• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/wireless/ath/ath9k/
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "ar9002_phy.h"
19
20#define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16))
21
22static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
23{
24	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
25}
26
27static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
28{
29	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
30}
31
32static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
33{
34	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
35	struct ath_common *common = ath9k_hw_common(ah);
36	u16 *eep_data;
37	int addr, eep_start_loc;
38	eep_data = (u16 *)eep;
39
40	if (AR9287_HTC_DEVID(ah))
41		eep_start_loc = AR9287_HTC_EEP_START_LOC;
42	else
43		eep_start_loc = AR9287_EEP_START_LOC;
44
45	if (!ath9k_hw_use_flash(ah)) {
46		ath_print(common, ATH_DBG_EEPROM,
47			  "Reading from EEPROM, not flash\n");
48	}
49
50	for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
51		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
52					 eep_data)) {
53			ath_print(common, ATH_DBG_EEPROM,
54				  "Unable to read eeprom region\n");
55			return false;
56		}
57		eep_data++;
58	}
59
60	return true;
61}
62
63static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
64{
65	u32 sum = 0, el, integer;
66	u16 temp, word, magic, magic2, *eepdata;
67	int i, addr;
68	bool need_swap = false;
69	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
70	struct ath_common *common = ath9k_hw_common(ah);
71
72	if (!ath9k_hw_use_flash(ah)) {
73		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
74					 &magic)) {
75			ath_print(common, ATH_DBG_FATAL,
76				  "Reading Magic # failed\n");
77			return false;
78		}
79
80		ath_print(common, ATH_DBG_EEPROM,
81			  "Read Magic = 0x%04X\n", magic);
82
83		if (magic != AR5416_EEPROM_MAGIC) {
84			magic2 = swab16(magic);
85
86			if (magic2 == AR5416_EEPROM_MAGIC) {
87				need_swap = true;
88				eepdata = (u16 *)(&ah->eeprom);
89
90				for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
91					temp = swab16(*eepdata);
92					*eepdata = temp;
93					eepdata++;
94				}
95			} else {
96				ath_print(common, ATH_DBG_FATAL,
97					  "Invalid EEPROM Magic. "
98					  "Endianness mismatch.\n");
99				return -EINVAL;
100			}
101		}
102	}
103
104	ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
105		  need_swap ? "True" : "False");
106
107	if (need_swap)
108		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
109	else
110		el = ah->eeprom.map9287.baseEepHeader.length;
111
112	if (el > sizeof(struct ar9287_eeprom))
113		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
114	else
115		el = el / sizeof(u16);
116
117	eepdata = (u16 *)(&ah->eeprom);
118
119	for (i = 0; i < el; i++)
120		sum ^= *eepdata++;
121
122	if (need_swap) {
123		word = swab16(eep->baseEepHeader.length);
124		eep->baseEepHeader.length = word;
125
126		word = swab16(eep->baseEepHeader.checksum);
127		eep->baseEepHeader.checksum = word;
128
129		word = swab16(eep->baseEepHeader.version);
130		eep->baseEepHeader.version = word;
131
132		word = swab16(eep->baseEepHeader.regDmn[0]);
133		eep->baseEepHeader.regDmn[0] = word;
134
135		word = swab16(eep->baseEepHeader.regDmn[1]);
136		eep->baseEepHeader.regDmn[1] = word;
137
138		word = swab16(eep->baseEepHeader.rfSilent);
139		eep->baseEepHeader.rfSilent = word;
140
141		word = swab16(eep->baseEepHeader.blueToothOptions);
142		eep->baseEepHeader.blueToothOptions = word;
143
144		word = swab16(eep->baseEepHeader.deviceCap);
145		eep->baseEepHeader.deviceCap = word;
146
147		integer = swab32(eep->modalHeader.antCtrlCommon);
148		eep->modalHeader.antCtrlCommon = integer;
149
150		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
151			integer = swab32(eep->modalHeader.antCtrlChain[i]);
152			eep->modalHeader.antCtrlChain[i] = integer;
153		}
154
155		for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
156			word = swab16(eep->modalHeader.spurChans[i].spurChan);
157			eep->modalHeader.spurChans[i].spurChan = word;
158		}
159	}
160
161	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
