list);
896	h->cmd_sg_list = NULL;
897}
898
899static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
900{
901	int i;
902
903	if (h->chainsize <= 0)
904		return 0;
905
906	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
907				GFP_KERNEL);
908	if (!h->cmd_sg_list)
909		return -ENOMEM;
910	for (i = 0; i < h->nr_cmds; i++) {
911		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
912						h->chainsize, GFP_KERNEL);
913		if (!h->cmd_sg_list[i])
914			goto clean;
915	}
916	return 0;
917
918clean:
919	hpsa_free_sg_chain_blocks(h);
920	return -ENOMEM;
921}
922
923static void hpsa_map_sg_chain_block(struct ctlr_info *h,
924	struct CommandList *c)
925{
926	struct SGDescriptor *chain_sg, *chain_block;
927	u64 temp64;
928
929	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
930	chain_block = h->cmd_sg_list[c->cmdindex];
931	chain_sg->Ext = HPSA_SG_CHAIN;
932	chain_sg->Len = sizeof(*chain_sg) *
933		(c->Header.SGTotal - h->max_cmd_sg_entries);
934	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
935				PCI_DMA_TODEVICE);
936	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
937	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
938}
939
940static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
941	struct CommandList *c)
942{
943	struct SGDescriptor *chain_sg;
944	union u64bit temp64;
945
946	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
947		return;
948
949	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
950	temp64.val32.lower = chain_sg->Addr.lower;
951	temp64.val32.upper = chain_sg->Addr.upper;
952	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
953}
954
955static void complete_scsi_command(struct CommandList *cp,
956	int timeout, u32 tag)
957{
958	struct scsi_cmnd *cmd;
959	struct ctlr_info *h;
960	struct ErrorInfo *ei;
961
962	unsigned char sense_key;
963	unsigned char asc;      /* additional sense code */
964	unsigned char ascq;     /* additional sense code qualifier */
965
966	ei = cp->err_info;
967	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
968	h = cp->h;
969
970	scsi_dma_unmap(cmd); /* undo the DMA mappings */
971	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
972		hpsa_unmap_sg_chain_block(h, cp);
973
974	cmd->result = (DID_OK << 16); 		/* host byte */
975	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
976	cmd->result |= ei->ScsiStatus;
977
978	/* copy the sense data whether we need to or not. */
979	memcpy(cmd->sense_buffer, ei->SenseInfo,
980		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
981			SCSI_SENSE_BUFFERSIZE :
982			ei->SenseLen);
983	scsi_set_resid(cmd, ei->ResidualCnt);
984
985	if (ei->CommandStatus == 0) {
986		cmd->scsi_done(cmd);
987		cmd_free(h, cp);
988		return;
989	}
990
991	/* an error has occurred */
992	switch (ei->CommandStatus) {
993
994	case CMD_TARGET_STATUS:
995		if (ei->ScsiStatus) {
996			/* Get sense key */
997			sense_key = 0xf & ei->SenseInfo[2];
998			/* Get additional sense code */
999			asc = ei->SenseInfo[12];
1000			/* Get addition sense code qualifier */
1001			ascq = ei->SenseInfo[13];
1002		}
1003
1004		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1005			if (check_for_unit_attention(h, cp)) {
1006				cmd->result = DID_SOFT_ERROR << 16;
1007				break;
1008			}
1009			if (sense_key == ILLEGAL_REQUEST) {
1010				/*
1011				 * SCSI REPORT_LUNS is commonly unsupported on
1012				 * Smart Array.  Suppress noisy complaint.
1013				 */
1014				if (cp->Request.CDB[0] == REPORT_LUNS)
1015					break;
1016
1017				/* If ASC/ASCQ indicate Logical Unit
1018				 * Not Supported condition,
1019				 */
1020				if ((asc == 0x25) && (ascq == 0x0)) {
1021					dev_warn(&h->pdev->dev, "cp %p "
1022						"has check condition\n", cp);
1023					break;
1024				}
1025			}
1026
1027			if (sense_key == NOT_READY) {
1028				/* If Sense is Not Ready, Logical Unit
1029				 * Not ready, Manual Intervention
1030				 * required
1031				 */
1032				if ((asc == 0x04) && (ascq == 0x03)) {
1033					dev_warn(&h->pdev->dev, "cp %p "
1034						"has check condition: unit "
1035						"not ready, manual "
1036						"intervention required\n", cp);
1037					break;
1038				}
1039			}
1040			if (sense_key == ABORTED_COMMAND) {
1041				/* Aborted command is retryable */
1042				dev_warn(&h->pdev->dev, "cp %p "
1043					"has check condition: aborted command: "
1044					"ASC: 0x%x, ASCQ: 0x%x\n",
1045					cp, asc, ascq);
1046				cmd->result = DID_SOFT_ERROR << 16;
1047				break;
1048			}
1049			/* Must be some other type of check condition */
1050			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1051					"unknown type: "
1052					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1053					"Returning result: 0x%x, "
1054					"cmd=[%02x %02x %02x %02x %02x "
1055					"%02x %02x %02x %02x %02x %02x "
1056					"%02x %02x %02x %02x %02x]\n",
1057					cp, sense_key, asc, ascq,
1058					cmd->result,
1059					cmd->cmnd[0], cmd->cmnd[1],
1060					cmd->cmnd[2], cmd->cmnd[3],
1061					cmd->cmnd[4], cmd->cmnd[5],
1062					cmd->cmnd[6], cmd->cmnd[7],
1063					cmd->cmnd[8], cmd->cmnd[9],
1064					cmd->cmnd[10], cmd->cmnd[11],
1065					cmd->cmnd[12], cmd->cmnd[13],
1066					cmd->cmnd[14], cmd->cmnd[15]);
1067			break;
1068		}
1069
1070
1071		/* Problem was not a check condition
1072		 * Pass it up to the upper layers...
1073		 */
1074		if (ei->ScsiStatus) {
1075			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1076				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1077				"Returning result: 0x%x\n",
1078				cp, ei->ScsiStatus,
1079				sense_key, asc, ascq,
1080				cmd->result);
1081		} else {  /* scsi status is zero??? How??? */
1082			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1083				"Returning no connection.\n", cp),
1084
1085			/* Ordinarily, this case should never happen,
1086			 * but there is a bug in some released firmware
1087			 * revisions that allows it to happen if, for
1088			 * example, a 4100 backplane loses power and
1089			 * the tape drive is in it.  We assume that
1090			 * it's a fatal error of some kind because we
1091			 * can't show that it wasn't. We will make it
1092			 * look like selection timeout since that is
1093			 * the most common reason for this to occur,
1094			 * and it's severe enough.
1095			 */
1096
1097			cmd->result = DID_NO_CONNECT << 16;
1098		}
1099		break;
1100
1101	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1102		break;
1103	case CMD_DATA_OVERRUN:
1104		dev_warn(&h->pdev->dev, "cp %p has"
1105			" completed with data overrun "
1106			"reported\n", cp);
1107		break;
1108	case CMD_INVALID: {
1109		/* print_bytes(cp, sizeof(*cp), 1, 0);
1110		print_cmd(cp); */
1111		/* We get CMD_INVALID if you address a non-existent device
1112		 * instead of a selection timeout (no response).  You will
1113		 * see this if you yank out a drive, then try to access it.
1114		 * This is kind of a shame because it means that any other
1115		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1116		 * missing target. */
1117		cmd->result = DID_NO_CONNECT << 16;
1118	}
1119		break;
1120	case CMD_PROTOCOL_ERR:
1121		dev_warn(&h->pdev->dev, "cp %p has "
1122			"protocol error \n", cp);
1123		break;
1124	case CMD_HARDWARE_ERR:
1125		cmd->result = DID_ERROR << 16;
1126		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1127		break;
1128	case CMD_CONNECTION_LOST:
1129		cmd->result = DID_ERROR << 16;
1130		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1131		break;
1132	case CMD_ABORTED:
1133		cmd->result = DID_ABORT << 16;
1134		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1135				cp, ei->ScsiStatus);
1136		break;
1137	case CMD_ABORT_FAILED:
1138		cmd->result = DID_ERROR << 16;
1139		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1140		break;
1141	case CMD_UNSOLICITED_ABORT:
1142		cmd->result = DID_RESET << 16;
1143		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1144			"abort\n", cp);
1145		break;
1146	case CMD_TIMEOUT:
1147		cmd->result = DID_TIME_OUT << 16;
1148		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1149		break;
1150	default:
1151		cmd->result = DID_ERROR << 16;
1152		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1153				cp, ei->CommandStatus);
1154	}
1155	cmd->scsi_done(cmd);
1156	cmd_free(h, cp);
1157}
1158
1159static int hpsa_scsi_detect(struct ctlr_info *h)
1160{
1161	struct Scsi_Host *sh;
1162	int error;
1163
1164	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1165	if (sh == NULL)
1166		goto fail;
1167
1168	sh->io_port = 0;
1169	sh->n_io_port = 0;
1170	sh->this_id = -1;
1171	sh->max_channel = 3;
1172	sh->max_cmd_len = MAX_COMMAND_SIZE;
1173	sh->max_lun = HPSA_MAX_LUN;
1174	sh->max_id = HPSA_MAX_LUN;
1175	sh->can_queue = h->nr_cmds;
1176	sh->cmd_per_lun = h->nr_cmds;
1177	sh->sg_tablesize = h->maxsgentries;
1178	h->scsi_host = sh;
1179	sh->hostdata[0] = (unsigned long) h;
1180	sh->irq = h->intr[PERF_MODE_INT];
1181	sh->unique_id = sh->irq;
1182	error = scsi_add_host(sh, &h->pdev->dev);
1183	if (error)
1184		goto fail_host_put;
1185	scsi_scan_host(sh);
1186	return 0;
1187
1188 fail_host_put:
1189	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1190		" failed for controller %d\n", h->ctlr);
1191	scsi_host_put(sh);
1192	return error;
1193 fail:
1194	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1195		" failed for controller %d\n", h->ctlr);
1196	return -ENOMEM;
1197}
1198
1199static void hpsa_pci_unmap(struct pci_dev *pdev,
1200	struct CommandList *c, int sg_used, int data_direction)
1201{
1202	int i;
1203	union u64bit addr64;
1204
1205	for (i = 0; i < sg_used; i++) {
1206		addr64.val32.lower = c->SG[i].Addr.lower;
1207		addr64.val32.upper = c->SG[i].Addr.upper;
1208		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1209			data_direction);
1210	}
1211}
1212
1213static void hpsa_map_one(struct pci_dev *pdev,
1214		struct CommandList *cp,
1215		unsigned char *buf,
1216		size_t buflen,
1217		int data_direction)
1218{
1219	u64 addr64;
1220
1221	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1222		cp->Header.SGList = 0;
1223		cp->Header.SGTotal = 0;
1224		return;
1225	}
1226
1227	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1228	cp->SG[0].Addr.lower =
1229	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1230	cp->SG[0].Addr.upper =
1231	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1232	cp->SG[0].Len = buflen;
1233	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1234	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1235}
1236
1237static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1238	struct CommandList *c)
1239{
1240	DECLARE_COMPLETION_ONSTACK(wait);
1241
1242	c->waiting = &wait;
1243	enqueue_cmd_and_start_io(h, c);
1244	wait_for_completion(&wait);
1245}
1246
1247static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1248	struct CommandList *c, int data_direction)
1249{
1250	int retry_count = 0;
1251
1252	do {
1253		memset(c->err_info, 0, sizeof(c->err_info));
1254		hpsa_scsi_do_simple_cmd_core(h, c);
1255		retry_count++;
1256	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1257	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1258}
1259
1260static void hpsa_scsi_interpret_error(struct CommandList *cp)
1261{
1262	struct ErrorInfo *ei;
1263	struct device *d = &cp->h->pdev->dev;
1264
1265	ei = cp->err_info;
1266	switch (ei->CommandStatus) {
1267	case CMD_TARGET_STATUS:
1268		dev_warn(d, "cmd %p has completed with errors\n", cp);
1269		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1270				ei->ScsiStatus);
1271		if (ei->ScsiStatus == 0)
1272			dev_warn(d, "SCSI status is abnormally zero.  "
1273			"(probably indicates selection timeout "
1274			"reported incorrectly due to a known "
1275			"firmware bug, circa July, 2001.)\n");
1276		break;
1277	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1278			dev_info(d, "UNDERRUN\n");
1279		break;
1280	case CMD_DATA_OVERRUN:
1281		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1282		break;
1283	case CMD_INVALID: {
1284		/* controller unfortunately reports SCSI passthru's
1285		 * to non-existent targets as invalid commands.
