• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/wimax/i2400m/
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * SDIO RX handling
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 *   * Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *   * Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in
16 *     the documentation and/or other materials provided with the
17 *     distribution.
18 *   * Neither the name of Intel Corporation nor the names of its
19 *     contributors may be used to endorse or promote products derived
20 *     from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Dirk Brandewie <dirk.j.brandewie@intel.com>
37 *  - Initial implementation
38 *
39 *
40 * This handles the RX path on SDIO.
41 *
42 * The SDIO bus driver calls the "irq" routine when data is available.
43 * This is not a traditional interrupt routine since the SDIO bus
44 * driver calls us from its irq thread context.  Because of this
45 * sleeping in the SDIO RX IRQ routine is okay.
46 *
47 * From there on, we obtain the size of the data that is available,
48 * allocate an skb, copy it and then pass it to the generic driver's
49 * RX routine [i2400m_rx()].
50 *
51 * ROADMAP
52 *
53 * i2400ms_irq()
54 *   i2400ms_rx()
55 *     __i2400ms_rx_get_size()
56 *     i2400m_is_boot_barker()
57 *     i2400m_rx()
58 *
59 * i2400ms_rx_setup()
60 *
61 * i2400ms_rx_release()
62 */
63#include <linux/workqueue.h>
64#include <linux/wait.h>
65#include <linux/skbuff.h>
66#include <linux/mmc/sdio.h>
67#include <linux/mmc/sdio_func.h>
68#include <linux/slab.h>
69#include "i2400m-sdio.h"
70
71#define D_SUBMODULE rx
72#include "sdio-debug-levels.h"
73
74static const __le32 i2400m_ACK_BARKER[4] = {
75	__constant_cpu_to_le32(I2400M_ACK_BARKER),
76	__constant_cpu_to_le32(I2400M_ACK_BARKER),
77	__constant_cpu_to_le32(I2400M_ACK_BARKER),
78	__constant_cpu_to_le32(I2400M_ACK_BARKER)
79};
80
81
82/*
83 * Read and return the amount of bytes available for RX
84 *
85 * The RX size has to be read like this: byte reads of three
86 * sequential locations; then glue'em together.
87 *
88 * sdio_readl() doesn't work.
89 */
90ssize_t __i2400ms_rx_get_size(struct i2400ms *i2400ms)
91{
92	int ret, cnt, val;
93	ssize_t rx_size;
94	unsigned xfer_size_addr;
95	struct sdio_func *func = i2400ms->func;
96	struct device *dev = &i2400ms->func->dev;
97
98	d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
99	xfer_size_addr = I2400MS_INTR_GET_SIZE_ADDR;
100	rx_size = 0;
101	for (cnt = 0; cnt < 3; cnt++) {
102		val = sdio_readb(func, xfer_size_addr + cnt, &ret);
103		if (ret < 0) {
104			dev_err(dev, "RX: Can't read byte %d of RX size from "
105				"0x%08x: %d\n", cnt, xfer_size_addr + cnt, ret);
106			rx_size = ret;
107			goto error_read;
108		}
109		rx_size = rx_size << 8 | (val & 0xff);
110	}
111	d_printf(6, dev, "RX: rx_size is %ld\n", (long) rx_size);
112error_read:
113	d_fnend(7, dev, "(i2400ms %p) = %ld\n", i2400ms, (long) rx_size);
114	return rx_size;
115}
116
117
118/*
119 * Read data from the device (when in normal)
120 *
121 * Allocate an SKB of the right size, read the data in and then
122 * deliver it to the generic layer.
123 *
124 * We also check for a reboot barker. That means the device died and
125 * we have to reboot it.
126 */
127static
128void i2400ms_rx(struct i2400ms *i2400ms)
129{
130	int ret;
131	struct sdio_func *func = i2400ms->func;
132	struct device *dev = &func->dev;
133	struct i2400m *i2400m = &i2400ms->i2400m;
134	struct sk_buff *skb;
135	ssize_t rx_size;
136
137	d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
138	rx_size = __i2400ms_rx_get_size(i2400ms);
139	if (rx_size < 0) {
140		ret = rx_size;
141		goto error_get_size;
142	}
143	/*
144	 * Hardware quirk: make sure to clear the INTR status register
145	 * AFTER getting the data transfer size.