162	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
163		ath_print(common, ATH_DBG_FATAL,
164			  "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
165			   sum, ah->eep_ops->get_eeprom_ver(ah));
166		return -EINVAL;
167	}
168
169	return 0;
170}
171
172static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
173				      enum eeprom_param param)
174{
175	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
176	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
177	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
178	u16 ver_minor;
179
180	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
181
182	switch (param) {
183	case EEP_NFTHRESH_2:
184		return pModal->noiseFloorThreshCh[0];
185	case EEP_MAC_LSW:
186		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
187	case EEP_MAC_MID:
188		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
189	case EEP_MAC_MSW:
190		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
191	case EEP_REG_0:
192		return pBase->regDmn[0];
193	case EEP_REG_1:
194		return pBase->regDmn[1];
195	case EEP_OP_CAP:
196		return pBase->deviceCap;
197	case EEP_OP_MODE:
198		return pBase->opCapFlags;
199	case EEP_RF_SILENT:
200		return pBase->rfSilent;
201	case EEP_MINOR_REV:
202		return ver_minor;
203	case EEP_TX_MASK:
204		return pBase->txMask;
205	case EEP_RX_MASK:
206		return pBase->rxMask;
207	case EEP_DEV_TYPE:
208		return pBase->deviceType;
209	case EEP_OL_PWRCTRL:
210		return pBase->openLoopPwrCntl;
211	case EEP_TEMPSENSE_SLOPE:
212		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
213			return pBase->tempSensSlope;
214		else
215			return 0;
216	case EEP_TEMPSENSE_SLOPE_PAL_ON:
217		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
218			return pBase->tempSensSlopePalOn;
219		else
220			return 0;
221	default:
222		return 0;
223	}
224}
225
226static void ath9k_hw_get_ar9287_gain_boundaries_pdadcs(struct ath_hw *ah,
227			       struct ath9k_channel *chan,
228			       struct cal_data_per_freq_ar9287 *pRawDataSet,
229			       u8 *bChans, u16 availPiers,
230			       u16 tPdGainOverlap,
231			       u16 *pPdGainBoundaries,
232			       u8 *pPDADCValues,
233			       u16 numXpdGains)
234{
235#define TMP_VAL_VPD_TABLE						\
236	((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
237
238	int i, j, k;
239	int16_t ss;
240	u16 idxL = 0, idxR = 0, numPiers;
241	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
242	u8 minPwrT4[AR9287_NUM_PD_GAINS];
243	u8 maxPwrT4[AR9287_NUM_PD_GAINS];
244	int16_t vpdStep;
245	int16_t tmpVal;
246	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
247	bool match;
248	int16_t minDelta = 0;
249	struct chan_centers centers;
250	static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
251		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
252	static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
253		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
254	static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
255		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
256
257	memset(&minPwrT4, 0, AR9287_NUM_PD_GAINS);
258	ath9k_hw_get_channel_centers(ah, chan, &centers);
259
260	for (numPiers = 0; numPiers < availPiers; numPiers++) {
261		if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
262			break;
263	}
264
265	match = ath9k_hw_get_lower_upper_index(
266		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
267		bChans, numPiers, &idxL, &idxR);
268
269	if (match) {
270		for (i = 0; i < numXpdGains; i++) {
271			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
272			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
273			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
274						pRawDataSet[idxL].pwrPdg[i],
275						pRawDataSet[idxL].vpdPdg[i],
276						AR9287_PD_GAIN_ICEPTS,
277						vpdTableI[i]);
278		}
279	} else {
280		for (i = 0; i < numXpdGains; i++) {
281			pVpdL = pRawDataSet[idxL].vpdPdg[i];
282			pPwrL = pRawDataSet[idxL].pwrPdg[i];
283			pVpdR = pRawDataSet[idxR].vpdPdg[i];
284			pPwrR = pRawDataSet[idxR].pwrPdg[i];
285
286			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
287
