• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, write to the
17	Free Software Foundation, Inc.,
18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22	Module: rt2x00
23	Abstract: rt2x00 queue datastructures and routines
24 */
25
26#ifndef RT2X00QUEUE_H
27#define RT2X00QUEUE_H
28
29#include <linux/prefetch.h>
30
31/**
32 * DOC: Entry frame size
33 *
34 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
35 * for USB devices this restriction does not apply, but the value of
36 * 2432 makes sense since it is big enough to contain the maximum fragment
37 * size according to the ieee802.11 specs.
38 * The aggregation size depends on support from the driver, but should
39 * be something around 3840 bytes.
40 */
41#define DATA_FRAME_SIZE		2432
42#define MGMT_FRAME_SIZE		256
43#define AGGREGATION_SIZE	3840
44
45/**
46 * DOC: Number of entries per queue
47 *
48 * Under normal load without fragmentation, 12 entries are sufficient
49 * without the queue being filled up to the maximum. When using fragmentation
50 * and the queue threshold code, we need to add some additional margins to
51 * make sure the queue will never (or only under extreme load) fill up
52 * completely.
53 * Since we don't use preallocated DMA, having a large number of queue entries
54 * will have minimal impact on the memory requirements for the queue.
55 */
56#define RX_ENTRIES	24
57#define TX_ENTRIES	24
58#define BEACON_ENTRIES	1
59#define ATIM_ENTRIES	8
60
61/**
62 * enum data_queue_qid: Queue identification
63 *
64 * @QID_AC_BE: AC BE queue
65 * @QID_AC_BK: AC BK queue
66 * @QID_AC_VI: AC VI queue
67 * @QID_AC_VO: AC VO queue
68 * @QID_HCCA: HCCA queue
69 * @QID_MGMT: MGMT queue (prio queue)
70 * @QID_RX: RX queue
71 * @QID_OTHER: None of the above (don't use, only present for completeness)
72 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
73 * @QID_ATIM: Atim queue (value unspeficied, don't send it to device)
74 */
75enum data_queue_qid {
76	QID_AC_BE = 0,
77	QID_AC_BK = 1,
78	QID_AC_VI = 2,
79	QID_AC_VO = 3,
80	QID_HCCA = 4,
81	QID_MGMT = 13,
82	QID_RX = 14,
83	QID_OTHER = 15,
84	QID_BEACON,
85	QID_ATIM,
86};
87
88/**
89 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
90 *
91 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
92 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
93 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
94 *	mac80211 but was stripped for processing by the driver.
95 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
96 *	don't try to pass it back.
97 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
98 *	skb, instead of in the desc field.
99 */
100enum skb_frame_desc_flags {
101	SKBDESC_DMA_MAPPED_RX = 1 << 0,
102	SKBDESC_DMA_MAPPED_TX = 1 << 1,
103	SKBDESC_IV_STRIPPED = 1 << 2,
104	SKBDESC_NOT_MAC80211 = 1 << 3,
105	SKBDESC_DESC_IN_SKB = 1 << 4,
106};
107
108/**
109 * struct skb_frame_desc: Descriptor information for the skb buffer
110 *
111 * This structure is placed over the driver_data array, this means that
112 * this structure should not exceed the size of that array (40 bytes).
113 *
114 * @flags: Frame flags, see &enum skb_frame_desc_flags.
115 * @desc_len: Length of the frame descriptor.
116 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
117 * @tx_rate_flags: the TX rate flags, used for TX status reporting
118 * @desc: Pointer to descriptor part of the frame.
119 *	Note that this pointer could point to something outside
120 *	of the scope of the skb->data pointer.
121 * @iv: IV/EIV data used during encryption/decryption.
122 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
123 * @entry: The entry to which this sk buffer belongs.