1286		 */
1287		dev_warn(d, "cp %p is reported invalid (probably means "
1288			"target device no longer present)\n", cp);
1289		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1290		print_cmd(cp);  */
1291		}
1292		break;
1293	case CMD_PROTOCOL_ERR:
1294		dev_warn(d, "cp %p has protocol error \n", cp);
1295		break;
1296	case CMD_HARDWARE_ERR:
1297		/* cmd->result = DID_ERROR << 16; */
1298		dev_warn(d, "cp %p had hardware error\n", cp);
1299		break;
1300	case CMD_CONNECTION_LOST:
1301		dev_warn(d, "cp %p had connection lost\n", cp);
1302		break;
1303	case CMD_ABORTED:
1304		dev_warn(d, "cp %p was aborted\n", cp);
1305		break;
1306	case CMD_ABORT_FAILED:
1307		dev_warn(d, "cp %p reports abort failed\n", cp);
1308		break;
1309	case CMD_UNSOLICITED_ABORT:
1310		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1311		break;
1312	case CMD_TIMEOUT:
1313		dev_warn(d, "cp %p timed out\n", cp);
1314		break;
1315	default:
1316		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1317				ei->CommandStatus);
1318	}
1319}
1320
1321static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1322			unsigned char page, unsigned char *buf,
1323			unsigned char bufsize)
1324{
1325	int rc = IO_OK;
1326	struct CommandList *c;
1327	struct ErrorInfo *ei;
1328
1329	c = cmd_special_alloc(h);
1330
1331	if (c == NULL) {			/* trouble... */
1332		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1333		return -ENOMEM;
1334	}
1335
1336	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1337	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1338	ei = c->err_info;
1339	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1340		hpsa_scsi_interpret_error(c);
1341		rc = -1;
1342	}
1343	cmd_special_free(h, c);
1344	return rc;
1345}
1346
1347static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1348{
1349	int rc = IO_OK;
1350	struct CommandList *c;
1351	struct ErrorInfo *ei;
1352
1353	c = cmd_special_alloc(h);
1354
1355	if (c == NULL) {			/* trouble... */
1356		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1357		return -ENOMEM;
1358	}
1359
1360	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1361	hpsa_scsi_do_simple_cmd_core(h, c);
1362	/* no unmap needed here because no data xfer. */
1363
1364	ei = c->err_info;
1365	if (ei->CommandStatus != 0) {
1366		hpsa_scsi_interpret_error(c);
1367		rc = -1;
1368	}
1369	cmd_special_free(h, c);
1370	return rc;
1371}
1372
1373static void hpsa_get_raid_level(struct ctlr_info *h,
1374	unsigned char *scsi3addr, unsigned char *raid_level)
1375{
1376	int rc;
1377	unsigned char *buf;
1378
1379	*raid_level = RAID_UNKNOWN;
1380	buf = kzalloc(64, GFP_KERNEL);
1381	if (!buf)
1382		return;
1383	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1384	if (rc == 0)
1385		*raid_level = buf[8];
1386	if (*raid_level > RAID_UNKNOWN)
1387		*raid_level = RAID_UNKNOWN;
1388	kfree(buf);
1389	return;
1390}
1391
1392/* Get the device id from inquiry page 0x83 */
1393static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1394	unsigned char *device_id, int buflen)
1395{
1396	int rc;
1397	unsigned char *buf;
1398
1399	if (buflen > 16)
1400		buflen = 16;
1401	buf = kzalloc(64, GFP_KERNEL);
1402	if (!buf)
1403		return -1;
1404	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1405	if (rc == 0)
1406		memcpy(device_id, &buf[8], buflen);
1407	kfree(buf);
1408	return rc != 0;
1409}
1410
1411static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1412		struct ReportLUNdata *buf, int bufsize,
1413		int extended_response)
1414{
1415	int rc = IO_OK;
1416	struct CommandList *c;
1417	unsigned char scsi3addr[8];
1418	struct ErrorInfo *ei;
1419
1420	c = cmd_special_alloc(h);
1421	if (c == NULL) {			/* trouble... */
1422		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1423		return -1;
1424	}
1425	/* address the controller */
1426	memset(scsi3addr, 0, sizeof(scsi3addr));
1427	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1428		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1429	if (extended_response)
1430		c->Request.CDB[1] = extended_response;
1431	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1432	ei = c->err_info;
1433	if (ei->CommandStatus != 0 &&
1434	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1435		hpsa_scsi_interpret_error(c);
1436		rc = -1;
1437	}
1438	cmd_special_free(h, c);
1439	return rc;
1440}
1441
1442static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1443		struct ReportLUNdata *buf,
1444		int bufsize, int extended_response)
1445{
1446	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1447}
1448
1449static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1450		struct ReportLUNdata *buf, int bufsize)
1451{
1452	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1453}
1454
1455static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1456	int bus, int target, int lun)
1457{
1458	device->bus = bus;
1459	device->target = target;
1460	device->lun = lun;
1461}
1462
1463static int hpsa_update_device_info(struct ctlr_info *h,
1464	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1465{
1466#define OBDR_TAPE_INQ_SIZE 49
1467	unsigned char *inq_buff;
1468
1469	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1470	if (!inq_buff)
1471		goto bail_out;
1472
1473	/* Do an inquiry to the device to see what it is. */
1474	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1475		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1476		/* Inquiry failed (msg printed already) */
1477		dev_err(&h->pdev->dev,
1478			"hpsa_update_device_info: inquiry failed\n");
1479		goto bail_out;
1480	}
1481
1482	this_device->devtype = (inq_buff[0] & 0x1f);
1483	memcpy(this_device->scsi3addr, scsi3addr, 8);
1484	memcpy(this_device->vendor, &inq_buff[8],
1485		sizeof(this_device->vendor));
1486	memcpy(this_device->model, &inq_buff[16],
1487		sizeof(this_device->model));
1488	memcpy(this_device->revision, &inq_buff[32],
1489		sizeof(this_device->revision));
1490	memset(this_device->device_id, 0,
1491		sizeof(this_device->device_id));
1492	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1493		sizeof(this_device->device_id));
1494
1495	if (this_device->devtype == TYPE_DISK &&
1496		is_logical_dev_addr_mode(scsi3addr))
1497		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1498	else
1499		this_device->raid_level = RAID_UNKNOWN;
1500
1501	kfree(inq_buff);
1502	return 0;
1503
1504bail_out:
1505	kfree(inq_buff);
1506	return 1;
1507}
1508
1509static unsigned char *msa2xxx_model[] = {
1510	"MSA2012",
1511	"MSA2024",
1512	"MSA2312",
1513	"MSA2324",
1514	NULL,
1515};
1516
1517static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1518{
1519	int i;
1520
1521	for (i = 0; msa2xxx_model[i]; i++)
1522		if (strncmp(device->model, msa2xxx_model[i],
1523			strlen(msa2xxx_model[i])) == 0)
1524			return 1;
1525	return 0;
1526}
1527
1528/* Helper function to assign bus, target, lun mapping of devices.
1529 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1530 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1531 * Logical drive target and lun are assigned at this time, but
1532 * physical device lun and target assignment are deferred (assigned
1533 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1534 */
1535static void figure_bus_target_lun(struct ctlr_info *h,
1536	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1537	struct hpsa_scsi_dev_t *device)
1538{
1539	u32 lunid;
1540
1541	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1542		/* logical device */
1543		if (unlikely(is_scsi_rev_5(h))) {
1544			/* p1210m, logical drives lun assignments
1545			 * match SCSI REPORT LUNS data.
1546			 */
1547			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1548			*bus = 0;
1549			*target = 0;
1550			*lun = (lunid & 0x3fff) + 1;
1551		} else {
1552			/* not p1210m... */
1553			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1554			if (is_msa2xxx(h, device)) {
1555				/* msa2xxx way, put logicals on bus 1
1556				 * and match target/lun numbers box
1557				 * reports.
1558				 */
1559				*bus = 1;
1560				*target = (lunid >> 16) & 0x3fff;
1561				*lun = lunid & 0x00ff;
1562			} else {
1563				/* Traditional smart array way. */
1564				*bus = 0;
1565				*lun = 0;
1566				*target = lunid & 0x3fff;
1567			}
1568		}
1569	} else {
1570		/* physical device */
1571		if (is_hba_lunid(lunaddrbytes))
1572			if (unlikely(is_scsi_rev_5(h))) {
1573				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1574				*target = 0;
1575				*lun = 0;
1576				return;
1577			} else
1578				*bus = 3; /* traditional smartarray */
1579		else
1580			*bus = 2; /* physical disk */
1581		*target = -1;
1582		*lun = -1; /* we will fill these in later. */
1583	}
1584}
1585
1586/*
1587 * If there is no lun 0 on a target, linux won't find any devices.
1588 * For the MSA2xxx boxes, we have to manually detect the enclosure
1589 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1590 * it for some reason.  *tmpdevice is the target we're adding,
1591 * this_device is a pointer into the current element of currentsd[]
1592 * that we're building up in update_scsi_devices(), below.
1593 * lunzerobits is a bitmap that tracks which targets already have a
1594 * lun 0 assigned.
1595 * Returns 1 if an enclosure was added, 0 if not.
1596 */
1597static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1598	struct hpsa_scsi_dev_t *tmpdevice,
1599	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1600	int bus, int target, int lun, unsigned long lunzerobits[],
1601	int *nmsa2xxx_enclosures)
1602{
1603	unsigned char scsi3addr[8];
1604
1605	if (test_bit(target, lunzerobits))
1606		return 0; /* There is already a lun 0 on this target. */
1607
1608	if (!is_logical_dev_addr_mode(lunaddrbytes))
1609		return 0; /* It's the logical targets that may lack lun 0. */
1610
1611	if (!is_msa2xxx(h, tmpdevice))
1612		return 0; /* It's only the MSA2xxx that have this problem. */
1613
1614	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1615		return 0;
1616
1617	if (is_hba_lunid(scsi3addr))
1618		return 0; /* Don't add the RAID controller here. */
1619
1620	if (is_scsi_rev_5(h))
1621		return 0; /* p1210m doesn't need to do this. */
1622
1623#define MAX_MSA2XXX_ENCLOSURES 32
1624	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1625		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1626			"enclosures exceeded.  Check your hardware "
1627			"configuration.");
1628		return 0;
1629	}
1630
1631	memset(scsi3addr, 0, 8);
1632	scsi3addr[3] = target;
1633	if (hpsa_update_device_info(h, scsi3addr, this_device))
1634		return 0;
1635	(*nmsa2xxx_enclosures)++;
1636	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1637	set_bit(target, lunzerobits);
1638	return 1;
1639}
1640
1641/*
1642 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1643 * logdev.  The number of luns in physdev and logdev are returned in
1644 * *nphysicals and *nlogicals, respectively.
1645 * Returns 0 on success, -1 otherwise.
1646 */
1647static int hpsa_gather_lun_info(struct ctlr_info *h,
1648	int reportlunsize,
1649	struct ReportLUNdata *physdev, u32 *nphysicals,
1650	struct ReportLUNdata *logdev, u32 *nlogicals)
1651{
1652	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1653		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1654		return -1;
1655	}
1656	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1657	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1658		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1659			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1660			*nphysicals - HPSA_MAX_PHYS_LUN);
1661		*nphysicals = HPSA_MAX_PHYS_LUN;
1662	}
1663	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1664		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1665		return -1;
1666	}
1667	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1668	/* Reject Logicals in excess of our max capability. */
1669	if (*nlogicals > HPSA_MAX_LUN) {
1670		dev_warn(&h->pdev->dev,
1671			"maximum logical LUNs (%d) exceeded.  "
1672			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1673			*nlogicals - HPSA_MAX_LUN);
1674			*nlogicals = HPSA_MAX_LUN;
1675	}
1676	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1677		dev_warn(&h->pdev->dev,
1678			"maximum logical + physical LUNs (%d) exceeded. "
1679			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1680			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1681		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1682	}
1683	return 0;
1684}
1685
1686u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1687	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1688	struct ReportLUNdata *logdev_list)
1689{
1690	/* Helper function, figure out where the LUN ID info is coming from
1691	 * given index i, lists of physical and logical devices, where in
1692	 * the list the raid controller is supposed to appear (first or last)
1693	 */
1694
1695	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1696	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1697
1698	if (i == raid_ctlr_position)
1699		return RAID_CTLR_LUNID;
1700
1701	if (i < logicals_start)
1702		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1703
1704	if (i < last_device)
1705		return &logdev_list->LUN[i - nphysicals -
1706			(raid_ctlr_position == 0)][0];
1707	BUG();
1708	return NULL;
1709}
1710
1711static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1712{
1713	/* the idea here is we could get notified
1714	 * that some devices have changed, so we do a report
1715	 * physical luns and report logical luns cmd, and adjust
1716	 * our list of devices accordingly.