288			maxPwrT4[i] = min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
289					  pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
290
291			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
292						pPwrL, pVpdL,
293						AR9287_PD_GAIN_ICEPTS,
294						vpdTableL[i]);
295			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
296						pPwrR, pVpdR,
297						AR9287_PD_GAIN_ICEPTS,
298						vpdTableR[i]);
299
300			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
301				vpdTableI[i][j] = (u8)(ath9k_hw_interpolate(
302				       (u16)FREQ2FBIN(centers. synth_center,
303						      IS_CHAN_2GHZ(chan)),
304				       bChans[idxL], bChans[idxR],
305				       vpdTableL[i][j], vpdTableR[i][j]));
306			}
307		}
308	}
309
310	k = 0;
311
312	for (i = 0; i < numXpdGains; i++) {
313		if (i == (numXpdGains - 1))
314			pPdGainBoundaries[i] =
315				(u16)(maxPwrT4[i] / 2);
316		else
317			pPdGainBoundaries[i] =
318				(u16)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
319
320		pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
321					   pPdGainBoundaries[i]);
322
323
324		minDelta = 0;
325
326		if (i == 0) {
327			if (AR_SREV_9280_10_OR_LATER(ah))
328				ss = (int16_t)(0 - (minPwrT4[i] / 2));
329			else
330				ss = 0;
331		} else {
332			ss = (int16_t)((pPdGainBoundaries[i-1] -
333					(minPwrT4[i] / 2)) -
334				       tPdGainOverlap + 1 + minDelta);
335		}
336
337		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
338		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
339
340		while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1)))	{
341			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
342			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
343			ss++;
344		}
345
346		sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
347		tgtIndex = (u8)(pPdGainBoundaries[i] +
348				tPdGainOverlap - (minPwrT4[i] / 2));
349		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
350			    tgtIndex : sizeCurrVpdTable;
351
352		while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
353			pPDADCValues[k++] = vpdTableI[i][ss++];
354
355		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
356				    vpdTableI[i][sizeCurrVpdTable - 2]);
357		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
358
359		if (tgtIndex > maxIndex) {
360			while ((ss <= tgtIndex) &&
361				(k < (AR9287_NUM_PDADC_VALUES - 1))) {
362				tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
363				pPDADCValues[k++] =
364					(u8)((tmpVal > 255) ? 255 : tmpVal);
365				ss++;
366			}
367		}
368	}
369
370	while (i < AR9287_PD_GAINS_IN_MASK) {
371		pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
372		i++;
373	}
374
375	while (k < AR9287_NUM_PDADC_VALUES) {
376		pPDADCValues[k] = pPDADCValues[k-1];
377		k++;
378	}
379
380#undef TMP_VAL_VPD_TABLE
381}
382
383static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
384			    struct ath9k_channel *chan,
385			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
386			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
387{
388	u16 idxL = 0, idxR = 0, numPiers;
389	bool match;
390	struct chan_centers centers;
391
392	ath9k_hw_get_channel_centers(ah, chan, &centers);
393
394	for (numPiers = 0; numPiers < availPiers; numPiers++) {
395		if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
396			break;
397	}
398
399	match = ath9k_hw_get_lower_upper_index(
400		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
401		pCalChans, numPiers, &idxL, &idxR);
402
403	if (match) {
404		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
405	} else {
406		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
407			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
408	}
409
410}
411
412static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
413					  int32_t txPower, u16 chain)
414{
415	u32 tmpVal;
416	u32 a;
417
418	/* Enable OLPC for chain 0 */
419
420	tmpVal = REG_READ(ah, 0xa270);
421	tmpVal = tmpVal & 0xFCFFFFFF;
422	tmpVal = tmpVal | (0x3 << 24);
423	REG_WRITE(ah, 0xa270, tmpVal);
424
425	/* Enable OLPC for chain 1 */
426
427	tmpVal = REG_READ(ah, 0xb270);
428	tmpVal = tmpVal & 0xFCFFFFFF;
