• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/pci/hotplug/
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT.  See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include <linux/pci_hotplug.h>
37#include "../pci.h"
38#include "cpqphp.h"
39#include "cpqphp_nvram.h"
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55	void __iomem *fp;
56	void __iomem *endp;
57	u8 temp1, temp2, temp3, temp4;
58	int status = 0;
59
60	endp = (end - sizeof(struct hrt) + 1);
61
62	for (fp = begin; fp <= endp; fp += 16) {
63		temp1 = readb(fp + SIG0);
64		temp2 = readb(fp + SIG1);
65		temp3 = readb(fp + SIG2);
66		temp4 = readb(fp + SIG3);
67		if (temp1 == '$' &&
68		    temp2 == 'H' &&
69		    temp3 == 'R' &&
70		    temp4 == 'T') {
71			status = 1;
72			break;
73		}
74	}
75
76	if (!status)
77		fp = NULL;
78
79	dbg("Discovered Hotplug Resource Table at %p\n", fp);
80	return fp;
81}
82
83
84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85{
86	unsigned char bus;
87	struct pci_bus *child;
88	int num;
89
90	if (func->pci_dev == NULL)
91		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
92
93	/* No pci device, we need to create it then */
94	if (func->pci_dev == NULL) {
95		dbg("INFO: pci_dev still null\n");
96
97		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
98		if (num)
99			pci_bus_add_devices(ctrl->pci_dev->bus);
100
101		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
102		if (func->pci_dev == NULL) {
103			dbg("ERROR: pci_dev still null\n");
104			return 0;
105		}
106	}
107
108	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
109		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
110		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
111		pci_do_scan_bus(child);
112	}
113
114	pci_dev_put(func->pci_dev);
115
116	return 0;
117}
118
119
120int cpqhp_unconfigure_device(struct pci_func* func)
121{
122	int j;
123
124	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
125
126	for (j=0; j<8 ; j++) {
127		struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
128		if (temp) {
129			pci_dev_put(temp);
130			pci_remove_bus_device(temp);
131		}
132	}
133	return 0;
134}
135
136static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
137{
138	u32 vendID = 0;
139
140	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
141		return -1;
142	if (vendID == 0xffffffff)
143		return -1;
144	return pci_bus_read_config_dword (bus, devfn, offset, value);
145}
146
147
148/*
149 * cpqhp_set_irq
150 *
151 * @bus_num: bus number of PCI device
152 * @dev_num: device number of PCI device
153 * @slot: pointer to u8 where slot number will be returned
154 */
155int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
156{
157	int rc = 0;
158
159	if (cpqhp_legacy_mode) {
160		struct pci_dev *fakedev;
161		struct pci_bus *fakebus;
162		u16 temp_word;
163
164		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
165		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
166		if (!fakedev || !fakebus) {
167			kfree(fakedev);
168			kfree(fakebus);
169			return -ENOMEM;
170		}
171
172		fakedev->devfn = dev_num << 3;
173		fakedev->bus = fakebus;
174		fakebus->number = bus_num;
175		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
176		    __func__, dev_num, bus_num, int_pin, irq_num);
177		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
178		kfree(fakedev);
179		kfree(fakebus);
180		dbg("%s: rc %d\n", __func__, rc);
181		if (!rc)
182			return !rc;
183
184		/* set the Edge Level Control Register (ELCR) */
185		temp_word = inb(0x4d0);
186		temp_word |= inb(0x4d1) << 8;
187
188		temp_word |= 0x01 << irq_num;
189
190		/* This should only be for x86 as it sets the Edge Level
191		 * Control Register
192		 */
193		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
194		0xFF00) >> 8), 0x4d1); rc = 0; }
195
196	return rc;
197}
198
199
200static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
201{
202	u16 tdevice;
203	u32 work;
204	u8 tbus;
205
206	ctrl->pci_bus->number = bus_num;
207
208	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
209		/* Scan for access first */
210		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
211			continue;
212		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
213		/* Yep we got one. Not a bridge ? */
214		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
215			*dev_num = tdevice;
216			dbg("found it !\n");
217			return 0;
218		}
219	}
220	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
221		/* Scan for access first */
222		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
223			continue;
224		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
225		/* Yep we got one. bridge ? */
226		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
227			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
228			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
229			return 0;
230		}
231	}
232
233	return -1;
234}
235
236
237static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
238{
239	int loop, len;
240	u32 work;
241	u8 tbus, tdevice, tslot;
242
243	len = cpqhp_routing_table_length();
244	for (loop = 0; loop < len; ++loop) {
245		tbus = cpqhp_routing_table->slots[loop].bus;
246		tdevice = cpqhp_routing_table->slots[loop].devfn;
247		tslot = cpqhp_routing_table->slots[loop].slot;
248
249		if (tslot == slot) {
250			*bus_num = tbus;
251			*dev_num = tdevice;
252			ctrl->pci_bus->number = tbus;
253			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
254			if (!nobridge || (work == 0xffffffff))
255				return 0;
256
257			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
258			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
259			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
260
261			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
262				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
263				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
264				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
265					*bus_num = tbus;
266					return 0;
267				}
268			} else
269				return 0;
270		}
271	}
272	return -1;
273}
274
275
276int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
277{
278	/* plain (bridges allowed) */
279	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
280}
281
282
283/* More PCI configuration routines; this time centered around hotplug
284 * controller
285 */
286
287
288/*
289 * cpqhp_save_config
290 *
291 * Reads configuration for all slots in a PCI bus and saves info.