1717	 *
1718	 * The scsi3addr's of devices won't change so long as the
1719	 * adapter is not reset.  That means we can rescan and
1720	 * tell which devices we already know about, vs. new
1721	 * devices, vs.  disappearing devices.
1722	 */
1723	struct ReportLUNdata *physdev_list = NULL;
1724	struct ReportLUNdata *logdev_list = NULL;
1725	unsigned char *inq_buff = NULL;
1726	u32 nphysicals = 0;
1727	u32 nlogicals = 0;
1728	u32 ndev_allocated = 0;
1729	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1730	int ncurrent = 0;
1731	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1732	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1733	int bus, target, lun;
1734	int raid_ctlr_position;
1735	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1736
1737	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1738		GFP_KERNEL);
1739	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1740	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1741	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1742	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1743
1744	if (!currentsd || !physdev_list || !logdev_list ||
1745		!inq_buff || !tmpdevice) {
1746		dev_err(&h->pdev->dev, "out of memory\n");
1747		goto out;
1748	}
1749	memset(lunzerobits, 0, sizeof(lunzerobits));
1750
1751	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1752			logdev_list, &nlogicals))
1753		goto out;
1754
1755	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1756	 * but each of them 4 times through different paths.  The plus 1
1757	 * is for the RAID controller.
1758	 */
1759	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1760
1761	/* Allocate the per device structures */
1762	for (i = 0; i < ndevs_to_allocate; i++) {
1763		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1764		if (!currentsd[i]) {
1765			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1766				__FILE__, __LINE__);
1767			goto out;
1768		}
1769		ndev_allocated++;
1770	}
1771
1772	if (unlikely(is_scsi_rev_5(h)))
1773		raid_ctlr_position = 0;
1774	else
1775		raid_ctlr_position = nphysicals + nlogicals;
1776
1777	/* adjust our table of devices */
1778	nmsa2xxx_enclosures = 0;
1779	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1780		u8 *lunaddrbytes;
1781
1782		/* Figure out where the LUN ID info is coming from */
1783		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1784			i, nphysicals, nlogicals, physdev_list, logdev_list);
1785		/* skip masked physical devices. */
1786		if (lunaddrbytes[3] & 0xC0 &&
1787			i < nphysicals + (raid_ctlr_position == 0))
1788			continue;
1789
1790		/* Get device type, vendor, model, device id */
1791		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1792			continue; /* skip it if we can't talk to it. */
1793		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1794			tmpdevice);
1795		this_device = currentsd[ncurrent];
1796
1797		/*
1798		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1799		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1800		 * is nonetheless an enclosure device there.  We have to
1801		 * present that otherwise linux won't find anything if
1802		 * there is no lun 0.
1803		 */
1804		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1805				lunaddrbytes, bus, target, lun, lunzerobits,
1806				&nmsa2xxx_enclosures)) {
1807			ncurrent++;
1808			this_device = currentsd[ncurrent];
1809		}
1810
1811		*this_device = *tmpdevice;
1812		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1813
1814		switch (this_device->devtype) {
1815		case TYPE_ROM: {
1816			/* We don't *really* support actual CD-ROM devices,
1817			 * just "One Button Disaster Recovery" tape drive
1818			 * which temporarily pretends to be a CD-ROM drive.
1819			 * So we check that the device is really an OBDR tape
1820			 * device by checking for "$DR-10" in bytes 43-48 of
1821			 * the inquiry data.
1822			 */
1823				char obdr_sig[7];
1824#define OBDR_TAPE_SIG "$DR-10"
1825				strncpy(obdr_sig, &inq_buff[43], 6);
1826				obdr_sig[6] = '\0';
1827				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1828					/* Not OBDR device, ignore it. */
1829					break;
1830			}
1831			ncurrent++;
1832			break;
1833		case TYPE_DISK:
1834			if (i < nphysicals)
1835				break;
1836			ncurrent++;
1837			break;
1838		case TYPE_TAPE:
1839		case TYPE_MEDIUM_CHANGER:
1840			ncurrent++;
1841			break;
1842		case TYPE_RAID:
1843			/* Only present the Smartarray HBA as a RAID controller.
1844			 * If it's a RAID controller other than the HBA itself
1845			 * (an external RAID controller, MSA500 or similar)
1846			 * don't present it.
1847			 */
1848			if (!is_hba_lunid(lunaddrbytes))
1849				break;
1850			ncurrent++;
1851			break;
1852		default:
1853			break;
1854		}
1855		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1856			break;
1857	}
1858	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1859out:
1860	kfree(tmpdevice);
1861	for (i = 0; i < ndev_allocated; i++)
1862		kfree(currentsd[i]);
1863	kfree(currentsd);
1864	kfree(inq_buff);
1865	kfree(physdev_list);
1866	kfree(logdev_list);
1867}
1868
1869/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1870 * dma mapping  and fills in the scatter gather entries of the
1871 * hpsa command, cp.
1872 */
1873static int hpsa_scatter_gather(struct ctlr_info *h,
1874		struct CommandList *cp,
1875		struct scsi_cmnd *cmd)
1876{
1877	unsigned int len;
1878	struct scatterlist *sg;
1879	u64 addr64;
1880	int use_sg, i, sg_index, chained;
1881	struct SGDescriptor *curr_sg;
1882
1883	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1884
1885	use_sg = scsi_dma_map(cmd);
1886	if (use_sg < 0)
1887		return use_sg;
1888
1889	if (!use_sg)
1890		goto sglist_finished;
1891
1892	curr_sg = cp->SG;
1893	chained = 0;
1894	sg_index = 0;
1895	scsi_for_each_sg(cmd, sg, use_sg, i) {
1896		if (i == h->max_cmd_sg_entries - 1 &&
1897			use_sg > h->max_cmd_sg_entries) {
1898			chained = 1;
1899			curr_sg = h->cmd_sg_list[cp->cmdindex];
1900			sg_index = 0;
1901		}
1902		addr64 = (u64) sg_dma_address(sg);
1903		len  = sg_dma_len(sg);
1904		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1905		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1906		curr_sg->Len = len;
1907		curr_sg->Ext = 0;  /* we are not chaining */
1908		curr_sg++;
1909	}
1910
1911	if (use_sg + chained > h->maxSG)
1912		h->maxSG = use_sg + chained;
1913
1914	if (chained) {
1915		cp->Header.SGList = h->max_cmd_sg_entries;
1916		cp->Header.SGTotal = (u16) (use_sg + 1);
1917		hpsa_map_sg_chain_block(h, cp);
1918		return 0;
1919	}
1920
1921sglist_finished:
1922
1923	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1924	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1925	return 0;
1926}
1927
1928
1929static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1930	void (*done)(struct scsi_cmnd *))
1931{
1932	struct ctlr_info *h;
1933	struct hpsa_scsi_dev_t *dev;
1934	unsigned char scsi3addr[8];
1935	struct CommandList *c;
1936	unsigned long flags;
1937
1938	/* Get the ptr to our adapter structure out of cmd->host. */
1939	h = sdev_to_hba(cmd->device);
1940	dev = cmd->device->hostdata;
1941	if (!dev) {
1942		cmd->result = DID_NO_CONNECT << 16;
1943		done(cmd);
1944		return 0;
1945	}
1946	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1947
1948	/* Need a lock as this is being allocated from the pool */
1949	spin_lock_irqsave(&h->lock, flags);
1950	c = cmd_alloc(h);
1951	spin_unlock_irqrestore(&h->lock, flags);
1952	if (c == NULL) {			/* trouble... */
1953		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1954		return SCSI_MLQUEUE_HOST_BUSY;
1955	}
1956
1957	/* Fill in the command list header */
1958
1959	cmd->scsi_done = done;    /* save this for use by completion code */
1960
1961	/* save c in case we have to abort it  */
1962	cmd->host_scribble = (unsigned char *) c;
1963
1964	c->cmd_type = CMD_SCSI;
1965	c->scsi_cmd = cmd;
1966	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1967	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1968	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1969	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1970
1971	/* Fill in the request block... */
1972
1973	c->Request.Timeout = 0;
1974	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1975	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1976	c->Request.CDBLen = cmd->cmd_len;
1977	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1978	c->Request.Type.Type = TYPE_CMD;
1979	c->Request.Type.Attribute = ATTR_SIMPLE;
1980	switch (cmd->sc_data_direction) {
1981	case DMA_TO_DEVICE:
1982		c->Request.Type.Direction = XFER_WRITE;
1983		break;
1984	case DMA_FROM_DEVICE:
1985		c->Request.Type.Direction = XFER_READ;
1986		break;
1987	case DMA_NONE:
1988		c->Request.Type.Direction = XFER_NONE;
1989		break;
1990	case DMA_BIDIRECTIONAL:
1991		/* This can happen if a buggy application does a scsi passthru
1992		 * and sets both inlen and outlen to non-zero. ( see
1993		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1994		 */
1995
1996		c->Request.Type.Direction = XFER_RSVD;
1997		/* This is technically wrong, and hpsa controllers should
1998		 * reject it with CMD_INVALID, which is the most correct
1999		 * response, but non-fibre backends appear to let it
2000		 * slide by, and give the same results as if this field
2001		 * were set correctly.  Either way is acceptable for
2002		 * our purposes here.
2003		 */
2004
2005		break;
2006
2007	default:
2008		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2009			cmd->sc_data_direction);
2010		BUG();
2011		break;
2012	}
2013
2014	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2015		cmd_free(h, c);
2016		return SCSI_MLQUEUE_HOST_BUSY;
2017	}
2018	enqueue_cmd_and_start_io(h, c);
2019	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2020	return 0;
2021}
2022
2023static void hpsa_scan_start(struct Scsi_Host *sh)
2024{
2025	struct ctlr_info *h = shost_to_hba(sh);
2026	unsigned long flags;
2027
2028	/* wait until any scan already in progress is finished. */
2029	while (1) {
2030		spin_lock_irqsave(&h->scan_lock, flags);
2031		if (h->scan_finished)
2032			break;
2033		spin_unlock_irqrestore(&h->scan_lock, flags);
2034		wait_event(h->scan_wait_queue, h->scan_finished);
2035		/* Note: We don't need to worry about a race between this
2036		 * thread and driver unload because the midlayer will
2037		 * have incremented the reference count, so unload won't
2038		 * happen if we're in here.
2039		 */
2040	}
2041	h->scan_finished = 0; /* mark scan as in progress */
2042	spin_unlock_irqrestore(&h->scan_lock, flags);
2043
2044	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2045
2046	spin_lock_irqsave(&h->scan_lock, flags);
2047	h->scan_finished = 1; /* mark scan as finished. */
2048	wake_up_all(&h->scan_wait_queue);
2049	spin_unlock_irqrestore(&h->scan_lock, flags);
2050}
2051
2052static int hpsa_scan_finished(struct Scsi_Host *sh,
2053	unsigned long elapsed_time)
2054{
2055	struct ctlr_info *h = shost_to_hba(sh);
2056	unsigned long flags;
2057	int finished;
2058
2059	spin_lock_irqsave(&h->scan_lock, flags);
2060	finished = h->scan_finished;
2061	spin_unlock_irqrestore(&h->scan_lock, flags);
2062	return finished;
2063}
2064
2065static int hpsa_change_queue_depth(struct scsi_device *sdev,
2066	int qdepth, int reason)
2067{
2068	struct ctlr_info *h = sdev_to_hba(sdev);
2069
2070	if (reason != SCSI_QDEPTH_DEFAULT)
2071		return -ENOTSUPP;
2072
2073	if (qdepth < 1)
2074		qdepth = 1;
2075	else
2076		if (qdepth > h->nr_cmds)
2077			qdepth = h->nr_cmds;
2078	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2079	return sdev->queue_depth;
2080}
2081
2082static void hpsa_unregister_scsi(struct ctlr_info *h)
2083{
2084	/* we are being forcibly unloaded, and may not refuse. */
2085	scsi_remove_host(h->scsi_host);
2086	scsi_host_put(h->scsi_host);
2087	h->scsi_host = NULL;
2088}
2089
2090static int hpsa_register_scsi(struct ctlr_info *h)
2091{
2092	int rc;
2093
2094	rc = hpsa_scsi_detect(h);
2095	if (rc != 0)
2096		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2097			" hpsa_scsi_detect(), rc is %d\n", rc);
2098	return rc;
2099}
2100
2101static int wait_for_device_to_become_ready(struct ctlr_info *h,
2102	unsigned char lunaddr[])
2103{
2104	int rc = 0;
2105	int count = 0;
2106	int waittime = 1; /* seconds */
2107	struct CommandList *c;
2108
2109	c = cmd_special_alloc(h);
2110	if (!c) {
2111		dev_warn(&h->pdev->dev, "out of memory in "
2112			"wait_for_device_to_become_ready.\n");
2113		return IO_ERROR;
2114	}
2115
2116	/* Send test unit ready until device ready, or give up. */
2117	while (count < HPSA_TUR_RETRY_LIMIT) {
2118
2119		/* Wait for a bit.  do this first, because if we send
2120		 * the TUR right away, the reset will just abort it.
