• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/
1/*******************************************************************************
2
3  Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5  This program is free software; you can redistribute it and/or modify it
6  under the terms of the GNU General Public License as published by the Free
7  Software Foundation; either version 2 of the License, or (at your option)
8  any later version.
9
10  This program is distributed in the hope that it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc., 59
17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19*******************************************************************************/
20
21/* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 *   additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/init.h>
36#include <linux/net.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/ethtool.h>
40#include <linux/skbuff.h>
41#include <linux/spinlock.h>
42#include <linux/delay.h>
43#include <linux/crc32.h>
44#include <linux/mii.h>
45#include <linux/device.h>
46#include <linux/pci.h>
47#include <linux/rtnetlink.h>
48#include <linux/timer.h>
49#include <linux/platform_device.h>
50#include <linux/gfp.h>
51
52#include <asm/system.h>
53#include <asm/io.h>
54#include <asm/tsi108.h>
55
56#include "tsi108_eth.h"
57
58#define MII_READ_DELAY 10000	/* max link wait time in msec */
59
60#define TSI108_RXRING_LEN     256
61
62/* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
65 */
66#define TSI108_RXBUF_SIZE     1536
67
68#define TSI108_TXRING_LEN     256
69
70#define TSI108_TX_INT_FREQ    64
71
72/* Check the phy status every half a second. */
73#define CHECK_PHY_INTERVAL (HZ/2)
74
75static int tsi108_init_one(struct platform_device *pdev);
76static int tsi108_ether_remove(struct platform_device *pdev);
77
78struct tsi108_prv_data {
79	void  __iomem *regs;	/* Base of normal regs */
80	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
81
82	struct net_device *dev;
83	struct napi_struct napi;
84
85	unsigned int phy;		/* Index of PHY for this interface */
86	unsigned int irq_num;
87	unsigned int id;
88	unsigned int phy_type;
89
90	struct timer_list timer;/* Timer that triggers the check phy function */
91	unsigned int rxtail;	/* Next entry in rxring to read */
92	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
93	unsigned int rxfree;	/* Number of free, allocated RX buffers */
94
95	unsigned int rxpending;	/* Non-zero if there are still descriptors
96				 * to be processed from a previous descriptor
97				 * interrupt condition that has been cleared */
98
99	unsigned int txtail;	/* Next TX descriptor to check status on */
100	unsigned int txhead;	/* Next TX descriptor to use */
101
102	/* Number of free TX descriptors.  This could be calculated from
103	 * rxhead and rxtail if one descriptor were left unused to disambiguate
104	 * full and empty conditions, but it's simpler to just keep track
105	 * explicitly. */
106
107	unsigned int txfree;
108
109	unsigned int phy_ok;		/* The PHY is currently powered on. */
110
111	/* PHY status (duplex is 1 for half, 2 for full,
112	 * so that the default 0 indicates that neither has
113	 * yet been configured). */
114
115	unsigned int link_up;
116	unsigned int speed;
117	unsigned int duplex;
118
119	tx_desc *txring;
120	rx_desc *rxring;
121	struct sk_buff *txskbs[TSI108_TXRING_LEN];
122	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
123
124	dma_addr_t txdma, rxdma;
125
126	/* txlock nests in misclock and phy_lock */
127
128	spinlock_t txlock, misclock;
129
130	/* stats is used to hold the upper bits of each hardware counter,
131	 * and tmpstats is used to hold the full values for returning
132	 * to the caller of get_stats().  They must be separate in case
133	 * an overflow interrupt occurs before the stats are consumed.
134	 */
135
136	struct net_device_stats stats;
137	struct net_device_stats tmpstats;
138
139	/* These stats are kept separate in hardware, thus require individual
140	 * fields for handling carry.  They are combined in get_stats.
141	 */
142
143	unsigned long rx_fcs;	/* Add to rx_frame_errors */
144	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
145	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
146	unsigned long rx_underruns;	/* Add to rx_length_errors */
147	unsigned long rx_overruns;	/* Add to rx_length_errors */
148
149	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
150	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
151
152	unsigned long mc_hash[16];
153	u32 msg_enable;			/* debug message level */
154	struct mii_if_info mii_if;
155	unsigned int init_media;
156};
157
158/* Structure for a device driver */
159
160static struct platform_driver tsi_eth_driver = {
161	.probe = tsi108_init_one,
162	.remove = tsi108_ether_remove,
163	.driver	= {
164		.name = "tsi-ethernet",
165		.owner = THIS_MODULE,
166	},
167};
168
169static void tsi108_timed_checker(unsigned long dev_ptr);
170
171static void dump_eth_one(struct net_device *dev)
172{
173	struct tsi108_prv_data *data = netdev_priv(dev);
174
175	printk("Dumping %s...\n", dev->name);
176	printk("intstat %x intmask %x phy_ok %d"
177	       " link %d speed %d duplex %d\n",
178	       TSI_READ(TSI108_EC_INTSTAT),
179	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
180	       data->link_up, data->speed, data->duplex);
181
182	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
183	       data->txhead, data->txtail, data->txfree,
184	       TSI_READ(TSI108_EC_TXSTAT),
185	       TSI_READ(TSI108_EC_TXESTAT),
186	       TSI_READ(TSI108_EC_TXERR));
187
188	printk("RX: head %d, tail %d, free %d, stat %x,"
189	       " estat %x, err %x, pending %d\n\n",
190	       data->rxhead, data->rxtail, data->rxfree,
191	       TSI_READ(TSI108_EC_RXSTAT),
192	       TSI_READ(TSI108_EC_RXESTAT),
193	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
194}
195
196/* Synchronization is needed between the thread and up/down events.