292 *
293 * Note:  For non-hot plug busses, the slot # saved is the device #
294 *
295 * returns 0 if success
296 */
297int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
298{
299	long rc;
300	u8 class_code;
301	u8 header_type;
302	u32 ID;
303	u8 secondary_bus;
304	struct pci_func *new_slot;
305	int sub_bus;
306	int FirstSupported;
307	int LastSupported;
308	int max_functions;
309	int function;
310	u8 DevError;
311	int device = 0;
312	int cloop = 0;
313	int stop_it;
314	int index;
315
316	/* Decide which slots are supported */
317
318	if (is_hot_plug) {
319		/*
320		 * is_hot_plug is the slot mask
321		 */
322		FirstSupported = is_hot_plug >> 4;
323		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
324	} else {
325		FirstSupported = 0;
326		LastSupported = 0x1F;
327	}
328
329	/* Save PCI configuration space for all devices in supported slots */
330	ctrl->pci_bus->number = busnumber;
331	for (device = FirstSupported; device <= LastSupported; device++) {
332		ID = 0xFFFFFFFF;
333		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
334
335		if (ID == 0xFFFFFFFF) {
336			if (is_hot_plug) {
337				/* Setup slot structure with entry for empty
338				 * slot
339				 */
340				new_slot = cpqhp_slot_create(busnumber);
341				if (new_slot == NULL)
342					return 1;
343
344				new_slot->bus = (u8) busnumber;
345				new_slot->device = (u8) device;
346				new_slot->function = 0;
347				new_slot->is_a_board = 0;
348				new_slot->presence_save = 0;
349				new_slot->switch_save = 0;
350			}
351			continue;
352		}
353
354		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
355		if (rc)
356			return rc;
357
358		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
359		if (rc)
360			return rc;
361
362		/* If multi-function device, set max_functions to 8 */
363		if (header_type & 0x80)
364			max_functions = 8;
365		else
366			max_functions = 1;
367
368		function = 0;
369
370		do {
371			DevError = 0;
372			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
373				/* Recurse the subordinate bus
374				 * get the subordinate bus number
375				 */
376				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
377				if (rc) {
378					return rc;
379				} else {
380					sub_bus = (int) secondary_bus;
381
382					/* Save secondary bus cfg spc
383					 * with this recursive call.
384					 */
385					rc = cpqhp_save_config(ctrl, sub_bus, 0);
386					if (rc)
387						return rc;
388					ctrl->pci_bus->number = busnumber;
389				}
390			}
391
392			index = 0;
393			new_slot = cpqhp_slot_find(busnumber, device, index++);
394			while (new_slot &&
395			       (new_slot->function != (u8) function))
396				new_slot = cpqhp_slot_find(busnumber, device, index++);
397
398			if (!new_slot) {
399				/* Setup slot structure. */
400				new_slot = cpqhp_slot_create(busnumber);
401				if (new_slot == NULL)
402					return 1;
403			}
404
405			new_slot->bus = (u8) busnumber;
406			new_slot->device = (u8) device;
407			new_slot->function = (u8) function;
408			new_slot->is_a_board = 1;
409			new_slot->switch_save = 0x10;
410			/* In case of unsupported board */
411			new_slot->status = DevError;
412			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
413
414			for (cloop = 0; cloop < 0x20; cloop++) {
415				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
416				if (rc)
417					return rc;
418			}
419
420			pci_dev_put(new_slot->pci_dev);
421
422			function++;
423
424			stop_it = 0;
425
426			/* this loop skips to the next present function
427			 * reading in Class Code and Header type.
428			 */
429			while ((function < max_functions) && (!stop_it)) {
430				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
431				if (ID == 0xFFFFFFFF) {
432					function++;
433					continue;
434				}
435				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
436				if (rc)
437					return rc;
438
439				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
440				if (rc)
441					return rc;
442
443				stop_it++;
444			}
445
446		} while (function < max_functions);
447	}			/* End of FOR loop */
448
449	return 0;
450}
451
452
453/*
454 * cpqhp_save_slot_config
455 *
456 * Saves configuration info for all PCI devices in a given slot
457 * including subordinate busses.