2121		 */
2122		msleep(1000 * waittime);
2123		count++;
2124
2125		/* Increase wait time with each try, up to a point. */
2126		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2127			waittime = waittime * 2;
2128
2129		/* Send the Test Unit Ready */
2130		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2131		hpsa_scsi_do_simple_cmd_core(h, c);
2132		/* no unmap needed here because no data xfer. */
2133
2134		if (c->err_info->CommandStatus == CMD_SUCCESS)
2135			break;
2136
2137		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2138			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2139			(c->err_info->SenseInfo[2] == NO_SENSE ||
2140			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2141			break;
2142
2143		dev_warn(&h->pdev->dev, "waiting %d secs "
2144			"for device to become ready.\n", waittime);
2145		rc = 1; /* device not ready. */
2146	}
2147
2148	if (rc)
2149		dev_warn(&h->pdev->dev, "giving up on device.\n");
2150	else
2151		dev_warn(&h->pdev->dev, "device is ready.\n");
2152
2153	cmd_special_free(h, c);
2154	return rc;
2155}
2156
2157/* Need at least one of these error handlers to keep ../scsi/hosts.c from
2158 * complaining.  Doing a host- or bus-reset can't do anything good here.
2159 */
2160static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2161{
2162	int rc;
2163	struct ctlr_info *h;
2164	struct hpsa_scsi_dev_t *dev;
2165
2166	/* find the controller to which the command to be aborted was sent */
2167	h = sdev_to_hba(scsicmd->device);
2168	if (h == NULL) /* paranoia */
2169		return FAILED;
2170	dev = scsicmd->device->hostdata;
2171	if (!dev) {
2172		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2173			"device lookup failed.\n");
2174		return FAILED;
2175	}
2176	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2177		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2178	/* send a reset to the SCSI LUN which the command was sent to */
2179	rc = hpsa_send_reset(h, dev->scsi3addr);
2180	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2181		return SUCCESS;
2182
2183	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2184	return FAILED;
2185}
2186
2187/*
2188 * For operations that cannot sleep, a command block is allocated at init,
2189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2190 * which ones are free or in use.  Lock must be held when calling this.
2191 * cmd_free() is the complement.
2192 */
2193static struct CommandList *cmd_alloc(struct ctlr_info *h)
2194{
2195	struct CommandList *c;
2196	int i;
2197	union u64bit temp64;
2198	dma_addr_t cmd_dma_handle, err_dma_handle;
2199
2200	do {
2201		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2202		if (i == h->nr_cmds)
2203			return NULL;
2204	} while (test_and_set_bit
2205		 (i & (BITS_PER_LONG - 1),
2206		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2207	c = h->cmd_pool + i;
2208	memset(c, 0, sizeof(*c));
2209	cmd_dma_handle = h->cmd_pool_dhandle
2210	    + i * sizeof(*c);
2211	c->err_info = h->errinfo_pool + i;
2212	memset(c->err_info, 0, sizeof(*c->err_info));
2213	err_dma_handle = h->errinfo_pool_dhandle
2214	    + i * sizeof(*c->err_info);
2215	h->nr_allocs++;
2216
2217	c->cmdindex = i;
2218
2219	INIT_HLIST_NODE(&c->list);
2220	c->busaddr = (u32) cmd_dma_handle;
2221	temp64.val = (u64) err_dma_handle;
2222	c->ErrDesc.Addr.lower = temp64.val32.lower;
2223	c->ErrDesc.Addr.upper = temp64.val32.upper;
2224	c->ErrDesc.Len = sizeof(*c->err_info);
2225
2226	c->h = h;
2227	return c;
2228}
2229
2230/* For operations that can wait for kmalloc to possibly sleep,
2231 * this routine can be called. Lock need not be held to call
2232 * cmd_special_alloc. cmd_special_free() is the complement.
2233 */
2234static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2235{
2236	struct CommandList *c;
2237	union u64bit temp64;
2238	dma_addr_t cmd_dma_handle, err_dma_handle;
2239
2240	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2241	if (c == NULL)
2242		return NULL;
2243	memset(c, 0, sizeof(*c));
2244
2245	c->cmdindex = -1;
2246
2247	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2248		    &err_dma_handle);
2249
2250	if (c->err_info == NULL) {
2251		pci_free_consistent(h->pdev,
2252			sizeof(*c), c, cmd_dma_handle);
2253		return NULL;
2254	}
2255	memset(c->err_info, 0, sizeof(*c->err_info));
2256
2257	INIT_HLIST_NODE(&c->list);
2258	c->busaddr = (u32) cmd_dma_handle;
2259	temp64.val = (u64) err_dma_handle;
2260	c->ErrDesc.Addr.lower = temp64.val32.lower;
2261	c->ErrDesc.Addr.upper = temp64.val32.upper;
2262	c->ErrDesc.Len = sizeof(*c->err_info);
2263
2264	c->h = h;
2265	return c;
2266}
2267
2268static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2269{
2270	int i;
2271
2272	i = c - h->cmd_pool;
2273	clear_bit(i & (BITS_PER_LONG - 1),
2274		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2275	h->nr_frees++;
2276}
2277
2278static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2279{
2280	union u64bit temp64;
2281
2282	temp64.val32.lower = c->ErrDesc.Addr.lower;
2283	temp64.val32.upper = c->ErrDesc.Addr.upper;
2284	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2285			    c->err_info, (dma_addr_t) temp64.val);
2286	pci_free_consistent(h->pdev, sizeof(*c),
2287			    c, (dma_addr_t) c->busaddr);
2288}
2289
2290#ifdef CONFIG_COMPAT
2291
2292static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2293{
2294	IOCTL32_Command_struct __user *arg32 =
2295	    (IOCTL32_Command_struct __user *) arg;
2296	IOCTL_Command_struct arg64;
2297	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2298	int err;
2299	u32 cp;
2300
2301	err = 0;
2302	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2303			   sizeof(arg64.LUN_info));
2304	err |= copy_from_user(&arg64.Request, &arg32->Request,
2305			   sizeof(arg64.Request));
2306	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2307			   sizeof(arg64.error_info));
2308	err |= get_user(arg64.buf_size, &arg32->buf_size);
2309	err |= get_user(cp, &arg32->buf);
2310	arg64.buf = compat_ptr(cp);
2311	err |= copy_to_user(p, &arg64, sizeof(arg64));
2312
2313	if (err)
2314		return -EFAULT;
2315
2316	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2317	if (err)
2318		return err;
2319	err |= copy_in_user(&arg32->error_info, &p->error_info,
2320			 sizeof(arg32->error_info));
2321	if (err)
2322		return -EFAULT;
2323	return err;
2324}
2325
2326static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2327	int cmd, void *arg)
2328{
2329	BIG_IOCTL32_Command_struct __user *arg32 =
2330	    (BIG_IOCTL32_Command_struct __user *) arg;
2331	BIG_IOCTL_Command_struct arg64;
2332	BIG_IOCTL_Command_struct __user *p =
2333	    compat_alloc_user_space(sizeof(arg64));
2334	int err;
2335	u32 cp;
2336
2337	err = 0;
2338	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2339			   sizeof(arg64.LUN_info));
2340	err |= copy_from_user(&arg64.Request, &arg32->Request,
2341			   sizeof(arg64.Request));
2342	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2343			   sizeof(arg64.error_info));
2344	err |= get_user(arg64.buf_size, &arg32->buf_size);
2345	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2346	err |= get_user(cp, &arg32->buf);
2347	arg64.buf = compat_ptr(cp);
2348	err |= copy_to_user(p, &arg64, sizeof(arg64));
2349
2350	if (err)
2351		return -EFAULT;
2352
2353	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2354	if (err)
2355		return err;
2356	err |= copy_in_user(&arg32->error_info, &p->error_info,
2357			 sizeof(arg32->error_info));
2358	if (err)
2359		return -EFAULT;
2360	return err;
2361}
2362
2363static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2364{
2365	switch (cmd) {
2366	case CCISS_GETPCIINFO:
2367	case CCISS_GETINTINFO:
2368	case CCISS_SETINTINFO:
2369	case CCISS_GETNODENAME:
2370	case CCISS_SETNODENAME:
2371	case CCISS_GETHEARTBEAT:
2372	case CCISS_GETBUSTYPES:
2373	case CCISS_GETFIRMVER:
2374	case CCISS_GETDRIVVER:
2375	case CCISS_REVALIDVOLS:
2376	case CCISS_DEREGDISK:
2377	case CCISS_REGNEWDISK:
2378	case CCISS_REGNEWD:
2379	case CCISS_RESCANDISK:
2380	case CCISS_GETLUNINFO:
2381		return hpsa_ioctl(dev, cmd, arg);
2382
2383	case CCISS_PASSTHRU32:
2384		return hpsa_ioctl32_passthru(dev, cmd, arg);
2385	case CCISS_BIG_PASSTHRU32:
2386		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2387
2388	default:
2389		return -ENOIOCTLCMD;
2390	}
2391}
2392#endif
2393
2394static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2395{
2396	struct hpsa_pci_info pciinfo;
2397
2398	if (!argp)
2399		return -EINVAL;
2400	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2401	pciinfo.bus = h->pdev->bus->number;
2402	pciinfo.dev_fn = h->pdev->devfn;
2403	pciinfo.board_id = h->board_id;
2404	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2405		return -EFAULT;
2406	return 0;
2407}
2408
2409static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2410{
2411	DriverVer_type DriverVer;
2412	unsigned char vmaj, vmin, vsubmin;
2413	int rc;
2414
2415	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2416		&vmaj, &vmin, &vsubmin);
2417	if (rc != 3) {
2418		dev_info(&h->pdev->dev, "driver version string '%s' "
2419			"unrecognized.", HPSA_DRIVER_VERSION);
2420		vmaj = 0;
2421		vmin = 0;
2422		vsubmin = 0;
2423	}
2424	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2425	if (!argp)
2426		return -EINVAL;
2427	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2428		return -EFAULT;
2429	return 0;
2430}
2431
2432static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2433{
2434	IOCTL_Command_struct iocommand;
2435	struct CommandList *c;
2436	char *buff = NULL;
2437	union u64bit temp64;
2438
2439	if (!argp)
2440		return -EINVAL;
2441	if (!capable(CAP_SYS_RAWIO))
2442		return -EPERM;
2443	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2444		return -EFAULT;
2445	if ((iocommand.buf_size < 1) &&
2446	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2447		return -EINVAL;
2448	}
2449	if (iocommand.buf_size > 0) {
2450		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2451		if (buff == NULL)
2452			return -EFAULT;
2453	}
2454	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2455		/* Copy the data into the buffer we created */
2456		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2457			kfree(buff);
2458			return -EFAULT;
2459		}
2460	} else
2461		memset(buff, 0, iocommand.buf_size);
2462	c = cmd_special_alloc(h);
2463	if (c == NULL) {
2464		kfree(buff);
2465		return -ENOMEM;
2466	}
2467	/* Fill in the command type */
2468	c->cmd_type = CMD_IOCTL_PEND;
2469	/* Fill in Command Header */
2470	c->Header.ReplyQueue = 0; /* unused in simple mode */