429	tmpVal = tmpVal | (0x3 << 24);
430	REG_WRITE(ah, 0xb270, tmpVal);
431
432	/* Write the OLPC ref power for chain 0 */
433
434	if (chain == 0) {
435		tmpVal = REG_READ(ah, 0xa398);
436		tmpVal = tmpVal & 0xff00ffff;
437		a = (txPower)&0xff;
438		tmpVal = tmpVal | (a << 16);
439		REG_WRITE(ah, 0xa398, tmpVal);
440	}
441
442	/* Write the OLPC ref power for chain 1 */
443
444	if (chain == 1) {
445		tmpVal = REG_READ(ah, 0xb398);
446		tmpVal = tmpVal & 0xff00ffff;
447		a = (txPower)&0xff;
448		tmpVal = tmpVal | (a << 16);
449		REG_WRITE(ah, 0xb398, tmpVal);
450	}
451}
452
453static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
454						struct ath9k_channel *chan,
455						int16_t *pTxPowerIndexOffset)
456{
457	struct cal_data_per_freq_ar9287 *pRawDataset;
458	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
459	u8 *pCalBChans = NULL;
460	u16 pdGainOverlap_t2;
461	u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
462	u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
463	u16 numPiers = 0, i, j;
464	u16 numXpdGain, xpdMask;
465	u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
466	u32 reg32, regOffset, regChainOffset, regval;
467	int16_t modalIdx, diff = 0;
468	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
469
470	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
471	xpdMask = pEepData->modalHeader.xpdGain;
472
473	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
474	    AR9287_EEP_MINOR_VER_2)
475		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
476	else
477		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
478					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
479
480	if (IS_CHAN_2GHZ(chan)) {
481		pCalBChans = pEepData->calFreqPier2G;
482		numPiers = AR9287_NUM_2G_CAL_PIERS;
483		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
484			pRawDatasetOpenLoop =
485			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
486			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
487		}
488	}
489
490	numXpdGain = 0;
491
492	/* Calculate the value of xpdgains from the xpdGain Mask */
493	for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
494		if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
495			if (numXpdGain >= AR9287_NUM_PD_GAINS)
496				break;
497			xpdGainValues[numXpdGain] =
498				(u16)(AR9287_PD_GAINS_IN_MASK-i);
499			numXpdGain++;
500		}
501	}
502
503	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
504		      (numXpdGain - 1) & 0x3);
505	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
506		      xpdGainValues[0]);
507	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
508		      xpdGainValues[1]);
509	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
510		      xpdGainValues[2]);
511
512	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
513		regChainOffset = i * 0x1000;
514
515		if (pEepData->baseEepHeader.txMask & (1 << i)) {
516			pRawDatasetOpenLoop =
517			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
518
519			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
520				int8_t txPower;
521				ar9287_eeprom_get_tx_gain_index(ah, chan,
522							pRawDatasetOpenLoop,
523							pCalBChans, numPiers,
524							&txPower);
525				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
526			} else {
527				pRawDataset =
528					(struct cal_data_per_freq_ar9287 *)
529					pEepData->calPierData2G[i];
530
531				ath9k_hw_get_ar9287_gain_boundaries_pdadcs(ah, chan,
532							   pRawDataset,
533							   pCalBChans, numPiers,
534							   pdGainOverlap_t2,
535							   gainBoundaries,
536							   pdadcValues,
537							   numXpdGain);
538			}
539
540			if (i == 0) {
541				if (!ath9k_hw_ar9287_get_eeprom(ah,
542							EEP_OL_PWRCTRL)) {
543
544					regval = SM(pdGainOverlap_t2,
545						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
546						| SM(gainBoundaries[0],
547						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
548						| SM(gainBoundaries[1],
549						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
550						| SM(gainBoundaries[2],
551						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
552						| SM(gainBoundaries[3],