458 *
459 * returns 0 if success
460 */
461int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
462{
463	long rc;
464	u8 class_code;
465	u8 header_type;
466	u32 ID;
467	u8 secondary_bus;
468	int sub_bus;
469	int max_functions;
470	int function = 0;
471	int cloop = 0;
472	int stop_it;
473
474	ID = 0xFFFFFFFF;
475
476	ctrl->pci_bus->number = new_slot->bus;
477	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
478
479	if (ID == 0xFFFFFFFF)
480		return 2;
481
482	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
483	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
484
485	if (header_type & 0x80)	/* Multi-function device */
486		max_functions = 8;
487	else
488		max_functions = 1;
489
490	while (function < max_functions) {
491		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
492			/*  Recurse the subordinate bus */
493			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
494
495			sub_bus = (int) secondary_bus;
496
497			/* Save the config headers for the secondary
498			 * bus.
499			 */
500			rc = cpqhp_save_config(ctrl, sub_bus, 0);
501			if (rc)
502				return(rc);
503			ctrl->pci_bus->number = new_slot->bus;
504
505		}
506
507		new_slot->status = 0;
508
509		for (cloop = 0; cloop < 0x20; cloop++)
510			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
511
512		function++;
513
514		stop_it = 0;
515
516		/* this loop skips to the next present function
517		 * reading in the Class Code and the Header type.
518		 */
519		while ((function < max_functions) && (!stop_it)) {
520			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
521
522			if (ID == 0xFFFFFFFF)
523				function++;
524			else {
525				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
526				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
527				stop_it++;
528			}
529		}
530
531	}
532
533	return 0;
534}
535
536
537/*
538 * cpqhp_save_base_addr_length
539 *
540 * Saves the length of all base address registers for the
541 * specified slot.  this is for hot plug REPLACE
542 *
543 * returns 0 if success
544 */
545int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
546{
547	u8 cloop;
548	u8 header_type;
549	u8 secondary_bus;
550	u8 type;
551	int sub_bus;
552	u32 temp_register;
553	u32 base;
554	u32 rc;
555	struct pci_func *next;
556	int index = 0;
557	struct pci_bus *pci_bus = ctrl->pci_bus;
558	unsigned int devfn;
559
560	func = cpqhp_slot_find(func->bus, func->device, index++);
561
562	while (func != NULL) {
563		pci_bus->number = func->bus;
564		devfn = PCI_DEVFN(func->device, func->function);
565
566		/* Check for Bridge */
567		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
568
569		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
570			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
571
572			sub_bus = (int) secondary_bus;
573
574			next = cpqhp_slot_list[sub_bus];
575
576			while (next != NULL) {
577				rc = cpqhp_save_base_addr_length(ctrl, next);
578				if (rc)
579					return rc;
580
581				next = next->next;
582			}
583			pci_bus->number = func->bus;
584
585			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
586				temp_register = 0xFFFFFFFF;
587				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
588				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
589				/* If this register is implemented */
590				if (base) {
591					if (base & 0x01L) {
592						/* IO base
593						 * set base = amount of IO space
594						 * requested
595						 */
596						base = base & 0xFFFFFFFE;
597						base = (~base) + 1;
598
599						type = 1;
600					} else {
601						/* memory base */
602						base = base & 0xFFFFFFF0;
603						base = (~base) + 1;
604
605						type = 0;
606					}
607				} else {
608					base = 0x0L;
609					type = 0;
610				}
611
612				/* Save information in slot structure */
613				func->base_length[(cloop - 0x10) >> 2] =
614				base;
615				func->base_type[(cloop - 0x10) >> 2] = type;
616
617			}	/* End of base register loop */
618
619		} else if ((header_type & 0x7F) == 0x00) {
620			/* Figure out IO and memory base lengths */
621			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
622				temp_register = 0xFFFFFFFF;
623				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
624				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
625
626				/* If this register is implemented */
627				if (base) {
628					if (base & 0x01L) {
629						/* IO base
630						 * base = amount of IO space
631						 * requested
632						 */
633						base = base & 0xFFFFFFFE;
634						base = (~base) + 1;
635
636						type = 1;
637					} else {
638						/* memory base
639						 * base = amount of memory
640						 * space requested
641						 */
642						base = base & 0xFFFFFFF0;
643						base = (~base) + 1;
644
645						type = 0;
646					}
647				} else {
648					base = 0x0L;
649					type = 0;
650				}
651
652				/* Save information in slot structure */
653				func->base_length[(cloop - 0x10) >> 2] = base;
654				func->base_type[(cloop - 0x10) >> 2] = type;
655
656			}	/* End of base register loop */
657
658		} else {	  /* Some other unknown header type */
659		}
660
661		/* find the next device in this slot */
662		func = cpqhp_slot_find(func->bus, func->device, index++);
663	}
664
665	return(0);
666}
667
668
669/*
670 * cpqhp_save_used_resources
671 *
672 * Stores used resource information for existing boards.  this is
673 * for boards that were in the system when this driver was loaded.