2471	if (iocommand.buf_size > 0) {	/* buffer to fill */
2472		c->Header.SGList = 1;
2473		c->Header.SGTotal = 1;
2474	} else	{ /* no buffers to fill */
2475		c->Header.SGList = 0;
2476		c->Header.SGTotal = 0;
2477	}
2478	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2479	/* use the kernel address the cmd block for tag */
2480	c->Header.Tag.lower = c->busaddr;
2481
2482	/* Fill in Request block */
2483	memcpy(&c->Request, &iocommand.Request,
2484		sizeof(c->Request));
2485
2486	/* Fill in the scatter gather information */
2487	if (iocommand.buf_size > 0) {
2488		temp64.val = pci_map_single(h->pdev, buff,
2489			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2490		c->SG[0].Addr.lower = temp64.val32.lower;
2491		c->SG[0].Addr.upper = temp64.val32.upper;
2492		c->SG[0].Len = iocommand.buf_size;
2493		c->SG[0].Ext = 0; /* we are not chaining*/
2494	}
2495	hpsa_scsi_do_simple_cmd_core(h, c);
2496	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2497	check_ioctl_unit_attention(h, c);
2498
2499	/* Copy the error information out */
2500	memcpy(&iocommand.error_info, c->err_info,
2501		sizeof(iocommand.error_info));
2502	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2503		kfree(buff);
2504		cmd_special_free(h, c);
2505		return -EFAULT;
2506	}
2507
2508	if (iocommand.Request.Type.Direction == XFER_READ) {
2509		/* Copy the data out of the buffer we created */
2510		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2511			kfree(buff);
2512			cmd_special_free(h, c);
2513			return -EFAULT;
2514		}
2515	}
2516	kfree(buff);
2517	cmd_special_free(h, c);
2518	return 0;
2519}
2520
2521static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2522{
2523	BIG_IOCTL_Command_struct *ioc;
2524	struct CommandList *c;
2525	unsigned char **buff = NULL;
2526	int *buff_size = NULL;
2527	union u64bit temp64;
2528	BYTE sg_used = 0;
2529	int status = 0;
2530	int i;
2531	u32 left;
2532	u32 sz;
2533	BYTE __user *data_ptr;
2534
2535	if (!argp)
2536		return -EINVAL;
2537	if (!capable(CAP_SYS_RAWIO))
2538		return -EPERM;
2539	ioc = (BIG_IOCTL_Command_struct *)
2540	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2541	if (!ioc) {
2542		status = -ENOMEM;
2543		goto cleanup1;
2544	}
2545	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2546		status = -EFAULT;
2547		goto cleanup1;
2548	}
2549	if ((ioc->buf_size < 1) &&
2550	    (ioc->Request.Type.Direction != XFER_NONE)) {
2551		status = -EINVAL;
2552		goto cleanup1;
2553	}
2554	/* Check kmalloc limits  using all SGs */
2555	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2556		status = -EINVAL;
2557		goto cleanup1;
2558	}
2559	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2560		status = -EINVAL;
2561		goto cleanup1;
2562	}
2563	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2564	if (!buff) {
2565		status = -ENOMEM;
2566		goto cleanup1;
2567	}
2568	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2569	if (!buff_size) {
2570		status = -ENOMEM;
2571		goto cleanup1;
2572	}
2573	left = ioc->buf_size;
2574	data_ptr = ioc->buf;
2575	while (left) {
2576		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2577		buff_size[sg_used] = sz;
2578		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2579		if (buff[sg_used] == NULL) {
2580			status = -ENOMEM;
2581			goto cleanup1;
2582		}
2583		if (ioc->Request.Type.Direction == XFER_WRITE) {
2584			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2585				status = -ENOMEM;
2586				goto cleanup1;
2587			}
2588		} else
2589			memset(buff[sg_used], 0, sz);
2590		left -= sz;
2591		data_ptr += sz;
2592		sg_used++;
2593	}
2594	c = cmd_special_alloc(h);
2595	if (c == NULL) {
2596		status = -ENOMEM;
2597		goto cleanup1;
2598	}
2599	c->cmd_type = CMD_IOCTL_PEND;
2600	c->Header.ReplyQueue = 0;
2601
2602	if (ioc->buf_size > 0) {
2603		c->Header.SGList = sg_used;
2604		c->Header.SGTotal = sg_used;
2605	} else {
2606		c->Header.SGList = 0;
2607		c->Header.SGTotal = 0;
2608	}
2609	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2610	c->Header.Tag.lower = c->busaddr;
2611	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2612	if (ioc->buf_size > 0) {
2613		int i;
2614		for (i = 0; i < sg_used; i++) {
2615			temp64.val = pci_map_single(h->pdev, buff[i],
2616				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2617			c->SG[i].Addr.lower = temp64.val32.lower;
2618			c->SG[i].Addr.upper = temp64.val32.upper;
2619			c->SG[i].Len = buff_size[i];
2620			/* we are not chaining */
2621			c->SG[i].Ext = 0;
2622		}
2623	}
2624	hpsa_scsi_do_simple_cmd_core(h, c);
2625	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2626	check_ioctl_unit_attention(h, c);
2627	/* Copy the error information out */
2628	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2629	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2630		cmd_special_free(h, c);
2631		status = -EFAULT;
2632		goto cleanup1;
2633	}
2634	if (ioc->Request.Type.Direction == XFER_READ) {
2635		/* Copy the data out of the buffer we created */
2636		BYTE __user *ptr = ioc->buf;
2637		for (i = 0; i < sg_used; i++) {
2638			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2639				cmd_special_free(h, c);
2640				status = -EFAULT;
2641				goto cleanup1;
2642			}
2643			ptr += buff_size[i];
2644		}
2645	}
2646	cmd_special_free(h, c);
2647	status = 0;
2648cleanup1:
2649	if (buff) {
2650		for (i = 0; i < sg_used; i++)
2651			kfree(buff[i]);
2652		kfree(buff);
2653	}
2654	kfree(buff_size);
2655	kfree(ioc);
2656	return status;
2657}
2658
2659static void check_ioctl_unit_attention(struct ctlr_info *h,
2660	struct CommandList *c)
2661{
2662	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2663			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2664		(void) check_for_unit_attention(h, c);
2665}
2666/*
2667 * ioctl
2668 */
2669static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2670{
2671	struct ctlr_info *h;
2672	void __user *argp = (void __user *)arg;
2673
2674	h = sdev_to_hba(dev);
2675
2676	switch (cmd) {
2677	case CCISS_DEREGDISK:
2678	case CCISS_REGNEWDISK:
2679	case CCISS_REGNEWD:
2680		hpsa_scan_start(h->scsi_host);
2681		return 0;
2682	case CCISS_GETPCIINFO:
2683		return hpsa_getpciinfo_ioctl(h, argp);
2684	case CCISS_GETDRIVVER:
2685		return hpsa_getdrivver_ioctl(h, argp);
2686	case CCISS_PASSTHRU:
2687		return hpsa_passthru_ioctl(h, argp);
2688	case CCISS_BIG_PASSTHRU:
2689		return hpsa_big_passthru_ioctl(h, argp);
2690	default:
2691		return -ENOTTY;
2692	}
2693}
2694
2695static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2696	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2697	int cmd_type)
2698{
2699	int pci_dir = XFER_NONE;
2700
2701	c->cmd_type = CMD_IOCTL_PEND;
2702	c->Header.ReplyQueue = 0;
2703	if (buff != NULL && size > 0) {
2704		c->Header.SGList = 1;
2705		c->Header.SGTotal = 1;
2706	} else {
2707		c->Header.SGList = 0;
2708		c->Header.SGTotal = 0;
2709	}
2710	c->Header.Tag.lower = c->busaddr;
2711	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2712
2713	c->Request.Type.Type = cmd_type;
2714	if (cmd_type == TYPE_CMD) {
2715		switch (cmd) {
2716		case HPSA_INQUIRY:
2717			/* are we trying to read a vital product page */
2718			if (page_code != 0) {
2719				c->Request.CDB[1] = 0x01;
2720				c->Request.CDB[2] = page_code;
2721			}
2722			c->Request.CDBLen = 6;
2723			c->Request.Type.Attribute = ATTR_SIMPLE;
2724			c->Request.Type.Direction = XFER_READ;
2725			c->Request.Timeout = 0;
2726			c->Request.CDB[0] = HPSA_INQUIRY;
2727			c->Request.CDB[4] = size & 0xFF;
2728			break;
2729		case HPSA_REPORT_LOG:
2730		case HPSA_REPORT_PHYS:
2731			/* Talking to controller so It's a physical command
2732			   mode = 00 target = 0.  Nothing to write.
2733			 */
2734			c->Request.CDBLen = 12;
2735			c->Request.Type.Attribute = ATTR_SIMPLE;
2736			c->Request.Type.Direction = XFER_READ;
2737			c->Request.Timeout = 0;
2738			c->Request.CDB[0] = cmd;
2739			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2740			c->Request.CDB[7] = (size >> 16) & 0xFF;
2741			c->Request.CDB[8] = (size >> 8) & 0xFF;
2742			c->Request.CDB[9] = size & 0xFF;
2743			break;
2744		case HPSA_CACHE_FLUSH:
2745			c->Request.CDBLen = 12;
2746			c->Request.Type.Attribute = ATTR_SIMPLE;
2747			c->Request.Type.Direction = XFER_WRITE;
2748			c->Request.Timeout = 0;
2749			c->Request.CDB[0] = BMIC_WRITE;
2750			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2751			break;
2752		case TEST_UNIT_READY:
2753			c->Request.CDBLen = 6;
2754			c->Request.Type.Attribute = ATTR_SIMPLE;
2755			c->Request.Type.Direction = XFER_NONE;
2756			c->Request.Timeout = 0;
2757			break;
2758		default:
2759			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2760			BUG();
2761			return;
2762		}
2763	} else if (cmd_type == TYPE_MSG) {
2764		switch (cmd) {
2765
2766		case  HPSA_DEVICE_RESET_MSG:
2767			c->Request.CDBLen = 16;
2768			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2769			c->Request.Type.Attribute = ATTR_SIMPLE;
2770			c->Request.Type.Direction = XFER_NONE;
2771			c->Request.Timeout = 0; /* Don't time out */
2772			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2773			c->Request.CDB[1] = 0x03;  /* Reset target above */
2774			/* If bytes 4-7 are zero, it means reset the */
2775			/* LunID device */
2776			c->Request.CDB[4] = 0x00;
2777			c->Request.CDB[5] = 0x00;
2778			c->Request.CDB[6] = 0x00;
2779			c->Request.CDB[7] = 0x00;
2780		break;
2781
2782		default:
2783			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2784				cmd);
2785			BUG();
2786		}
2787	} else {
2788		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2789		BUG();
2790	}
2791
2792	switch (c->Request.Type.Direction) {
2793	case XFER_READ:
2794		pci_dir = PCI_DMA_FROMDEVICE;
2795		break;
2796	case XFER_WRITE:
2797		pci_dir = PCI_DMA_TODEVICE;
2798		break;
2799	case XFER_NONE:
2800		pci_dir = PCI_DMA_NONE;
2801		break;
2802	default:
2803		pci_dir = PCI_DMA_BIDIRECTIONAL;
2804	}
2805
2806	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2807
2808	return;
2809}
2810
2811/*
2812 * Map (physical) PCI mem into (virtual) kernel space
2813 */
2814static void __iomem *remap_pci_mem(ulong base, ulong size)
2815{
2816	ulong page_base = ((ulong) base) & PAGE_MASK;
2817	ulong page_offs = ((ulong) base) - page_base;
2818	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2819
2820	return page_remapped ? (page_remapped + page_offs) : NULL;
2821}
2822
2823/* Takes cmds off the submission queue and sends them to the hardware,
2824 * then puts them on the queue of cmds waiting for completion.