124 */
125struct skb_frame_desc {
126	u8 flags;
127
128	u8 desc_len;
129	u8 tx_rate_idx;
130	u8 tx_rate_flags;
131
132	void *desc;
133
134	__le32 iv[2];
135
136	dma_addr_t skb_dma;
137
138	struct queue_entry *entry;
139};
140
141/**
142 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
143 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
144 */
145static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
146{
147	BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
148		     IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
149	return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
150}
151
152/**
153 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
154 *
155 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
156 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
157 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
158 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
159 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
160 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
161 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
162 */
163enum rxdone_entry_desc_flags {
164	RXDONE_SIGNAL_PLCP = BIT(0),
165	RXDONE_SIGNAL_BITRATE = BIT(1),
166	RXDONE_SIGNAL_MCS = BIT(2),
167	RXDONE_MY_BSS = BIT(3),
168	RXDONE_CRYPTO_IV = BIT(4),
169	RXDONE_CRYPTO_ICV = BIT(5),
170	RXDONE_L2PAD = BIT(6),
171};
172
173/**
174 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
175 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
176 * from &rxdone_entry_desc to a signal value type.
177 */
178#define RXDONE_SIGNAL_MASK \
179	( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
180
181/**
182 * struct rxdone_entry_desc: RX Entry descriptor
183 *
184 * Summary of information that has been read from the RX frame descriptor.
185 *
186 * @timestamp: RX Timestamp
187 * @signal: Signal of the received frame.
188 * @rssi: RSSI of the received frame.
189 * @size: Data size of the received frame.
190 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
191 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
192 * @rate_mode: Rate mode (See @enum rate_modulation).
193 * @cipher: Cipher type used during decryption.
194 * @cipher_status: Decryption status.
195 * @iv: IV/EIV data used during decryption.
196 * @icv: ICV data used during decryption.
197 */
198struct rxdone_entry_desc {
199	u64 timestamp;
200	int signal;
201	int rssi;
202	int size;
203	int flags;
204	int dev_flags;
205	u16 rate_mode;
206	u8 cipher;
207	u8 cipher_status;
208
209	__le32 iv[2];
210	__le32 icv;
211};
212
213/**
214 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
215 *
216 * Every txdone report has to contain the basic result of the
217 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
218 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
219 * conjunction with all of these flags but should only be set
220 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
221 * in conjunction with &TXDONE_FAILURE.
222 *
223 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
224 * @TXDONE_SUCCESS: Frame was successfully send
225 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
226 * @TXDONE_FAILURE: Frame was not successfully send
227 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
228 *	frame transmission failed due to excessive retries.
229 */
230enum txdone_entry_desc_flags {
231	TXDONE_UNKNOWN,
232	TXDONE_SUCCESS,
233	TXDONE_FALLBACK,
234	TXDONE_FAILURE,
235	TXDONE_EXCESSIVE_RETRY,
236};
237
238/**
239 * struct txdone_entry_desc: TX done entry descriptor
240 *
241 * Summary of information that has been read from the TX frame descriptor
242 * after the device is done with transmission.
243 *
244 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
245 * @retry: Retry count.
246 */
247struct txdone_entry_desc {
248	unsigned long flags;
249	int retry;
250};
251
252/**
253 * enum txentry_desc_flags: Status flags for TX entry descriptor
254 *
255 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
256 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
257 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
258 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
259 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
260 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
261 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
262 * @ENTRY_TXD_ACK: An ACK is required for this frame.
263 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
264 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
265 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
266 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
267 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
268 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
269 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
270 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
271 */
272enum txentry_desc_flags {
273	ENTRY_TXD_RTS_FRAME,
274	ENTRY_TXD_CTS_FRAME,
275	ENTRY_TXD_GENERATE_SEQ,
276	ENTRY_TXD_FIRST_FRAGMENT,
277	ENTRY_TXD_MORE_FRAG,
278	ENTRY_TXD_REQ_TIMESTAMP,
279	ENTRY_TXD_BURST,
280	ENTRY_TXD_ACK,
281	ENTRY_TXD_RETRY_MODE,
282	ENTRY_TXD_ENCRYPT,
283	ENTRY_TXD_ENCRYPT_PAIRWISE,
284	ENTRY_TXD_ENCRYPT_IV,
285	ENTRY_TXD_ENCRYPT_MMIC,
286	ENTRY_TXD_HT_AMPDU,
287	ENTRY_TXD_HT_BW_40,
288	ENTRY_TXD_HT_SHORT_GI,
289};
290
291/**
292 * struct txentry_desc: TX Entry descriptor
293 *
294 * Summary of information for the frame descriptor before sending a TX frame.