674 * this function is for hot plug ADD
675 *
676 * returns 0 if success
677 */
678int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
679{
680	u8 cloop;
681	u8 header_type;
682	u8 secondary_bus;
683	u8 temp_byte;
684	u8 b_base;
685	u8 b_length;
686	u16 command;
687	u16 save_command;
688	u16 w_base;
689	u16 w_length;
690	u32 temp_register;
691	u32 save_base;
692	u32 base;
693	int index = 0;
694	struct pci_resource *mem_node;
695	struct pci_resource *p_mem_node;
696	struct pci_resource *io_node;
697	struct pci_resource *bus_node;
698	struct pci_bus *pci_bus = ctrl->pci_bus;
699	unsigned int devfn;
700
701	func = cpqhp_slot_find(func->bus, func->device, index++);
702
703	while ((func != NULL) && func->is_a_board) {
704		pci_bus->number = func->bus;
705		devfn = PCI_DEVFN(func->device, func->function);
706
707		/* Save the command register */
708		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
709
710		/* disable card */
711		command = 0x00;
712		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
713
714		/* Check for Bridge */
715		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
716
717		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
718			/* Clear Bridge Control Register */
719			command = 0x00;
720			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
721			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
722			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
723
724			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
725			if (!bus_node)
726				return -ENOMEM;
727
728			bus_node->base = secondary_bus;
729			bus_node->length = temp_byte - secondary_bus + 1;
730
731			bus_node->next = func->bus_head;
732			func->bus_head = bus_node;
733
734			/* Save IO base and Limit registers */
735			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
736			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
737
738			if ((b_base <= b_length) && (save_command & 0x01)) {
739				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
740				if (!io_node)
741					return -ENOMEM;
742
743				io_node->base = (b_base & 0xF0) << 8;
744				io_node->length = (b_length - b_base + 0x10) << 8;
745
746				io_node->next = func->io_head;
747				func->io_head = io_node;
748			}
749
750			/* Save memory base and Limit registers */
751			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
752			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
753
754			if ((w_base <= w_length) && (save_command & 0x02)) {
755				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
756				if (!mem_node)
757					return -ENOMEM;
758
759				mem_node->base = w_base << 16;
760				mem_node->length = (w_length - w_base + 0x10) << 16;
761
762				mem_node->next = func->mem_head;
763				func->mem_head = mem_node;
764			}
765
766			/* Save prefetchable memory base and Limit registers */
767			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
768			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
769
770			if ((w_base <= w_length) && (save_command & 0x02)) {
771				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
772				if (!p_mem_node)
773					return -ENOMEM;
774
775				p_mem_node->base = w_base << 16;
776				p_mem_node->length = (w_length - w_base + 0x10) << 16;
777
778				p_mem_node->next = func->p_mem_head;
779				func->p_mem_head = p_mem_node;
780			}
781			/* Figure out IO and memory base lengths */
782			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
783				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
784
785				temp_register = 0xFFFFFFFF;
786				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
787				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
788
789				temp_register = base;
790
791				/* If this register is implemented */
792				if (base) {
793					if (((base & 0x03L) == 0x01)
794					    && (save_command & 0x01)) {
795						/* IO base
796						 * set temp_register = amount
797						 * of IO space requested
798						 */
799						temp_register = base & 0xFFFFFFFE;
800						temp_register = (~temp_register) + 1;
801
802						io_node = kmalloc(sizeof(*io_node),
803								GFP_KERNEL);
804						if (!io_node)
805							return -ENOMEM;
806
807						io_node->base =
808						save_base & (~0x03L);
809						io_node->length = temp_register;
810
811						io_node->next = func->io_head;
812						func->io_head = io_node;
813					} else
814						if (((base & 0x0BL) == 0x08)
815						    && (save_command & 0x02)) {
816						/* prefetchable memory base */
817						temp_register = base & 0xFFFFFFF0;
818						temp_register = (~temp_register) + 1;
819
820						p_mem_node = kmalloc(sizeof(*p_mem_node),
821								GFP_KERNEL);
822						if (!p_mem_node)
823							return -ENOMEM;
824