553						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
554
555					REG_WRITE(ah,
556						  AR_PHY_TPCRG5 + regChainOffset,
557						  regval);
558				}
559			}
560
561			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
562			    pEepData->baseEepHeader.pwrTableOffset) {
563				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
564					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
565				diff *= 2;
566
567				for (j = 0; j < ((u16)AR9287_NUM_PDADC_VALUES-diff); j++)
568					pdadcValues[j] = pdadcValues[j+diff];
569
570				for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
571				     j < AR9287_NUM_PDADC_VALUES; j++)
572					pdadcValues[j] =
573					  pdadcValues[AR9287_NUM_PDADC_VALUES-diff];
574			}
575
576			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
577				regOffset = AR_PHY_BASE +
578					(672 << 2) + regChainOffset;
579
580				for (j = 0; j < 32; j++) {
581					reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
582						| ((pdadcValues[4*j + 1] & 0xFF) << 8)
583						| ((pdadcValues[4*j + 2] & 0xFF) << 16)
584						| ((pdadcValues[4*j + 3] & 0xFF) << 24);
585
586					REG_WRITE(ah, regOffset, reg32);
587					regOffset += 4;
588				}
589			}
590		}
591	}
592
593	*pTxPowerIndexOffset = 0;
594}
595
596static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
597						     struct ath9k_channel *chan,
598						     int16_t *ratesArray,
599						     u16 cfgCtl,
600						     u16 AntennaReduction,
601						     u16 twiceMaxRegulatoryPower,
602						     u16 powerLimit)
603{
604#define CMP_CTL \
605	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
606	 pEepData->ctlIndex[i])
607
608#define CMP_NO_CTL \
609	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
610	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
611
612#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
613#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
614
615	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
616	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
617	static const u16 tpScaleReductionTable[5] =
618		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
619	int i;
620	int16_t twiceLargestAntenna;
621	struct cal_ctl_data_ar9287 *rep;
622	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
623				    targetPowerCck = {0, {0, 0, 0, 0} };
624	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
625				    targetPowerCckExt = {0, {0, 0, 0, 0} };
626	struct cal_target_power_ht targetPowerHt20,
627				    targetPowerHt40 = {0, {0, 0, 0, 0} };
628	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
629	u16 ctlModesFor11g[] = {CTL_11B,
630				CTL_11G,
631				CTL_2GHT20,
632				CTL_11B_EXT,
633				CTL_11G_EXT,
634				CTL_2GHT40};
635	u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
636	struct chan_centers centers;
637	int tx_chainmask;
638	u16 twiceMinEdgePower;
639	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
640	tx_chainmask = ah->txchainmask;
641
642	ath9k_hw_get_channel_centers(ah, chan, &centers);
643
644	/* Compute TxPower reduction due to Antenna Gain */
645	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
646				  pEepData->modalHeader.antennaGainCh[1]);
647	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
648					   twiceLargestAntenna, 0);
649
650	/*
651	 * scaledPower is the minimum of the user input power level
652	 * and the regulatory allowed power level.
653	 */
654	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
655
656	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
657		maxRegAllowedPower -=
658			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
659
660	scaledPower = min(powerLimit, maxRegAllowedPower);
661
662	/*
663	 * Reduce scaled Power by number of chains active
664	 * to get the per chain tx power level.
665	 */
666	switch (ar5416_get_ntxchains(tx_chainmask)) {
667	case 1:
668		break;
669	case 2:
670		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
671		break;
672	case 3:
673		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
674		break;
675	}
676	scaledPower = max((u16)0, scaledPower);
677
678	/*
679	 * Get TX power from EEPROM.