295 *
296 * @flags: Descriptor flags (See &enum queue_entry_flags).
297 * @queue: Queue identification (See &enum data_queue_qid).
298 * @length: Length of the entire frame.
299 * @header_length: Length of 802.11 header.
300 * @length_high: PLCP length high word.
301 * @length_low: PLCP length low word.
302 * @signal: PLCP signal.
303 * @service: PLCP service.
304 * @msc: MCS.
305 * @stbc: STBC.
306 * @ba_size: BA size.
307 * @rate_mode: Rate mode (See @enum rate_modulation).
308 * @mpdu_density: MDPU density.
309 * @retry_limit: Max number of retries.
310 * @aifs: AIFS value.
311 * @ifs: IFS value.
312 * @txop: IFS value for 11n capable chips.
313 * @cw_min: cwmin value.
314 * @cw_max: cwmax value.
315 * @cipher: Cipher type used for encryption.
316 * @key_idx: Key index used for encryption.
317 * @iv_offset: Position where IV should be inserted by hardware.
318 * @iv_len: Length of IV data.
319 */
320struct txentry_desc {
321	unsigned long flags;
322
323	enum data_queue_qid queue;
324
325	u16 length;
326	u16 header_length;
327
328	u16 length_high;
329	u16 length_low;
330	u16 signal;
331	u16 service;
332
333	u16 mcs;
334	u16 stbc;
335	u16 ba_size;
336	u16 rate_mode;
337	u16 mpdu_density;
338
339	short retry_limit;
340	short aifs;
341	short ifs;
342	short txop;
343	short cw_min;
344	short cw_max;
345
346	enum cipher cipher;
347	u16 key_idx;
348	u16 iv_offset;
349	u16 iv_len;
350};
351
352/**
353 * enum queue_entry_flags: Status flags for queue entry
354 *
355 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
356 *	As long as this bit is set, this entry may only be touched
357 *	through the interface structure.
358 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
359 *	transfer (either TX or RX depending on the queue). The entry should
360 *	only be touched after the device has signaled it is done with it.
361 * @ENTRY_OWNER_DEVICE_CRYPTO: This entry is owned by the device for data
362 *	encryption or decryption. The entry should only be touched after
363 *	the device has signaled it is done with it.
364 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
365 *	for the signal to start sending.
366 */
367enum queue_entry_flags {
368	ENTRY_BCN_ASSIGNED,
369	ENTRY_OWNER_DEVICE_DATA,
370	ENTRY_OWNER_DEVICE_CRYPTO,
371	ENTRY_DATA_PENDING,
372};
373
374/**
375 * struct queue_entry: Entry inside the &struct data_queue
376 *
377 * @flags: Entry flags, see &enum queue_entry_flags.
378 * @queue: The data queue (&struct data_queue) to which this entry belongs.
379 * @skb: The buffer which is currently being transmitted (for TX queue),
380 *	or used to directly recieve data in (for RX queue).
381 * @entry_idx: The entry index number.
382 * @priv_data: Private data belonging to this queue entry. The pointer
383 *	points to data specific to a particular driver and queue type.
384 */
385struct queue_entry {
386	unsigned long flags;
387
388	struct data_queue *queue;
389
390	struct sk_buff *skb;
391
392	unsigned int entry_idx;
393
394	void *priv_data;
395};
396
397/**
398 * enum queue_index: Queue index type
399 *
400 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
401 *	owned by the hardware then the queue is considered to be full.
402 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
403 *	the hardware and for which we need to run the txdone handler. If this
404 *	entry is not owned by the hardware the queue is considered to be empty.
405 * @Q_INDEX_CRYPTO: Index pointer to the next entry which encryption/decription
406 *	will be completed by the hardware next.
407 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
408 *	of the index array.
409 */
410enum queue_index {
411	Q_INDEX,
412	Q_INDEX_DONE,
413	Q_INDEX_CRYPTO,
414	Q_INDEX_MAX,
415};
416
417/**
418 * struct data_queue: Data queue
419 *
420 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
421 * @entries: Base address of the &struct queue_entry which are
422 *	part of this queue.