825						p_mem_node->base = save_base & (~0x0FL);
826						p_mem_node->length = temp_register;
827
828						p_mem_node->next = func->p_mem_head;
829						func->p_mem_head = p_mem_node;
830					} else
831						if (((base & 0x0BL) == 0x00)
832						    && (save_command & 0x02)) {
833						/* prefetchable memory base */
834						temp_register = base & 0xFFFFFFF0;
835						temp_register = (~temp_register) + 1;
836
837						mem_node = kmalloc(sizeof(*mem_node),
838								GFP_KERNEL);
839						if (!mem_node)
840							return -ENOMEM;
841
842						mem_node->base = save_base & (~0x0FL);
843						mem_node->length = temp_register;
844
845						mem_node->next = func->mem_head;
846						func->mem_head = mem_node;
847					} else
848						return(1);
849				}
850			}	/* End of base register loop */
851		/* Standard header */
852		} else if ((header_type & 0x7F) == 0x00) {
853			/* Figure out IO and memory base lengths */
854			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
855				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
856
857				temp_register = 0xFFFFFFFF;
858				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
859				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
860
861				temp_register = base;
862
863				/* If this register is implemented */
864				if (base) {
865					if (((base & 0x03L) == 0x01)
866					    && (save_command & 0x01)) {
867						/* IO base
868						 * set temp_register = amount
869						 * of IO space requested
870						 */
871						temp_register = base & 0xFFFFFFFE;
872						temp_register = (~temp_register) + 1;
873
874						io_node = kmalloc(sizeof(*io_node),
875								GFP_KERNEL);
876						if (!io_node)
877							return -ENOMEM;
878
879						io_node->base = save_base & (~0x01L);
880						io_node->length = temp_register;
881
882						io_node->next = func->io_head;
883						func->io_head = io_node;
884					} else
885						if (((base & 0x0BL) == 0x08)
886						    && (save_command & 0x02)) {
887						/* prefetchable memory base */
888						temp_register = base & 0xFFFFFFF0;
889						temp_register = (~temp_register) + 1;
890
891						p_mem_node = kmalloc(sizeof(*p_mem_node),
892								GFP_KERNEL);
893						if (!p_mem_node)
894							return -ENOMEM;
895
896						p_mem_node->base = save_base & (~0x0FL);
897						p_mem_node->length = temp_register;
898
899						p_mem_node->next = func->p_mem_head;
900						func->p_mem_head = p_mem_node;
901					} else
902						if (((base & 0x0BL) == 0x00)
903						    && (save_command & 0x02)) {
904						/* prefetchable memory base */
905						temp_register = base & 0xFFFFFFF0;
906						temp_register = (~temp_register) + 1;
907
908						mem_node = kmalloc(sizeof(*mem_node),
909								GFP_KERNEL);
910						if (!mem_node)
911							return -ENOMEM;
912
913						mem_node->base = save_base & (~0x0FL);
914						mem_node->length = temp_register;
915
916						mem_node->next = func->mem_head;
917						func->mem_head = mem_node;
918					} else
919						return(1);
920				}
921			}	/* End of base register loop */
922		}
923
924		/* find the next device in this slot */
925		func = cpqhp_slot_find(func->bus, func->device, index++);
926	}
927
928	return 0;
929}
930
931
932/*
933 * cpqhp_configure_board
934 *
935 * Copies saved configuration information to one slot.
936 * this is called recursively for bridge devices.
937 * this is for hot plug REPLACE!
938 *
939 * returns 0 if success
940 */
941int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
942{
943	int cloop;
944	u8 header_type;
945	u8 secondary_bus;
946	int sub_bus;
947	struct pci_func *next;
948	u32 temp;
949	u32 rc;
950	int index = 0;
951	struct pci_bus *pci_bus = ctrl->pci_bus;
952	unsigned int devfn;
953
954	func = cpqhp_slot_find(func->bus, func->device, index++);
955
956	while (func != NULL) {
957		pci_bus->number = func->bus;
958		devfn = PCI_DEVFN(func->device, func->function);
959
960		/* Start at the top of config space so that the control
961		 * registers are programmed last
962		 */
963		for (cloop = 0x3C; cloop > 0; cloop -= 4)
964			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
965
966		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
967
968		/* If this is a bridge device, restore subordinate devices */
969		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
970			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
971
972			sub_bus = (int) secondary_bus;
973
974			next = cpqhp_slot_list[sub_bus];
975
976			while (next != NULL) {
977				rc = cpqhp_configure_board(ctrl, next);
978				if (rc)
979					return rc;
980
981				next = next->next;
982			}
983		} else {
984
985			/* Check all the base Address Registers to make sure
986			 * they are the same.  If not, the board is different.