2825 */
2826static void start_io(struct ctlr_info *h)
2827{
2828	struct CommandList *c;
2829
2830	while (!hlist_empty(&h->reqQ)) {
2831		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2832		/* can't do anything if fifo is full */
2833		if ((h->access.fifo_full(h))) {
2834			dev_warn(&h->pdev->dev, "fifo full\n");
2835			break;
2836		}
2837
2838		/* Get the first entry from the Request Q */
2839		removeQ(c);
2840		h->Qdepth--;
2841
2842		/* Tell the controller execute command */
2843		h->access.submit_command(h, c);
2844
2845		/* Put job onto the completed Q */
2846		addQ(&h->cmpQ, c);
2847	}
2848}
2849
2850static inline unsigned long get_next_completion(struct ctlr_info *h)
2851{
2852	return h->access.command_completed(h);
2853}
2854
2855static inline bool interrupt_pending(struct ctlr_info *h)
2856{
2857	return h->access.intr_pending(h);
2858}
2859
2860static inline long interrupt_not_for_us(struct ctlr_info *h)
2861{
2862	return (h->access.intr_pending(h) == 0) ||
2863		(h->interrupts_enabled == 0);
2864}
2865
2866static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2867	u32 raw_tag)
2868{
2869	if (unlikely(tag_index >= h->nr_cmds)) {
2870		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2871		return 1;
2872	}
2873	return 0;
2874}
2875
2876static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2877{
2878	removeQ(c);
2879	if (likely(c->cmd_type == CMD_SCSI))
2880		complete_scsi_command(c, 0, raw_tag);
2881	else if (c->cmd_type == CMD_IOCTL_PEND)
2882		complete(c->waiting);
2883}
2884
2885static inline u32 hpsa_tag_contains_index(u32 tag)
2886{
2887#define DIRECT_LOOKUP_BIT 0x10
2888	return tag & DIRECT_LOOKUP_BIT;
2889}
2890
2891static inline u32 hpsa_tag_to_index(u32 tag)
2892{
2893#define DIRECT_LOOKUP_SHIFT 5
2894	return tag >> DIRECT_LOOKUP_SHIFT;
2895}
2896
2897static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2898{
2899#define HPSA_ERROR_BITS 0x03
2900	return tag & ~HPSA_ERROR_BITS;
2901}
2902
2903/* process completion of an indexed ("direct lookup") command */
2904static inline u32 process_indexed_cmd(struct ctlr_info *h,
2905	u32 raw_tag)
2906{
2907	u32 tag_index;
2908	struct CommandList *c;
2909
2910	tag_index = hpsa_tag_to_index(raw_tag);
2911	if (bad_tag(h, tag_index, raw_tag))
2912		return next_command(h);
2913	c = h->cmd_pool + tag_index;
2914	finish_cmd(c, raw_tag);
2915	return next_command(h);
2916}
2917
2918/* process completion of a non-indexed command */
2919static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2920	u32 raw_tag)
2921{
2922	u32 tag;
2923	struct CommandList *c = NULL;
2924	struct hlist_node *tmp;
2925
2926	tag = hpsa_tag_discard_error_bits(raw_tag);
2927	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2928		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2929			finish_cmd(c, raw_tag);
2930			return next_command(h);
2931		}
2932	}
2933	bad_tag(h, h->nr_cmds + 1, raw_tag);
2934	return next_command(h);
2935}
2936
2937static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2938{
2939	struct ctlr_info *h = dev_id;
2940	unsigned long flags;
2941	u32 raw_tag;
2942
2943	if (interrupt_not_for_us(h))
2944		return IRQ_NONE;
2945	spin_lock_irqsave(&h->lock, flags);
2946	while (interrupt_pending(h)) {
2947		raw_tag = get_next_completion(h);
2948		while (raw_tag != FIFO_EMPTY) {
2949			if (hpsa_tag_contains_index(raw_tag))
2950				raw_tag = process_indexed_cmd(h, raw_tag);
2951			else
2952				raw_tag = process_nonindexed_cmd(h, raw_tag);
2953		}
2954	}
2955	spin_unlock_irqrestore(&h->lock, flags);
2956	return IRQ_HANDLED;
2957}
2958
2959static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2960{
2961	struct ctlr_info *h = dev_id;
2962	unsigned long flags;
2963	u32 raw_tag;
2964
2965	spin_lock_irqsave(&h->lock, flags);
2966	raw_tag = get_next_completion(h);
2967	while (raw_tag != FIFO_EMPTY) {
2968		if (hpsa_tag_contains_index(raw_tag))
2969			raw_tag = process_indexed_cmd(h, raw_tag);
2970		else
2971			raw_tag = process_nonindexed_cmd(h, raw_tag);
2972	}
2973	spin_unlock_irqrestore(&h->lock, flags);
2974	return IRQ_HANDLED;
2975}
2976
2977/* Send a message CDB to the firmware. */
2978static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2979						unsigned char type)
2980{
2981	struct Command {
2982		struct CommandListHeader CommandHeader;
2983		struct RequestBlock Request;
2984		struct ErrDescriptor ErrorDescriptor;
2985	};
2986	struct Command *cmd;
2987	static const size_t cmd_sz = sizeof(*cmd) +
2988					sizeof(cmd->ErrorDescriptor);
2989	dma_addr_t paddr64;
2990	uint32_t paddr32, tag;
2991	void __iomem *vaddr;
2992	int i, err;
2993
2994	vaddr = pci_ioremap_bar(pdev, 0);
2995	if (vaddr == NULL)
2996		return -ENOMEM;
2997
2998	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2999	 * CCISS commands, so they must be allocated from the lower 4GiB of
3000	 * memory.
3001	 */
3002	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3003	if (err) {
3004		iounmap(vaddr);
3005		return -ENOMEM;
3006	}
3007
3008	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3009	if (cmd == NULL) {
3010		iounmap(vaddr);
3011		return -ENOMEM;
3012	}
3013
3014	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3015	 * although there's no guarantee, we assume that the address is at
3016	 * least 4-byte aligned (most likely, it's page-aligned).
3017	 */
3018	paddr32 = paddr64;
3019
3020	cmd->CommandHeader.ReplyQueue = 0;
3021	cmd->CommandHeader.SGList = 0;
3022	cmd->CommandHeader.SGTotal = 0;
3023	cmd->CommandHeader.Tag.lower = paddr32;
3024	cmd->CommandHeader.Tag.upper = 0;
3025	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3026
3027	cmd->Request.CDBLen = 16;
3028	cmd->Request.Type.Type = TYPE_MSG;
3029	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3030	cmd->Request.Type.Direction = XFER_NONE;
3031	cmd->Request.Timeout = 0; /* Don't time out */
3032	cmd->Request.CDB[0] = opcode;
3033	cmd->Request.CDB[1] = type;
3034	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3035	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3036	cmd->ErrorDescriptor.Addr.upper = 0;
3037	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3038
3039	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3040
3041	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3042		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3043		if (hpsa_tag_discard_error_bits(tag) == paddr32)
3044			break;
3045		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3046	}
3047
3048	iounmap(vaddr);
3049
3050	/* we leak the DMA buffer here ... no choice since the controller could
3051	 *  still complete the command.
3052	 */
3053	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3054		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3055			opcode, type);
3056		return -ETIMEDOUT;
3057	}
3058
3059	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3060
3061	if (tag & HPSA_ERROR_BIT) {
3062		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3063			opcode, type);
3064		return -EIO;
3065	}
3066
3067	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3068		opcode, type);
3069	return 0;
3070}
3071
3072#define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3073#define hpsa_noop(p) hpsa_message(p, 3, 0)
3074
3075static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3076{
3077/* the #defines are stolen from drivers/pci/msi.h. */
3078#define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
3079#define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
3080
3081	int pos;
3082	u16 control = 0;
3083
3084	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3085	if (pos) {
3086		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3087		if (control & PCI_MSI_FLAGS_ENABLE) {
3088			dev_info(&pdev->dev, "resetting MSI\n");
3089			pci_write_config_word(pdev, msi_control_reg(pos),
3090					control & ~PCI_MSI_FLAGS_ENABLE);
3091		}
3092	}
3093
3094	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3095	if (pos) {
3096		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3097		if (control & PCI_MSIX_FLAGS_ENABLE) {
3098			dev_info(&pdev->dev, "resetting MSI-X\n");
3099			pci_write_config_word(pdev, msi_control_reg(pos),
3100					control & ~PCI_MSIX_FLAGS_ENABLE);
3101		}
3102	}
3103
3104	return 0;
3105}
3106
3107static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3108	void * __iomem vaddr, bool use_doorbell)
3109{
3110	u16 pmcsr;
3111	int pos;
3112
3113	if (use_doorbell) {
3114		/* For everything after the P600, the PCI power state method
3115		 * of resetting the controller doesn't work, so we have this
3116		 * other way using the doorbell register.
3117		 */
3118		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3119		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3120		msleep(1000);
3121	} else { /* Try to do it the PCI power state way */
3122
3123		/* Quoting from the Open CISS Specification: "The Power
3124		 * Management Control/Status Register (CSR) controls the power
3125		 * state of the device.  The normal operating state is D0,
3126		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3127		 * the controller, place the interface device in D3 then to D0,
3128		 * this causes a secondary PCI reset which will reset the
3129		 * controller." */
3130
3131		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3132		if (pos == 0) {
3133			dev_err(&pdev->dev,
3134				"hpsa_reset_controller: "
3135				"PCI PM not supported\n");
3136			return -ENODEV;
3137		}
3138		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3139		/* enter the D3hot power management state */
3140		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142		pmcsr |= PCI_D3hot;
3143		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144
3145		msleep(500);
3146
3147		/* enter the D0 power management state */
3148		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149		pmcsr |= PCI_D0;
3150		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151
3152		msleep(500);
3153	}
3154	return 0;
3155}
3156
3157/* This does a hard reset of the controller using PCI power management
3158 * states or the using the doorbell register.
3159 */
3160static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3161{
3162	u16 saved_config_space[32];
3163	u64 cfg_offset;
3164	u32 cfg_base_addr;
3165	u64 cfg_base_addr_index;
3166	void __iomem *vaddr;
3167	unsigned long paddr;
3168	u32 misc_fw_support, active_transport;
3169	int rc, i;
3170	struct CfgTable __iomem *cfgtable;
3171	bool use_doorbell;
3172	u32 board_id;
3173
3174	/* For controllers as old as the P600, this is very nearly
3175	 * the same thing as
3176	 *
3177	 * pci_save_state(pci_dev);
3178	 * pci_set_power_state(pci_dev, PCI_D3hot);
3179	 * pci_set_power_state(pci_dev, PCI_D0);
3180	 * pci_restore_state(pci_dev);
3181	 *
3182	 * but we can't use these nice canned kernel routines on
3183	 * kexec, because they also check the MSI/MSI-X state in PCI
3184	 * configuration space and do the wrong thing when it is
3185	 * set/cleared.  Also, the pci_save/restore_state functions
3186	 * violate the ordering requirements for restoring the
3187	 * configuration space from the CCISS document (see the
3188	 * comment below).  So we roll our own ....
3189	 *
3190	 * For controllers newer than the P600, the pci power state
3191	 * method of resetting doesn't work so we have another way
3192	 * using the doorbell register.
3193	 */
3194
3195	/* Exclude 640x boards.  These are two pci devices in one slot
3196	 * which share a battery backed cache module.  One controls the
3197	 * cache, the other accesses the cache through the one that controls
3198	 * it.  If we reset the one controlling the cache, the other will
3199	 * likely not be happy.  Just forbid resetting this conjoined mess.
3200	 * The 640x isn't really supported by hpsa anyway.
3201	 */
3202	hpsa_lookup_board_id(pdev, &board_id);
3203	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3204		return -ENOTSUPP;
3205
3206	for (i = 0; i < 32; i++)
3207		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3208
3209
3210	/* find the first memory BAR, so we can find the cfg table */
3211	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3212	if (rc)
3213		return rc;
3214	vaddr = remap_pci_mem(paddr, 0x250);
3215	if (!vaddr)
3216		return -ENOMEM;
3217
3218	/* find cfgtable in order to check if reset via doorbell is supported */
3219	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3220					&cfg_base_addr_index, &cfg_offset);
3221	if (rc)
3222		goto unmap_vaddr;
3223	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3224		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3225	if (!cfgtable) {
3226		rc = -ENOMEM;
3227		goto unmap_vaddr;
3228	}
3229
3230	/* If reset via doorbell register is supported, use that. */
3231	misc_fw_support = readl(&cfgtable->misc_fw_support);
3232	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3233
3234	/* The doorbell reset seems to cause lockups on some Smart
3235	 * Arrays (e.g. P410, P410i, maybe others).  Until this is
3236	 * fixed or at least isolated, avoid the doorbell reset.
3237	 */
3238	use_doorbell = 0;
3239
3240	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3241	if (rc)
3242		goto unmap_cfgtable;
3243
3244	/* Restore the PCI configuration space.  The Open CISS
3245	 * Specification says, "Restore the PCI Configuration
3246	 * Registers, offsets 00h through 60h. It is important to
3247	 * restore the command register, 16-bits at offset 04h,
3248	 * last. Do not restore the configuration status register,
3249	 * 16-bits at offset 06h."  Note that the offset is 2*i.
3250	 */
3251	for (i = 0; i < 32; i++) {
3252		if (i == 2 || i == 3)
3253			continue;
3254		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3255	}
3256	wmb();
3257	pci_write_config_word(pdev, 4, saved_config_space[2]);
3258
3259	/* Some devices (notably the HP Smart Array 5i Controller)
3260	   need a little pause here */
3261	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3262
3263	/* Controller should be in simple mode at this point.  If it's not,
3264	 * It means we're on one of those controllers which doesn't support
3265	 * the doorbell reset method and on which the PCI power management reset
3266	 * method doesn't work (P800, for example.)
3267	 * In those cases, pretend the reset worked and hope for the best.
3268	 */
3269	active_transport = readl(&cfgtable->TransportActive);
3270	if (active_transport & PERFORMANT_MODE) {
3271		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3272			" proceeding anyway.\n");
3273		rc = -ENOTSUPP;
3274	}
3275
3276unmap_cfgtable:
3277	iounmap(cfgtable);
3278
3279unmap_vaddr:
3280	iounmap(vaddr);
3281	return rc;
3282}
3283
3284/*
3285 *  We cannot read the structure directly, for portability we must use
3286 *   the io functions.
3287 *   This is for debug only.