423 * @qid: The queue identification, see &enum data_queue_qid.
424 * @lock: Spinlock to protect index handling. Whenever @index, @index_done or
425 *	@index_crypt needs to be changed this lock should be grabbed to prevent
426 *	index corruption due to concurrency.
427 * @count: Number of frames handled in the queue.
428 * @limit: Maximum number of entries in the queue.
429 * @threshold: Minimum number of free entries before queue is kicked by force.
430 * @length: Number of frames in queue.
431 * @index: Index pointers to entry positions in the queue,
432 *	use &enum queue_index to get a specific index field.
433 * @txop: maximum burst time.
434 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
435 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
436 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
437 * @data_size: Maximum data size for the frames in this queue.
438 * @desc_size: Hardware descriptor size for the data in this queue.
439 * @usb_endpoint: Device endpoint used for communication (USB only)
440 * @usb_maxpacket: Max packet size for given endpoint (USB only)
441 */
442struct data_queue {
443	struct rt2x00_dev *rt2x00dev;
444	struct queue_entry *entries;
445
446	enum data_queue_qid qid;
447
448	spinlock_t lock;
449	unsigned long last_index;
450	unsigned long last_index_done;
451	unsigned int count;
452	unsigned short limit;
453	unsigned short threshold;
454	unsigned short length;
455	unsigned short index[Q_INDEX_MAX];
456
457	unsigned short txop;
458	unsigned short aifs;
459	unsigned short cw_min;
460	unsigned short cw_max;
461
462	unsigned short data_size;
463	unsigned short desc_size;
464
465	unsigned short usb_endpoint;
466	unsigned short usb_maxpacket;
467};
468
469/**
470 * struct data_queue_desc: Data queue description
471 *
472 * The information in this structure is used by drivers
473 * to inform rt2x00lib about the creation of the data queue.
474 *
475 * @entry_num: Maximum number of entries for a queue.
476 * @data_size: Maximum data size for the frames in this queue.
477 * @desc_size: Hardware descriptor size for the data in this queue.
478 * @priv_size: Size of per-queue_entry private data.
479 */
480struct data_queue_desc {
481	unsigned short entry_num;
482	unsigned short data_size;
483	unsigned short desc_size;
484	unsigned short priv_size;
485};
486
487/**
488 * queue_end - Return pointer to the last queue (HELPER MACRO).
489 * @__dev: Pointer to &struct rt2x00_dev
490 *
491 * Using the base rx pointer and the maximum number of available queues,
492 * this macro will return the address of 1 position beyond  the end of the
493 * queues array.
494 */
495#define queue_end(__dev) \
496	&(__dev)->rx[(__dev)->data_queues]
497
498/**
499 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
500 * @__dev: Pointer to &struct rt2x00_dev
501 *
502 * Using the base tx pointer and the maximum number of available TX
503 * queues, this macro will return the address of 1 position beyond
504 * the end of the TX queue array.
505 */
506#define tx_queue_end(__dev) \
507	&(__dev)->tx[(__dev)->ops->tx_queues]
508
509/**
510 * queue_next - Return pointer to next queue in list (HELPER MACRO).
511 * @__queue: Current queue for which we need the next queue
512 *
513 * Using the current queue address we take the address directly
514 * after the queue to take the next queue. Note that this macro
515 * should be used carefully since it does not protect against
516 * moving past the end of the list. (See macros &queue_end and
517 * &tx_queue_end for determining the end of the queue).
518 */
519#define queue_next(__queue) \
520	&(__queue)[1]
521
522/**
523 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
524 * @__entry: Pointer where the current queue entry will be stored in.
525 * @__start: Start queue pointer.
526 * @__end: End queue pointer.
527 *
528 * This macro will loop through all queues between &__start and &__end.
529 */
530#define queue_loop(__entry, __start, __end)			\
531	for ((__entry) = (__start);				\
532	     prefetch(queue_next(__entry)), (__entry) != (__end);\
533	     (__entry) = queue_next(__entry))
534
535/**
536 * queue_for_each - Loop through all queues
537 * @__dev: Pointer to &struct rt2x00_dev
538 * @__entry: Pointer where the current queue entry will be stored in.