987			 */
988
989			for (cloop = 16; cloop < 40; cloop += 4) {
990				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
991
992				if (temp != func->config_space[cloop >> 2]) {
993					dbg("Config space compare failure!!! offset = %x\n", cloop);
994					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
995					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
996					return 1;
997				}
998			}
999		}
1000
1001		func->configured = 1;
1002
1003		func = cpqhp_slot_find(func->bus, func->device, index++);
1004	}
1005
1006	return 0;
1007}
1008
1009
1010/*
1011 * cpqhp_valid_replace
1012 *
1013 * this function checks to see if a board is the same as the
1014 * one it is replacing.  this check will detect if the device's
1015 * vendor or device id's are the same
1016 *
1017 * returns 0 if the board is the same nonzero otherwise
1018 */
1019int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1020{
1021	u8 cloop;
1022	u8 header_type;
1023	u8 secondary_bus;
1024	u8 type;
1025	u32 temp_register = 0;
1026	u32 base;
1027	u32 rc;
1028	struct pci_func *next;
1029	int index = 0;
1030	struct pci_bus *pci_bus = ctrl->pci_bus;
1031	unsigned int devfn;
1032
1033	if (!func->is_a_board)
1034		return(ADD_NOT_SUPPORTED);
1035
1036	func = cpqhp_slot_find(func->bus, func->device, index++);
1037
1038	while (func != NULL) {
1039		pci_bus->number = func->bus;
1040		devfn = PCI_DEVFN(func->device, func->function);
1041
1042		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1043
1044		/* No adapter present */
1045		if (temp_register == 0xFFFFFFFF)
1046			return(NO_ADAPTER_PRESENT);
1047
1048		if (temp_register != func->config_space[0])
1049			return(ADAPTER_NOT_SAME);
1050
1051		/* Check for same revision number and class code */
1052		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1053
1054		/* Adapter not the same */
1055		if (temp_register != func->config_space[0x08 >> 2])
1056			return(ADAPTER_NOT_SAME);
1057
1058		/* Check for Bridge */
1059		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1060
1061		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1062			/* In order to continue checking, we must program the
1063			 * bus registers in the bridge to respond to accesses
1064			 * for its subordinate bus(es)
1065			 */
1066
1067			temp_register = func->config_space[0x18 >> 2];
1068			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1069
1070			secondary_bus = (temp_register >> 8) & 0xFF;
1071
1072			next = cpqhp_slot_list[secondary_bus];
1073
1074			while (next != NULL) {
1075				rc = cpqhp_valid_replace(ctrl, next);
1076				if (rc)
1077					return rc;
1078
1079				next = next->next;
1080			}
1081
1082		}
1083		/* Check to see if it is a standard config header */
1084		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1085			/* Check subsystem vendor and ID */
1086			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1087
1088			if (temp_register != func->config_space[0x2C >> 2]) {
1089				/* If it's a SMART-2 and the register isn't
1090				 * filled in, ignore the difference because
1091				 * they just have an old rev of the firmware
1092				 */
1093				if (!((func->config_space[0] == 0xAE100E11)
1094				      && (temp_register == 0x00L)))
1095					return(ADAPTER_NOT_SAME);
1096			}
1097			/* Figure out IO and memory base lengths */
1098			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1099				temp_register = 0xFFFFFFFF;
1100				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1101				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1102
1103				/* If this register is implemented */
1104				if (base) {
1105					if (base & 0x01L) {
1106						/* IO base
1107						 * set base = amount of IO
1108						 * space requested
1109						 */
1110						base = base & 0xFFFFFFFE;
1111						base = (~base) + 1;
1112
1113						type = 1;
1114					} else {
1115						/* memory base */
1116						base = base & 0xFFFFFFF0;
1117						base = (~base) + 1;
1118
1119						type = 0;
1120					}
1121				} else {
1122					base = 0x0L;
1123					type = 0;
1124				}
1125
1126				/* Check information in slot structure */
1127				if (func->base_length[(cloop - 0x10) >> 2] != base)
1128					return(ADAPTER_NOT_SAME);
1129
1130				if (func->base_type[(cloop - 0x10) >> 2] != type)
1131					return(ADAPTER_NOT_SAME);
1132
1133			}	/* End of base register loop */
1134
1135		}		/* End of (type 0 config space) else */
1136		else {
1137			/* this is not a type 0 or 1 config space header so
1138			 * we don't know how to do it
1139			 */
1140			return(DEVICE_TYPE_NOT_SUPPORTED);
1141		}
1142
1143		/* Get the next function */
1144		func = cpqhp_slot_find(func->bus, func->device, index++);
1145	}
1146
1147
1148	return 0;
1149}
1150
1151
1152/*
1153 * cpqhp_find_available_resources
1154 *
1155 * Finds available memory, IO, and IRQ resources for programming
1156 * devices which may be added to the system
1157 * this function is for hot plug ADD!