146	 */
147	sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret);
148
149	ret = -ENOMEM;
150	skb = alloc_skb(rx_size, GFP_ATOMIC);
151	if (NULL == skb) {
152		dev_err(dev, "RX: unable to alloc skb\n");
153		goto error_alloc_skb;
154	}
155	ret = sdio_memcpy_fromio(func, skb->data,
156				 I2400MS_DATA_ADDR, rx_size);
157	if (ret < 0) {
158		dev_err(dev, "RX: SDIO data read failed: %d\n", ret);
159		goto error_memcpy_fromio;
160	}
161
162	rmb();	/* make sure we get boot_mode from dev_reset_handle */
163	if (unlikely(i2400m->boot_mode == 1)) {
164		spin_lock(&i2400m->rx_lock);
165		i2400ms->bm_ack_size = rx_size;
166		spin_unlock(&i2400m->rx_lock);
167		memcpy(i2400m->bm_ack_buf, skb->data, rx_size);
168		wake_up(&i2400ms->bm_wfa_wq);
169		d_printf(5, dev, "RX: SDIO boot mode message\n");
170		kfree_skb(skb);
171		goto out;
172	}
173	ret = -EIO;
174	if (unlikely(rx_size < sizeof(__le32))) {
175		dev_err(dev, "HW BUG? only %zu bytes received\n", rx_size);
176		goto error_bad_size;
177	}
178	if (likely(i2400m_is_d2h_barker(skb->data))) {
179		skb_put(skb, rx_size);
180		i2400m_rx(i2400m, skb);
181	} else if (unlikely(i2400m_is_boot_barker(i2400m,
182						  skb->data, rx_size))) {
183		ret = i2400m_dev_reset_handle(i2400m, "device rebooted");
184		dev_err(dev, "RX: SDIO reboot barker\n");
185		kfree_skb(skb);
186	} else {
187		i2400m_unknown_barker(i2400m, skb->data, rx_size);
188		kfree_skb(skb);
189	}
190out:
191	d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms);
192	return;
193
194error_memcpy_fromio:
195	kfree_skb(skb);
196error_alloc_skb:
197error_get_size:
198error_bad_size:
199	d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret);
200}
201
202
203static
204void i2400ms_irq(struct sdio_func *func)
205{
206	int ret;
207	struct i2400ms *i2400ms = sdio_get_drvdata(func);
208	struct device *dev = &func->dev;
209	int val;
210
211	d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms);
212	val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret);
213	if (ret < 0) {
214		dev_err(dev, "RX: Can't read interrupt status: %d\n", ret);
215		goto error_no_irq;
216	}
217	if (!val) {
218		dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n");
219		goto error_no_irq;
220	}
221	i2400ms_rx(i2400ms);
222error_no_irq:
223	d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms);
224}
225
226
227/*
228 * Setup SDIO RX
229 *
230 * Hooks up the IRQ handler and then enables IRQs.
231 */
232int i2400ms_rx_setup(struct i2400ms *i2400ms)
233{
234	int result;
235	struct sdio_func *func = i2400ms->func;
236	struct device *dev = &func->dev;
237	struct i2400m *i2400m = &i2400ms->i2400m;
238
239	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
240
241	init_waitqueue_head(&i2400ms->bm_wfa_wq);
242	spin_lock(&i2400m->rx_lock);
243	i2400ms->bm_wait_result = -EINPROGRESS;
244	/*
245	 * Before we are about to enable the RX interrupt, make sure
246	 * bm_ack_size is cleared to -EINPROGRESS which indicates
247	 * no RX interrupt happened yet or the previous interrupt
248	 * has been handled, we are ready to take the new interrupt
249	 */
250	i2400ms->bm_ack_size = -EINPROGRESS;
251	spin_unlock(&i2400m->rx_lock);
252
253	sdio_claim_host(func);
254	result = sdio_claim_irq(func, i2400ms_irq);
255	if (result < 0) {
256		dev_err(dev, "Cannot claim IRQ: %d\n", result);
257		goto error_irq_claim;
258	}
259	result = 0;
260	sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result);
261	if (result < 0) {
262		sdio_release_irq(func);
263		dev_err(dev, "Failed to enable interrupts %d\n", result);
264	}
265error_irq_claim:
266	sdio_release_host(func);
267	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
268	return result;
269}
270
271
272/*
273 * Tear down SDIO RX
274 *
275 * Disables IRQs in the device and removes the IRQ handler.
276 */
277void i2400ms_rx_release(struct i2400ms *i2400ms)
278{
279	int result;
280	struct sdio_func *func = i2400ms->func;
281	struct device *dev = &func->dev;
282	struct i2400m *i2400m = &i2400ms->i2400m;
283
284	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
285	spin_lock(&i2400m->rx_lock);
286	i2400ms->bm_ack_size = -EINTR;
287	spin_unlock(&i2400m->rx_lock);
288	wake_up_all(&i2400ms->bm_wfa_wq);
289	sdio_claim_host(func);
290	sdio_writeb(func, 0, I2400MS_INTR_ENABLE_ADDR, &result);
291	sdio_release_irq(func);
292	sdio_release_host(func);
293	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
294}
295