539 *
540 * This macro will loop through all available queues.
541 */
542#define queue_for_each(__dev, __entry) \
543	queue_loop(__entry, (__dev)->rx, queue_end(__dev))
544
545/**
546 * tx_queue_for_each - Loop through the TX queues
547 * @__dev: Pointer to &struct rt2x00_dev
548 * @__entry: Pointer where the current queue entry will be stored in.
549 *
550 * This macro will loop through all TX related queues excluding
551 * the Beacon and Atim queues.
552 */
553#define tx_queue_for_each(__dev, __entry) \
554	queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
555
556/**
557 * txall_queue_for_each - Loop through all TX related queues
558 * @__dev: Pointer to &struct rt2x00_dev
559 * @__entry: Pointer where the current queue entry will be stored in.
560 *
561 * This macro will loop through all TX related queues including
562 * the Beacon and Atim queues.
563 */
564#define txall_queue_for_each(__dev, __entry) \
565	queue_loop(__entry, (__dev)->tx, queue_end(__dev))
566
567/**
568 * rt2x00queue_empty - Check if the queue is empty.
569 * @queue: Queue to check if empty.
570 */
571static inline int rt2x00queue_empty(struct data_queue *queue)
572{
573	return queue->length == 0;
574}
575
576/**
577 * rt2x00queue_full - Check if the queue is full.
578 * @queue: Queue to check if full.
579 */
580static inline int rt2x00queue_full(struct data_queue *queue)
581{
582	return queue->length == queue->limit;
583}
584
585/**
586 * rt2x00queue_free - Check the number of available entries in queue.
587 * @queue: Queue to check.
588 */
589static inline int rt2x00queue_available(struct data_queue *queue)
590{
591	return queue->limit - queue->length;
592}
593
594/**
595 * rt2x00queue_threshold - Check if the queue is below threshold
596 * @queue: Queue to check.
597 */
598static inline int rt2x00queue_threshold(struct data_queue *queue)
599{
600	return rt2x00queue_available(queue) < queue->threshold;
601}
602
603/**
604 * rt2x00queue_timeout - Check if a timeout occured for this queue
605 * @queue: Queue to check.
606 */
607static inline int rt2x00queue_timeout(struct data_queue *queue)
608{
609	return time_after(queue->last_index, queue->last_index_done + (HZ / 10));
610}
611
612/**
613 * _rt2x00_desc_read - Read a word from the hardware descriptor.
614 * @desc: Base descriptor address
615 * @word: Word index from where the descriptor should be read.
616 * @value: Address where the descriptor value should be written into.
617 */
618static inline void _rt2x00_desc_read(__le32 *desc, const u8 word, __le32 *value)
619{
620	*value = desc[word];
621}
622
623/**
624 * rt2x00_desc_read - Read a word from the hardware descriptor, this
625 * function will take care of the byte ordering.
626 * @desc: Base descriptor address
627 * @word: Word index from where the descriptor should be read.
628 * @value: Address where the descriptor value should be written into.
629 */
630static inline void rt2x00_desc_read(__le32 *desc, const u8 word, u32 *value)
631{
632	__le32 tmp;
633	_rt2x00_desc_read(desc, word, &tmp);
634	*value = le32_to_cpu(tmp);
635}
636
637/**
638 * rt2x00_desc_write - write a word to the hardware descriptor, this
639 * function will take care of the byte ordering.
640 * @desc: Base descriptor address
641 * @word: Word index from where the descriptor should be written.
642 * @value: Value that should be written into the descriptor.
643 */
644static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
645{
646	desc[word] = value;
647}
648
649/**
650 * rt2x00_desc_write - write a word to the hardware descriptor.
651 * @desc: Base descriptor address
652 * @word: Word index from where the descriptor should be written.
653 * @value: Value that should be written into the descriptor.
654 */
655static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
656{
657	_rt2x00_desc_write(desc, word, cpu_to_le32(value));
658}
659
660#endif /* RT2X00QUEUE_H */
661