680	 */
681	if (IS_CHAN_2GHZ(chan))	{
682		/* CTL_11B, CTL_11G, CTL_2GHT20 */
683		numCtlModes =
684			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
685
686		pCtlMode = ctlModesFor11g;
687
688		ath9k_hw_get_legacy_target_powers(ah, chan,
689						  pEepData->calTargetPowerCck,
690						  AR9287_NUM_2G_CCK_TARGET_POWERS,
691						  &targetPowerCck, 4, false);
692		ath9k_hw_get_legacy_target_powers(ah, chan,
693						  pEepData->calTargetPower2G,
694						  AR9287_NUM_2G_20_TARGET_POWERS,
695						  &targetPowerOfdm, 4, false);
696		ath9k_hw_get_target_powers(ah, chan,
697					   pEepData->calTargetPower2GHT20,
698					   AR9287_NUM_2G_20_TARGET_POWERS,
699					   &targetPowerHt20, 8, false);
700
701		if (IS_CHAN_HT40(chan))	{
702			/* All 2G CTLs */
703			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
704			ath9k_hw_get_target_powers(ah, chan,
705						   pEepData->calTargetPower2GHT40,
706						   AR9287_NUM_2G_40_TARGET_POWERS,
707						   &targetPowerHt40, 8, true);
708			ath9k_hw_get_legacy_target_powers(ah, chan,
709						  pEepData->calTargetPowerCck,
710						  AR9287_NUM_2G_CCK_TARGET_POWERS,
711						  &targetPowerCckExt, 4, true);
712			ath9k_hw_get_legacy_target_powers(ah, chan,
713						  pEepData->calTargetPower2G,
714						  AR9287_NUM_2G_20_TARGET_POWERS,
715						  &targetPowerOfdmExt, 4, true);
716		}
717	}
718
719	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
720		bool isHt40CtlMode =
721			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
722
723		if (isHt40CtlMode)
724			freq = centers.synth_center;
725		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
726			freq = centers.ext_center;
727		else
728			freq = centers.ctl_center;
729
730		/* Walk through the CTL indices stored in EEPROM */
731		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
732			struct cal_ctl_edges *pRdEdgesPower;
733
734			/*
735			 * Compare test group from regulatory channel list
736			 * with test mode from pCtlMode list
737			 */
738			if (CMP_CTL || CMP_NO_CTL) {
739				rep = &(pEepData->ctlData[i]);
740				pRdEdgesPower =
741				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
742
743				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
744								pRdEdgesPower,
745								IS_CHAN_2GHZ(chan),
746								AR5416_NUM_BAND_EDGES);
747
748				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
749					twiceMaxEdgePower = min(twiceMaxEdgePower,
750								twiceMinEdgePower);
751				} else {
752					twiceMaxEdgePower = twiceMinEdgePower;
753					break;
754				}
755			}
756		}
757
758		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
759
760		/* Apply ctl mode to correct target power set */
761		switch (pCtlMode[ctlMode]) {
762		case CTL_11B:
763			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
764				targetPowerCck.tPow2x[i] =
765					(u8)min((u16)targetPowerCck.tPow2x[i],
766						minCtlPower);
767			}
768			break;
769		case CTL_11A:
770		case CTL_11G:
771			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
772				targetPowerOfdm.tPow2x[i] =
773					(u8)min((u16)targetPowerOfdm.tPow2x[i],
774						minCtlPower);
775			}
776			break;
777		case CTL_5GHT20:
778		case CTL_2GHT20:
779			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
780				targetPowerHt20.tPow2x[i] =
781					(u8)min((u16)targetPowerHt20.tPow2x[i],
782						minCtlPower);
783			}
784			break;
785		case CTL_11B_EXT:
786			targetPowerCckExt.tPow2x[0] =
787				(u8)min((u16)targetPowerCckExt.tPow2x[0],
788					minCtlPower);
789			break;
790		case CTL_11A_EXT:
791		case CTL_11G_EXT:
792			targetPowerOfdmExt.tPow2x[0] =
793				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
794					minCtlPower);
795			break;
796		case CTL_5GHT40:
797		case CTL_2GHT40:
798			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
799				targetPowerHt40.tPow2x[i] =
800					(u8)min((u16)targetPowerHt40.tPow2x[i],
801						minCtlPower);
802			}
803			break;
804		default:
805			break;
806		}
807	}
808
809	/* Now set the rates array */
810
811	ratesArray[rate6mb] =
812	ratesArray[rate9mb] =
813	ratesArray[rate12mb] =
814	ratesArray[rate18mb] =
815	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
816
817	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
818	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
819	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
820	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
821
822	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
823		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
824
825	if (IS_CHAN_2GHZ(chan))	{
826		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
827		ratesArray[rate2s] =
828		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
829		ratesArray[rate5_5s] =
830		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
831		ratesArray[rate11s] =
832		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
833	}
834	if (IS_CHAN_HT40(chan))	{
835		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
836			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
837
838		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
839		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
840		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
841
842		if (IS_CHAN_2GHZ(chan))
843			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
844	}
845
846#undef CMP_CTL
847#undef CMP_NO_CTL
848#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
849#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
850}
851
852static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
853					struct ath9k_channel *chan, u16 cfgCtl,
854					u8 twiceAntennaReduction,
855					u8 twiceMaxRegulatoryPower,
856					u8 powerLimit)
857{
858	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
859	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
860	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
861	int16_t ratesArray[Ar5416RateSize];
862	int16_t txPowerIndexOffset = 0;
863	u8 ht40PowerIncForPdadc = 2;
864	int i;
865
866	memset(ratesArray, 0, sizeof(ratesArray));
867
868	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
869	    AR9287_EEP_MINOR_VER_2)
870		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
871
872	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
873						 &ratesArray[0], cfgCtl,