3288 */
3289static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3290{
3291#ifdef HPSA_DEBUG
3292	int i;
3293	char temp_name[17];
3294
3295	dev_info(dev, "Controller Configuration information\n");
3296	dev_info(dev, "------------------------------------\n");
3297	for (i = 0; i < 4; i++)
3298		temp_name[i] = readb(&(tb->Signature[i]));
3299	temp_name[4] = '\0';
3300	dev_info(dev, "   Signature = %s\n", temp_name);
3301	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3302	dev_info(dev, "   Transport methods supported = 0x%x\n",
3303	       readl(&(tb->TransportSupport)));
3304	dev_info(dev, "   Transport methods active = 0x%x\n",
3305	       readl(&(tb->TransportActive)));
3306	dev_info(dev, "   Requested transport Method = 0x%x\n",
3307	       readl(&(tb->HostWrite.TransportRequest)));
3308	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3309	       readl(&(tb->HostWrite.CoalIntDelay)));
3310	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3311	       readl(&(tb->HostWrite.CoalIntCount)));
3312	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3313	       readl(&(tb->CmdsOutMax)));
3314	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3315	for (i = 0; i < 16; i++)
3316		temp_name[i] = readb(&(tb->ServerName[i]));
3317	temp_name[16] = '\0';
3318	dev_info(dev, "   Server Name = %s\n", temp_name);
3319	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3320		readl(&(tb->HeartBeat)));
3321#endif				/* HPSA_DEBUG */
3322}
3323
3324static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3325{
3326	int i, offset, mem_type, bar_type;
3327
3328	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3329		return 0;
3330	offset = 0;
3331	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3332		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3333		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3334			offset += 4;
3335		else {
3336			mem_type = pci_resource_flags(pdev, i) &
3337			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3338			switch (mem_type) {
3339			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3340			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3341				offset += 4;	/* 32 bit */
3342				break;
3343			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3344				offset += 8;
3345				break;
3346			default:	/* reserved in PCI 2.2 */
3347				dev_warn(&pdev->dev,
3348				       "base address is invalid\n");
3349				return -1;
3350				break;
3351			}
3352		}
3353		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3354			return i + 1;
3355	}
3356	return -1;
3357}
3358
3359/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3360 * controllers that are capable. If not, we use IO-APIC mode.
3361 */
3362
3363static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3364{
3365#ifdef CONFIG_PCI_MSI
3366	int err;
3367	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3368	{0, 2}, {0, 3}
3369	};
3370
3371	/* Some boards advertise MSI but don't really support it */
3372	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3373	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3374		goto default_int_mode;
3375	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3376		dev_info(&h->pdev->dev, "MSIX\n");
3377		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3378		if (!err) {
3379			h->intr[0] = hpsa_msix_entries[0].vector;
3380			h->intr[1] = hpsa_msix_entries[1].vector;
3381			h->intr[2] = hpsa_msix_entries[2].vector;
3382			h->intr[3] = hpsa_msix_entries[3].vector;
3383			h->msix_vector = 1;
3384			return;
3385		}
3386		if (err > 0) {
3387			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3388			       "available\n", err);
3389			goto default_int_mode;
3390		} else {
3391			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3392			       err);
3393			goto default_int_mode;
3394		}
3395	}
3396	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3397		dev_info(&h->pdev->dev, "MSI\n");
3398		if (!pci_enable_msi(h->pdev))
3399			h->msi_vector = 1;
3400		else
3401			dev_warn(&h->pdev->dev, "MSI init failed\n");
3402	}
3403default_int_mode:
3404#endif				/* CONFIG_PCI_MSI */
3405	/* if we get here we're going to use the default interrupt mode */
3406	h->intr[PERF_MODE_INT] = h->pdev->irq;
3407}
3408
3409static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3410{
3411	int i;
3412	u32 subsystem_vendor_id, subsystem_device_id;
3413
3414	subsystem_vendor_id = pdev->subsystem_vendor;
3415	subsystem_device_id = pdev->subsystem_device;
3416	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3417		    subsystem_vendor_id;
3418
3419	for (i = 0; i < ARRAY_SIZE(products); i++)
3420		if (*board_id == products[i].board_id)
3421			return i;
3422
3423	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3424		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3425		!hpsa_allow_any) {
3426		dev_warn(&pdev->dev, "unrecognized board ID: "
3427			"0x%08x, ignoring.\n", *board_id);
3428			return -ENODEV;
3429	}
3430	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3431}
3432
3433static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3434{
3435	u16 command;
3436
3437	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3438	return ((command & PCI_COMMAND_MEMORY) == 0);
3439}
3440
3441static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3442	unsigned long *memory_bar)
3443{
3444	int i;
3445
3446	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3447		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3448			/* addressing mode bits already removed */
3449			*memory_bar = pci_resource_start(pdev, i);
3450			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3451				*memory_bar);
3452			return 0;
3453		}
3454	dev_warn(&pdev->dev, "no memory BAR found\n");
3455	return -ENODEV;
3456}
3457
3458static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3459{
3460	int i;
3461	u32 scratchpad;
3462
3463	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3464		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3465		if (scratchpad == HPSA_FIRMWARE_READY)
3466			return 0;
3467		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3468	}
3469	dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3470	return -ENODEV;
3471}
3472
3473static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3474	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3475	u64 *cfg_offset)
3476{
3477	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3478	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3479	*cfg_base_addr &= (u32) 0x0000ffff;
3480	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3481	if (*cfg_base_addr_index == -1) {
3482		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3483		return -ENODEV;
3484	}
3485	return 0;
3486}
3487
3488static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3489{
3490	u64 cfg_offset;
3491	u32 cfg_base_addr;
3492	u64 cfg_base_addr_index;
3493	u32 trans_offset;
3494	int rc;
3495
3496	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3497		&cfg_base_addr_index, &cfg_offset);
3498	if (rc)
3499		return rc;
3500	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3501		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3502	if (!h->cfgtable)
3503		return -ENOMEM;
3504	/* Find performant mode table. */
3505	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3506	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3507				cfg_base_addr_index)+cfg_offset+trans_offset,
3508				sizeof(*h->transtable));
3509	if (!h->transtable)
3510		return -ENOMEM;
3511	return 0;
3512}
3513
3514static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3515{
3516	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3517	if (h->max_commands < 16) {
3518		dev_warn(&h->pdev->dev, "Controller reports "
3519			"max supported commands of %d, an obvious lie. "
3520			"Using 16.  Ensure that firmware is up to date.\n",
3521			h->max_commands);
3522		h->max_commands = 16;
3523	}
3524}
3525
3526/* Interrogate the hardware for some limits:
3527 * max commands, max SG elements without chaining, and with chaining,
3528 * SG chain block size, etc.
3529 */
3530static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3531{
3532	hpsa_get_max_perf_mode_cmds(h);
3533	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3534	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3535	/*
3536	 * Limit in-command s/g elements to 32 save dma'able memory.
3537	 * Howvever spec says if 0, use 31
3538	 */
3539	h->max_cmd_sg_entries = 31;
3540	if (h->maxsgentries > 512) {
3541		h->max_cmd_sg_entries = 32;
3542		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3543		h->maxsgentries--; /* save one for chain pointer */
3544	} else {
3545		h->maxsgentries = 31; /* default to traditional values */
3546		h->chainsize = 0;
3547	}
3548}
3549
3550static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3551{
3552	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3553	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3554	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3555	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3556		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3557		return false;
3558	}
3559	return true;
3560}
3561
3562/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3563static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3564{
3565#ifdef CONFIG_X86
3566	u32 prefetch;
3567
3568	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3569	prefetch |= 0x100;
3570	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3571#endif
3572}
3573
3574/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3575 * in a prefetch beyond physical memory.
3576 */
3577static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3578{
3579	u32 dma_prefetch;
3580
3581	if (h->board_id != 0x3225103C)
3582		return;
3583	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3584	dma_prefetch |= 0x8000;
3585	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3586}
3587
3588static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3589{
3590	int i;
3591
3592	/* under certain very rare conditions, this can take awhile.
3593	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3594	 * as we enter this code.)
3595	 */
3596	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3597		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3598			break;
3599		/* delay and try again */
3600		msleep(10);
3601	}
3602}
3603
3604static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3605{
3606	u32 trans_support;
3607
3608	trans_support = readl(&(h->cfgtable->TransportSupport));
3609	if (!(trans_support & SIMPLE_MODE))
3610		return -ENOTSUPP;
3611
3612	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3613	/* Update the field, and then ring the doorbell */
3614	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3615	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3616	hpsa_wait_for_mode_change_ack(h);
3617	print_cfg_table(&h->pdev->dev, h->cfgtable);
3618	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3619		dev_warn(&h->pdev->dev,
3620			"unable to get board into simple mode\n");
3621		return -ENODEV;
3622	}
3623	return 0;
3624}
3625
3626static int __devinit hpsa_pci_init(struct ctlr_info *h)
3627{
3628	int prod_index, err;
3629
3630	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3631	if (prod_index < 0)
3632		return -ENODEV;
3633	h->product_name = products[prod_index].product_name;
3634	h->access = *(products[prod_index].access);
3635
3636	if (hpsa_board_disabled(h->pdev)) {
3637		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3638		return -ENODEV;
3639	}
3640	err = pci_enable_device(h->pdev);
3641	if (err) {
3642		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3643		return err;
3644	}
3645
3646	err = pci_request_regions(h->pdev, "hpsa");
3647	if (err) {
3648		dev_err(&h->pdev->dev,
3649			"cannot obtain PCI resources, aborting\n");
3650		return err;
3651	}
3652	hpsa_interrupt_mode(h);
3653	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3654	if (err)
3655		goto err_out_free_res;
3656	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3657	if (!h->vaddr) {
3658		err = -ENOMEM;
3659		goto err_out_free_res;
3660	}
3661	err = hpsa_wait_for_board_ready(h);
3662	if (err)
3663		goto err_out_free_res;
3664	err = hpsa_find_cfgtables(h);
3665	if (err)
3666		goto err_out_free_res;
3667	hpsa_find_board_params(h);
3668
3669	if (!hpsa_CISS_signature_present(h)) {
3670		err = -ENODEV;
3671		goto err_out_free_res;
3672	}
3673	hpsa_enable_scsi_prefetch(h);
3674	hpsa_p600_dma_prefetch_quirk(h);
3675	err = hpsa_enter_simple_mode(h);
3676	if (err)
3677		goto err_out_free_res;
3678	return 0;
3679
3680err_out_free_res:
3681	if (h->transtable)
3682		iounmap(h->transtable);
3683	if (h->cfgtable)
3684		iounmap(h->cfgtable);
3685	if (h->vaddr)
3686		iounmap(h->vaddr);
3687	/*
3688	 * Deliberately omit pci_disable_device(): it does something nasty to
3689	 * Smart Array controllers that pci_enable_device does not undo
3690	 */
3691	pci_release_regions(h->pdev);
3692	return err;
3693}
3694
3695static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3696{
3697	int rc;
3698
3699#define HBA_INQUIRY_BYTE_COUNT 64
3700	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3701	if (!h->hba_inquiry_data)
3702		return;
3703	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3704		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3705	if (rc != 0) {
3706		kfree(h->hba_inquiry_data);
3707		h->hba_inquiry_data = NULL;
3708	}
3709}
3710
3711static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3712{
3713	int rc, i;
3714
3715	if (!reset_devices)
3716		return 0;
3717
3718	/* Reset the controller with a PCI power-cycle or via doorbell */
3719	rc = hpsa_kdump_hard_reset_controller(pdev);
3720
3721	/* -ENOTSUPP here means we cannot reset the controller
3722	 * but it's already (and still) up and running in
3723	 * "performant mode".  Or, it might be 640x, which can't reset
3724	 * due to concerns about shared bbwc between 6402/6404 pair.
3725	 */
3726	if (rc == -ENOTSUPP)
3727		return 0; /* just try to do the kdump anyhow. */
3728	if (rc)
3729		return -ENODEV;
3730	if (hpsa_reset_msi(pdev))
3731		return -ENODEV;
3732
3733	/* Now try to get the controller to respond to a no-op */
3734	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3735		if (hpsa_noop(pdev) == 0)
3736			break;
3737		else
3738			dev_warn(&pdev->dev, "no-op failed%s\n",
3739					(i < 11 ? "; re-trying" : ""));
3740	}
3741	return 0;
3742}
3743
3744static int __devinit hpsa_init_one(struct pci_dev *pdev,
3745				    const struct pci_device_id *ent)
3746{
3747	int dac, rc;
3748	struct ctlr_info *h;
3749
3750	if (number_of_controllers == 0)
3751		printk(KERN_INFO DRIVER_NAME "\n");
3752
3753	rc = hpsa_init_reset_devices(pdev);
3754	if (rc)
3755		return rc;
3756
3757	/* Command structures must be aligned on a 32-byte boundary because
3758	 * the 5 lower bits of the address are used by the hardware. and by
3759	 * the driver.  See comments in hpsa.h for more info.