1158 *
1159 * returns 0 if success
1160 */
1161int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1162{
1163	u8 temp;
1164	u8 populated_slot;
1165	u8 bridged_slot;
1166	void __iomem *one_slot;
1167	void __iomem *rom_resource_table;
1168	struct pci_func *func = NULL;
1169	int i = 10, index;
1170	u32 temp_dword, rc;
1171	struct pci_resource *mem_node;
1172	struct pci_resource *p_mem_node;
1173	struct pci_resource *io_node;
1174	struct pci_resource *bus_node;
1175
1176	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1177	dbg("rom_resource_table = %p\n", rom_resource_table);
1178
1179	if (rom_resource_table == NULL)
1180		return -ENODEV;
1181
1182	/* Sum all resources and setup resource maps */
1183	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1184	dbg("unused_IRQ = %x\n", unused_IRQ);
1185
1186	temp = 0;
1187	while (unused_IRQ) {
1188		if (unused_IRQ & 1) {
1189			cpqhp_disk_irq = temp;
1190			break;
1191		}
1192		unused_IRQ = unused_IRQ >> 1;
1193		temp++;
1194	}
1195
1196	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1197	unused_IRQ = unused_IRQ >> 1;
1198	temp++;
1199
1200	while (unused_IRQ) {
1201		if (unused_IRQ & 1) {
1202			cpqhp_nic_irq = temp;
1203			break;
1204		}
1205		unused_IRQ = unused_IRQ >> 1;
1206		temp++;
1207	}
1208
1209	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1210	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1211
1212	temp = 0;
1213
1214	if (!cpqhp_nic_irq)
1215		cpqhp_nic_irq = ctrl->cfgspc_irq;
1216
1217	if (!cpqhp_disk_irq)
1218		cpqhp_disk_irq = ctrl->cfgspc_irq;
1219
1220	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1221
1222	rc = compaq_nvram_load(rom_start, ctrl);
1223	if (rc)
1224		return rc;
1225
1226	one_slot = rom_resource_table + sizeof (struct hrt);
1227
1228	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1229	dbg("number_of_entries = %d\n", i);
1230
1231	if (!readb(one_slot + SECONDARY_BUS))
1232		return 1;
1233
1234	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1235
1236	while (i && readb(one_slot + SECONDARY_BUS)) {
1237		u8 dev_func = readb(one_slot + DEV_FUNC);
1238		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1239		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1240		u8 max_bus = readb(one_slot + MAX_BUS);
1241		u16 io_base = readw(one_slot + IO_BASE);
1242		u16 io_length = readw(one_slot + IO_LENGTH);
1243		u16 mem_base = readw(one_slot + MEM_BASE);
1244		u16 mem_length = readw(one_slot + MEM_LENGTH);
1245		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1246		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1247
1248		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1249		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1250		    primary_bus, secondary_bus, max_bus);
1251
1252		/* If this entry isn't for our controller's bus, ignore it */
1253		if (primary_bus != ctrl->bus) {
1254			i--;
1255			one_slot += sizeof (struct slot_rt);
1256			continue;
1257		}
1258		/* find out if this entry is for an occupied slot */
1259		ctrl->pci_bus->number = primary_bus;
1260		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1261		dbg("temp_D_word = %x\n", temp_dword);
1262
1263		if (temp_dword != 0xFFFFFFFF) {
1264			index = 0;
1265			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1266
1267			while (func && (func->function != (dev_func & 0x07))) {
1268				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1269				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1270			}
1271
1272			/* If we can't find a match, skip this table entry */
1273			if (!func) {
1274				i--;
1275				one_slot += sizeof (struct slot_rt);
1276				continue;
1277			}
1278			/* this may not work and shouldn't be used */
1279			if (secondary_bus != primary_bus)
1280				bridged_slot = 1;
1281			else
1282				bridged_slot = 0;
1283
1284			populated_slot = 1;
1285		} else {
1286			populated_slot = 0;
1287			bridged_slot = 0;
1288		}
1289
1290
1291		/* If we've got a valid IO base, use it */
1292
1293		temp_dword = io_base + io_length;
1294
1295		if ((io_base) && (temp_dword < 0x10000)) {
1296			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1297			if (!io_node)
1298				return -ENOMEM;
1299
1300			io_node->base = io_base;
1301			io_node->length = io_length;
1302
1303			dbg("found io_node(base, length) = %x, %x\n",
1304					io_node->base, io_node->length);
1305			dbg("populated slot =%d \n", populated_slot);
1306			if (!populated_slot) {
1307				io_node->next = ctrl->io_head;
1308				ctrl->io_head = io_node;
1309			} else {
1310				io_node->next = func->io_head;
1311				func->io_head = io_node;
1312			}
1313		}
1314
1315		/* If we've got a valid memory base, use it */
1316		temp_dword = mem_base + mem_length;
1317		if ((mem_base) && (temp_dword < 0x10000)) {
1318			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1319			if (!mem_node)
1320				return -ENOMEM;
1321
1322			mem_node->base = mem_base << 16;
1323
1324			mem_node->length = mem_length << 16;
1325
1326			dbg("found mem_node(base, length) = %x, %x\n",
1327					mem_node->base, mem_node->length);
1328			dbg("populated slot =%d \n", populated_slot);
1329			if (!populated_slot) {
1330				mem_node->next = ctrl->mem_head;
1331				ctrl->mem_head = mem_node;
1332			} else {
1333				mem_node->next = func->mem_head;
1334				func->mem_head = mem_node;