874						 twiceAntennaReduction,
875						 twiceMaxRegulatoryPower,
876						 powerLimit);
877
878	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
879
880	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
881		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
882		if (ratesArray[i] > AR9287_MAX_RATE_POWER)
883			ratesArray[i] = AR9287_MAX_RATE_POWER;
884	}
885
886	if (AR_SREV_9280_10_OR_LATER(ah)) {
887		for (i = 0; i < Ar5416RateSize; i++)
888			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
889	}
890
891	/* OFDM power per rate */
892	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
893		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
894		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
895		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
896		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
897
898	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
899		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
900		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
901		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
902		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
903
904	/* CCK power per rate */
905	if (IS_CHAN_2GHZ(chan))	{
906		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
907			  ATH9K_POW_SM(ratesArray[rate2s], 24)
908			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
909			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
910			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
911		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
912			  ATH9K_POW_SM(ratesArray[rate11s], 24)
913			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
914			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
915			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
916	}
917
918	/* HT20 power per rate */
919	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
920		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
921		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
922		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
923		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
924
925	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
926		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
927		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
928		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
929		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
930
931	/* HT40 power per rate */
932	if (IS_CHAN_HT40(chan))	{
933		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
934			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
935				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
936				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
937				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
938				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
939
940			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
941				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
942				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
943				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
944				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
945		} else {
946			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
947				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
948					       ht40PowerIncForPdadc, 24)
949				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
950						 ht40PowerIncForPdadc, 16)
951				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
952						 ht40PowerIncForPdadc, 8)
953				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
954						 ht40PowerIncForPdadc, 0));
955
956			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
957				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
958					       ht40PowerIncForPdadc, 24)
959				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
960						 ht40PowerIncForPdadc, 16)
961				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
962						 ht40PowerIncForPdadc, 8)
963				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
964						 ht40PowerIncForPdadc, 0));
965		}
966
967		/* Dup/Ext power per rate */
968		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
969			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
970			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
971			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
972			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
973	}
974
975	if (IS_CHAN_2GHZ(chan))
976		i = rate1l;
977	else
978		i = rate6mb;
979
980	if (AR_SREV_9280_10_OR_LATER(ah))
981		regulatory->max_power_level =
982			ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
983	else
984		regulatory->max_power_level = ratesArray[i];
985}
986
987static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
988				      struct ath9k_channel *chan)
989{
990}
991
992static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
993					     struct ath9k_channel *chan)
994{
995	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
996	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
997	u16 antWrites[AR9287_ANT_16S];
998	u32 regChainOffset, regval;
999	u8 txRxAttenLocal;
1000	int i, j, offset_num;
1001
1002	pModal = &eep->modalHeader;
1003
1004	antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
1005	antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
1006	antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
1007	antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
1008	antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
1009	antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
1010	antWrites[6] = (u16)((pModal->antCtrlCommon >> 4)  & 0xF);
1011	antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
1012
1013	offset_num = 8;
1014
1015	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
1016		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
1017		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
1018		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
1019		antWrites[j++] = 0;
1020		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
1021		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
1022		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
1023		antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
1024	}
1025