3760	 */
3761#define COMMANDLIST_ALIGNMENT 32
3762	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3763	h = kzalloc(sizeof(*h), GFP_KERNEL);
3764	if (!h)
3765		return -ENOMEM;
3766
3767	h->pdev = pdev;
3768	h->busy_initializing = 1;
3769	INIT_HLIST_HEAD(&h->cmpQ);
3770	INIT_HLIST_HEAD(&h->reqQ);
3771	rc = hpsa_pci_init(h);
3772	if (rc != 0)
3773		goto clean1;
3774
3775	sprintf(h->devname, "hpsa%d", number_of_controllers);
3776	h->ctlr = number_of_controllers;
3777	number_of_controllers++;
3778
3779	/* configure PCI DMA stuff */
3780	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3781	if (rc == 0) {
3782		dac = 1;
3783	} else {
3784		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3785		if (rc == 0) {
3786			dac = 0;
3787		} else {
3788			dev_err(&pdev->dev, "no suitable DMA available\n");
3789			goto clean1;
3790		}
3791	}
3792
3793	/* make sure the board interrupts are off */
3794	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3795
3796	if (h->msix_vector || h->msi_vector)
3797		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3798				IRQF_DISABLED, h->devname, h);
3799	else
3800		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3801				IRQF_DISABLED, h->devname, h);
3802	if (rc) {
3803		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3804		       h->intr[PERF_MODE_INT], h->devname);
3805		goto clean2;
3806	}
3807
3808	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3809	       h->devname, pdev->device,
3810	       h->intr[PERF_MODE_INT], dac ? "" : " not");
3811
3812	h->cmd_pool_bits =
3813	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3814		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3815	h->cmd_pool = pci_alloc_consistent(h->pdev,
3816		    h->nr_cmds * sizeof(*h->cmd_pool),
3817		    &(h->cmd_pool_dhandle));
3818	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3819		    h->nr_cmds * sizeof(*h->errinfo_pool),
3820		    &(h->errinfo_pool_dhandle));
3821	if ((h->cmd_pool_bits == NULL)
3822	    || (h->cmd_pool == NULL)
3823	    || (h->errinfo_pool == NULL)) {
3824		dev_err(&pdev->dev, "out of memory");
3825		rc = -ENOMEM;
3826		goto clean4;
3827	}
3828	if (hpsa_allocate_sg_chain_blocks(h))
3829		goto clean4;
3830	spin_lock_init(&h->lock);
3831	spin_lock_init(&h->scan_lock);
3832	init_waitqueue_head(&h->scan_wait_queue);
3833	h->scan_finished = 1; /* no scan currently in progress */
3834
3835	pci_set_drvdata(pdev, h);
3836	memset(h->cmd_pool_bits, 0,
3837	       ((h->nr_cmds + BITS_PER_LONG -
3838		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3839
3840	hpsa_scsi_setup(h);
3841
3842	/* Turn the interrupts on so we can service requests */
3843	h->access.set_intr_mask(h, HPSA_INTR_ON);
3844
3845	hpsa_put_ctlr_into_performant_mode(h);
3846	hpsa_hba_inquiry(h);
3847	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3848	h->busy_initializing = 0;
3849	return 1;
3850
3851clean4:
3852	hpsa_free_sg_chain_blocks(h);
3853	kfree(h->cmd_pool_bits);
3854	if (h->cmd_pool)
3855		pci_free_consistent(h->pdev,
3856			    h->nr_cmds * sizeof(struct CommandList),
3857			    h->cmd_pool, h->cmd_pool_dhandle);
3858	if (h->errinfo_pool)
3859		pci_free_consistent(h->pdev,
3860			    h->nr_cmds * sizeof(struct ErrorInfo),
3861			    h->errinfo_pool,
3862			    h->errinfo_pool_dhandle);
3863	free_irq(h->intr[PERF_MODE_INT], h);
3864clean2:
3865clean1:
3866	h->busy_initializing = 0;
3867	kfree(h);
3868	return rc;
3869}
3870
3871static void hpsa_flush_cache(struct ctlr_info *h)
3872{
3873	char *flush_buf;
3874	struct CommandList *c;
3875
3876	flush_buf = kzalloc(4, GFP_KERNEL);
3877	if (!flush_buf)
3878		return;
3879
3880	c = cmd_special_alloc(h);
3881	if (!c) {
3882		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3883		goto out_of_memory;
3884	}
3885	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3886		RAID_CTLR_LUNID, TYPE_CMD);
3887	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3888	if (c->err_info->CommandStatus != 0)
3889		dev_warn(&h->pdev->dev,
3890			"error flushing cache on controller\n");
3891	cmd_special_free(h, c);
3892out_of_memory:
3893	kfree(flush_buf);
3894}
3895
3896static void hpsa_shutdown(struct pci_dev *pdev)
3897{
3898	struct ctlr_info *h;
3899
3900	h = pci_get_drvdata(pdev);
3901	/* Turn board interrupts off  and send the flush cache command
3902	 * sendcmd will turn off interrupt, and send the flush...
3903	 * To write all data in the battery backed cache to disks
3904	 */
3905	hpsa_flush_cache(h);
3906	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3907	free_irq(h->intr[PERF_MODE_INT], h);
3908#ifdef CONFIG_PCI_MSI
3909	if (h->msix_vector)
3910		pci_disable_msix(h->pdev);
3911	else if (h->msi_vector)
3912		pci_disable_msi(h->pdev);
3913#endif				/* CONFIG_PCI_MSI */
3914}
3915
3916static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3917{
3918	struct ctlr_info *h;
3919
3920	if (pci_get_drvdata(pdev) == NULL) {
3921		dev_err(&pdev->dev, "unable to remove device \n");
3922		return;
3923	}
3924	h = pci_get_drvdata(pdev);
3925	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3926	hpsa_shutdown(pdev);
3927	iounmap(h->vaddr);
3928	iounmap(h->transtable);
3929	iounmap(h->cfgtable);
3930	hpsa_free_sg_chain_blocks(h);
3931	pci_free_consistent(h->pdev,
3932		h->nr_cmds * sizeof(struct CommandList),
3933		h->cmd_pool, h->cmd_pool_dhandle);
3934	pci_free_consistent(h->pdev,
3935		h->nr_cmds * sizeof(struct ErrorInfo),
3936		h->errinfo_pool, h->errinfo_pool_dhandle);
3937	pci_free_consistent(h->pdev, h->reply_pool_size,
3938		h->reply_pool, h->reply_pool_dhandle);
3939	kfree(h->cmd_pool_bits);
3940	kfree(h->blockFetchTable);
3941	kfree(h->hba_inquiry_data);
3942	/*
3943	 * Deliberately omit pci_disable_device(): it does something nasty to
3944	 * Smart Array controllers that pci_enable_device does not undo
3945	 */
3946	pci_release_regions(pdev);
3947	pci_set_drvdata(pdev, NULL);
3948	kfree(h);
3949}
3950
3951static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3952	__attribute__((unused)) pm_message_t state)
3953{
3954	return -ENOSYS;
3955}
3956
3957static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3958{
3959	return -ENOSYS;
3960}
3961
3962static struct pci_driver hpsa_pci_driver = {
3963	.name = "hpsa",
3964	.probe = hpsa_init_one,
3965	.remove = __devexit_p(hpsa_remove_one),
3966	.id_table = hpsa_pci_device_id,	/* id_table */
3967	.shutdown = hpsa_shutdown,
3968	.suspend = hpsa_suspend,
3969	.resume = hpsa_resume,
3970};
3971
3972/* Fill in bucket_map[], given nsgs (the max number of
3973 * scatter gather elements supported) and bucket[],
3974 * which is an array of 8 integers.  The bucket[] array
3975 * contains 8 different DMA transfer sizes (in 16
3976 * byte increments) which the controller uses to fetch
3977 * commands.  This function fills in bucket_map[], which
3978 * maps a given number of scatter gather elements to one of
3979 * the 8 DMA transfer sizes.  The point of it is to allow the
3980 * controller to only do as much DMA as needed to fetch the
3981 * command, with the DMA transfer size encoded in the lower
3982 * bits of the command address.
3983 */
3984static void  calc_bucket_map(int bucket[], int num_buckets,
3985	int nsgs, int *bucket_map)
3986{
3987	int i, j, b, size;
3988
3989	/* even a command with 0 SGs requires 4 blocks */
3990#define MINIMUM_TRANSFER_BLOCKS 4
3991#define NUM_BUCKETS 8
3992	/* Note, bucket_map must have nsgs+1 entries. */
3993	for (i = 0; i <= nsgs; i++) {
3994		/* Compute size of a command with i SG entries */
3995		size = i + MINIMUM_TRANSFER_BLOCKS;
3996		b = num_buckets; /* Assume the biggest bucket */
3997		/* Find the bucket that is just big enough */
3998		for (j = 0; j < 8; j++) {
3999			if (bucket[j] >= size) {
4000				b = j;
4001				break;
4002			}
4003		}
4004		/* for a command with i SG entries, use bucket b. */
4005		bucket_map[i] = b;
4006	}
4007}
4008
4009static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
4010{
4011	int i;
4012	unsigned long register_value;
4013
4014	/* This is a bit complicated.  There are 8 registers on
4015	 * the controller which we write to to tell it 8 different
4016	 * sizes of commands which there may be.  It's a way of
4017	 * reducing the DMA done to fetch each command.  Encoded into
4018	 * each command's tag are 3 bits which communicate to the controller
4019	 * which of the eight sizes that command fits within.  The size of
4020	 * each command depends on how many scatter gather entries there are.
4021	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4022	 * with the number of 16-byte blocks a command of that size requires.
4023	 * The smallest command possible requires 5 such 16 byte blocks.
4024	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4025	 * blocks.  Note, this only extends to the SG entries contained
4026	 * within the command block, and does not extend to chained blocks
4027	 * of SG elements.   bft[] contains the eight values we write to
4028	 * the registers.  They are not evenly distributed, but have more
4029	 * sizes for small commands, and fewer sizes for larger commands.
4030	 */
4031	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4032	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4033	/*  5 = 1 s/g entry or 4k
4034	 *  6 = 2 s/g entry or 8k
4035	 *  8 = 4 s/g entry or 16k
4036	 * 10 = 6 s/g entry or 24k
4037	 */
4038
4039	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4040
4041	/* Controller spec: zero out this buffer. */
4042	memset(h->reply_pool, 0, h->reply_pool_size);
4043	h->reply_pool_head = h->reply_pool;
4044
4045	bft[7] = h->max_sg_entries + 4;
4046	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4047	for (i = 0; i < 8; i++)
4048		writel(bft[i], &h->transtable->BlockFetch[i]);
4049
4050	/* size of controller ring buffer */
4051	writel(h->max_commands, &h->transtable->RepQSize);
4052	writel(1, &h->transtable->RepQCount);
4053	writel(0, &h->transtable->RepQCtrAddrLow32);
4054	writel(0, &h->transtable->RepQCtrAddrHigh32);
4055	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4056	writel(0, &h->transtable->RepQAddr0High32);
4057	writel(CFGTBL_Trans_Performant,
4058		&(h->cfgtable->HostWrite.TransportRequest));
4059	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4060	hpsa_wait_for_mode_change_ack(h);
4061	register_value = readl(&(h->cfgtable->TransportActive));
4062	if (!(register_value & CFGTBL_Trans_Performant)) {
4063		dev_warn(&h->pdev->dev, "unable to get board into"
4064					" performant mode\n");
4065		return;
4066	}
4067}
4068
4069static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4070{
4071	u32 trans_support;
4072
4073	trans_support = readl(&(h->cfgtable->TransportSupport));
4074	if (!(trans_support & PERFORMANT_MODE))
4075		return;
4076
4077	hpsa_get_max_perf_mode_cmds(h);
4078	h->max_sg_entries = 32;
4079	/* Performant mode ring buffer and supporting data structures */
4080	h->reply_pool_size = h->max_commands * sizeof(u64);
4081	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4082				&(h->reply_pool_dhandle));
4083
4084	/* Need a block fetch table for performant mode */
4085	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4086				sizeof(u32)), GFP_KERNEL);
4087
4088	if ((h->reply_pool == NULL)
4089		|| (h->blockFetchTable == NULL))
4090		goto clean_up;
4091
4092	hpsa_enter_performant_mode(h);
4093
4094	/* Change the access methods to the performant access methods */
4095	h->access = SA5_performant_access;
4096	h->transMethod = CFGTBL_Trans_Performant;
4097
4098	return;
4099
4100clean_up:
4101	if (h->reply_pool)
4102		pci_free_consistent(h->pdev, h->reply_pool_size,
4103			h->reply_pool, h->reply_pool_dhandle);
4104	kfree(h->blockFetchTable);
4105}
4106
4107/*
4108 *  This is it.  Register the PCI driver information for the cards we control
4109 *  the OS will call our registered routines when it finds one of our cards.
4110 */
4111static int __init hpsa_init(void)
4112{
4113	return pci_register_driver(&hpsa_pci_driver);
4114}
4115
4116static void __exit hpsa_cleanup(void)
4117{
4118	pci_unregister_driver(&hpsa_pci_driver);
4119}
4120
4121module_init(hpsa_init);
4122module_exit(hpsa_cleanup);
4123