1335			}
1336		}
1337
1338		/* If we've got a valid prefetchable memory base, and
1339		 * the base + length isn't greater than 0xFFFF
1340		 */
1341		temp_dword = pre_mem_base + pre_mem_length;
1342		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1343			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1344			if (!p_mem_node)
1345				return -ENOMEM;
1346
1347			p_mem_node->base = pre_mem_base << 16;
1348
1349			p_mem_node->length = pre_mem_length << 16;
1350			dbg("found p_mem_node(base, length) = %x, %x\n",
1351					p_mem_node->base, p_mem_node->length);
1352			dbg("populated slot =%d \n", populated_slot);
1353
1354			if (!populated_slot) {
1355				p_mem_node->next = ctrl->p_mem_head;
1356				ctrl->p_mem_head = p_mem_node;
1357			} else {
1358				p_mem_node->next = func->p_mem_head;
1359				func->p_mem_head = p_mem_node;
1360			}
1361		}
1362
1363		/* If we've got a valid bus number, use it
1364		 * The second condition is to ignore bus numbers on
1365		 * populated slots that don't have PCI-PCI bridges
1366		 */
1367		if (secondary_bus && (secondary_bus != primary_bus)) {
1368			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1369			if (!bus_node)
1370				return -ENOMEM;
1371
1372			bus_node->base = secondary_bus;
1373			bus_node->length = max_bus - secondary_bus + 1;
1374			dbg("found bus_node(base, length) = %x, %x\n",
1375					bus_node->base, bus_node->length);
1376			dbg("populated slot =%d \n", populated_slot);
1377			if (!populated_slot) {
1378				bus_node->next = ctrl->bus_head;
1379				ctrl->bus_head = bus_node;
1380			} else {
1381				bus_node->next = func->bus_head;
1382				func->bus_head = bus_node;
1383			}
1384		}
1385
1386		i--;
1387		one_slot += sizeof (struct slot_rt);
1388	}
1389
1390	/* If all of the following fail, we don't have any resources for
1391	 * hot plug add
1392	 */
1393	rc = 1;
1394	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1395	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1396	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1397	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1398
1399	return rc;
1400}
1401
1402
1403/*
1404 * cpqhp_return_board_resources
1405 *
1406 * this routine returns all resources allocated to a board to
1407 * the available pool.
1408 *
1409 * returns 0 if success
1410 */
1411int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1412{
1413	int rc = 0;
1414	struct pci_resource *node;
1415	struct pci_resource *t_node;
1416	dbg("%s\n", __func__);
1417
1418	if (!func)
1419		return 1;
1420
1421	node = func->io_head;
1422	func->io_head = NULL;
1423	while (node) {
1424		t_node = node->next;
1425		return_resource(&(resources->io_head), node);
1426		node = t_node;
1427	}
1428
1429	node = func->mem_head;
1430	func->mem_head = NULL;
1431	while (node) {
1432		t_node = node->next;
1433		return_resource(&(resources->mem_head), node);
1434		node = t_node;
1435	}
1436
1437	node = func->p_mem_head;
1438	func->p_mem_head = NULL;
1439	while (node) {
1440		t_node = node->next;
1441		return_resource(&(resources->p_mem_head), node);
1442		node = t_node;
1443	}
1444
1445	node = func->bus_head;
1446	func->bus_head = NULL;
1447	while (node) {
1448		t_node = node->next;
1449		return_resource(&(resources->bus_head), node);
1450		node = t_node;
1451	}
1452
1453	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1454	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1455	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1456	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1457
1458	return rc;
1459}
1460
1461
1462/*
1463 * cpqhp_destroy_resource_list
1464 *
1465 * Puts node back in the resource list pointed to by head
1466 */
1467void cpqhp_destroy_resource_list (struct resource_lists * resources)
1468{
1469	struct pci_resource *res, *tres;
1470
1471	res = resources->io_head;
1472	resources->io_head = NULL;
1473
1474	while (res) {
1475		tres = res;
1476		res = res->next;
1477		kfree(tres);
1478	}
1479
1480	res = resources->mem_head;
1481	resources->mem_head = NULL;
1482
1483	while (res) {
1484		tres = res;
1485		res = res->next;
1486		kfree(tres);
1487	}
1488
1489	res = resources->p_mem_head;
1490	resources->p_mem_head = NULL;
1491
1492	while (res) {
1493		tres = res;
1494		res = res->next;
1495		kfree(tres);
1496	}
1497
1498	res = resources->bus_head;
1499	resources->bus_head = NULL;
1500
1501	while (res) {
1502		tres = res;
1503		res = res->next;
1504		kfree(tres);
1505	}
1506}
1507
1508
1509/*
1510 * cpqhp_destroy_board_resources
1511 *
1512 * Puts node back in the resource list pointed to by head
1513 */
1514void cpqhp_destroy_board_resources (struct pci_func * func)
1515{
1516	struct pci_resource *res, *tres;
1517
1518	res = func->io_head;
1519	func->io_head = NULL;
1520
1521	while (res) {
1522		tres = res;
1523		res = res->next;
1524		kfree(tres);
1525	}
1526
1527	res = func->mem_head;
1528	func->mem_head = NULL;
1529
1530	while (res) {
1531		tres = res;
1532		res = res->next;
1533		kfree(tres);
1534	}
1535
1536	res = func->p_mem_head;
1537	func->p_mem_head = NULL;
1538
1539	while (res) {
1540		tres = res;
1541		res = res->next;
1542		kfree(tres);
1543	}
1544
1545	res = func->bus_head;
1546	func->bus_head = NULL;
1547
1548	while (res) {
1549		tres = res;
1550		res = res->next;
1551		kfree(tres);
1552	}
1553}
1554