1026	REG_WRITE(ah, AR_PHY_SWITCH_COM,
1027		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1028
1029	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
1030		regChainOffset = i * 0x1000;
1031
1032		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1033			  pModal->antCtrlChain[i]);
1034
1035		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1036			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
1037			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1038			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1039			  SM(pModal->iqCalICh[i],
1040			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1041			  SM(pModal->iqCalQCh[i],
1042			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1043
1044		txRxAttenLocal = pModal->txRxAttenCh[i];
1045
1046		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1047			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1048			      pModal->bswMargin[i]);
1049		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1050			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1051			      pModal->bswAtten[i]);
1052		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1053			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
1054			      txRxAttenLocal);
1055		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1056			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
1057			      pModal->rxTxMarginCh[i]);
1058	}
1059
1060
1061	if (IS_CHAN_HT40(chan))
1062		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1063			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1064	else
1065		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1066			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1067
1068	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1069		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1070
1071	REG_WRITE(ah, AR_PHY_RF_CTL4,
1072		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1073		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1074		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1075		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1076
1077	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
1078		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1079
1080	REG_RMW_FIELD(ah, AR_PHY_CCA,
1081		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
1082	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1083		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
1084
1085	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
1086	regval &= ~(AR9287_AN_RF2G3_DB1 |
1087		    AR9287_AN_RF2G3_DB2 |
1088		    AR9287_AN_RF2G3_OB_CCK |
1089		    AR9287_AN_RF2G3_OB_PSK |
1090		    AR9287_AN_RF2G3_OB_QAM |
1091		    AR9287_AN_RF2G3_OB_PAL_OFF);
1092	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1093		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1094		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1095		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1096		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1097		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1098
1099	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
1100
1101	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
1102	regval &= ~(AR9287_AN_RF2G3_DB1 |
1103		    AR9287_AN_RF2G3_DB2 |
1104		    AR9287_AN_RF2G3_OB_CCK |
1105		    AR9287_AN_RF2G3_OB_PSK |
1106		    AR9287_AN_RF2G3_OB_QAM |
1107		    AR9287_AN_RF2G3_OB_PAL_OFF);
1108	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1109		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1110		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1111		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1112		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1113		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1114
1115	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1116
1117	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1118		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1119	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1120		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1121
1122	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1123				  AR9287_AN_TOP2_XPABIAS_LVL,
1124				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1125				  pModal->xpaBiasLvl);
1126}
1127
1128static u8 ath9k_hw_ar9287_get_num_ant_config(struct ath_hw *ah,
1129					     enum ieee80211_band freq_band)
1130{
1131	return 1;
1132}
1133
1134static u32 ath9k_hw_ar9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
1135						  struct ath9k_channel *chan)
1136{
1137	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
1138	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
1139
1140	return pModal->antCtrlCommon;
1141}
1142
1143static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1144					    u16 i, bool is2GHz)
1145{
1146#define EEP_MAP9287_SPURCHAN \
1147	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1148
1149	struct ath_common *common = ath9k_hw_common(ah);
1150	u16 spur_val = AR_NO_SPUR;
1151
1152	ath_print(common, ATH_DBG_ANI,
1153		  "Getting spur idx %d is2Ghz. %d val %x\n",
1154		  i, is2GHz, ah->config.spurchans[i][is2GHz]);
1155
1156	switch (ah->config.spurmode) {
1157	case SPUR_DISABLE:
1158		break;
1159	case SPUR_ENABLE_IOCTL:
1160		spur_val = ah->config.spurchans[i][is2GHz];
1161		ath_print(common, ATH_DBG_ANI,
1162			  "Getting spur val from new loc. %d\n", spur_val);
1163		break;
1164	case SPUR_ENABLE_EEPROM:
1165		spur_val = EEP_MAP9287_SPURCHAN;
1166		break;
1167	}
1168
1169	return spur_val;
1170
1171#undef EEP_MAP9287_SPURCHAN
1172}
1173
1174const struct eeprom_ops eep_ar9287_ops = {
1175	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1176	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1177	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1178	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1179	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1180	.get_num_ant_config	= ath9k_hw_ar9287_get_num_ant_config,
1181	.get_eeprom_antenna_cfg	= ath9k_hw_ar9287_get_eeprom_antenna_cfg,
1182	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1183	.set_addac		= ath9k_hw_ar9287_set_addac,
1184	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1185	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1186};
1187