197 * Note that the PHY is accessed through the same registers for both
198 * interfaces, so this can't be made interface-specific.
199 */
200
201static DEFINE_SPINLOCK(phy_lock);
202
203static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204{
205	unsigned i;
206
207	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
209				(reg << TSI108_MAC_MII_ADDR_REG));
210	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212	for (i = 0; i < 100; i++) {
213		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215			break;
216		udelay(10);
217	}
218
219	if (i == 100)
220		return 0xffff;
221	else
222		return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
223}
224
225static void tsi108_write_mii(struct tsi108_prv_data *data,
226				int reg, u16 val)
227{
228	unsigned i = 100;
229	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
231				(reg << TSI108_MAC_MII_ADDR_REG));
232	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233	while (i--) {
234		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235			TSI108_MAC_MII_IND_BUSY))
236			break;
237		udelay(10);
238	}
239}
240
241static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242{
243	struct tsi108_prv_data *data = netdev_priv(dev);
244	return tsi108_read_mii(data, reg);
245}
246
247static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248{
249	struct tsi108_prv_data *data = netdev_priv(dev);
250	tsi108_write_mii(data, reg, val);
251}
252
253static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254					int reg, u16 val)
255{
256	unsigned i = 1000;
257	TSI_WRITE(TSI108_MAC_MII_ADDR,
258			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
259			     | (reg << TSI108_MAC_MII_ADDR_REG));
260	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261	while(i--) {
262		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263			return;
264		udelay(10);
265	}
266	printk(KERN_ERR "%s function time out\n", __func__);
267}
268
269static int mii_speed(struct mii_if_info *mii)
270{
271	int advert, lpa, val, media;
272	int lpa2 = 0;
273	int speed;
274
275	if (!mii_link_ok(mii))
276		return 0;
277
278	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279	if ((val & BMSR_ANEGCOMPLETE) == 0)
280		return 0;
281
282	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284	media = mii_nway_result(advert & lpa);
285
286	if (mii->supports_gmii)
287		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288
289	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291	return speed;
292}
293
294static void tsi108_check_phy(struct net_device *dev)
295{
296	struct tsi108_prv_data *data = netdev_priv(dev);
297	u32 mac_cfg2_reg, portctrl_reg;
298	u32 duplex;
299	u32 speed;
300	unsigned long flags;
301
302	spin_lock_irqsave(&phy_lock, flags);
303
304	if (!data->phy_ok)
305		goto out;
306
307	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308	data->init_media = 0;
309
310	if (netif_carrier_ok(dev)) {
311
312		speed = mii_speed(&data->mii_if);
313
314		if ((speed != data->speed) || duplex) {
315
316			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318
319			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320
321			if (speed == 1000) {
322				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324			} else {
325				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
327			}
328
329			data->speed = speed;
330
331			if (data->mii_if.full_duplex) {
332				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334				data->duplex = 2;
335			} else {
336				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338				data->duplex = 1;
339			}
340
341			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
343		}
344
345		if (data->link_up == 0) {
346			/* The manual says it can take 3-4 usecs for the speed change
347			 * to take effect.
348			 */
349			udelay(5);
350
351			spin_lock(&data->txlock);
352			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353				netif_wake_queue(dev);
354
355			data->link_up = 1;
356			spin_unlock(&data->txlock);
357		}
358	} else {
359		if (data->link_up == 1) {
360			netif_stop_queue(dev);
361			data->link_up = 0;
362			printk(KERN_NOTICE "%s : link is down\n", dev->name);
363		}
364
365		goto out;
366	}
367
368
369out:
370	spin_unlock_irqrestore(&phy_lock, flags);
371}
372
373static inline void
374tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375		      unsigned long *upper)
376{
377	if (carry & carry_bit)
378		*upper += carry_shift;
379}
380
381static void tsi108_stat_carry(struct net_device *dev)
382{
383	struct tsi108_prv_data *data = netdev_priv(dev);
384	u32 carry1, carry2;
385
386	spin_lock_irq(&data->misclock);
387
388	carry1 = TSI_READ(TSI108_STAT_CARRY1);
389	carry2 = TSI_READ(TSI108_STAT_CARRY2);
390
391	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
392	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
393
394	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
395			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
396
397	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
398			      TSI108_STAT_RXPKTS_CARRY,
399			      &data->stats.rx_packets);
400
401	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
402			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
403
404	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
405			      TSI108_STAT_RXMCAST_CARRY,
406			      &data->stats.multicast);
407
408	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
409			      TSI108_STAT_RXALIGN_CARRY,
410			      &data->stats.rx_frame_errors);
411
412	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
413			      TSI108_STAT_RXLENGTH_CARRY,
414			      &data->stats.rx_length_errors);
415
416	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
417			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
418
419	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
420			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
421
422	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
423			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
424
425	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
426			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
427
428	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
429			      TSI108_STAT_RXDROP_CARRY,
430			      &data->stats.rx_missed_errors);
431
432	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
433			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
434
435	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
436			      TSI108_STAT_TXPKTS_CARRY,
437			      &data->stats.tx_packets);
438
439	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
440			      TSI108_STAT_TXEXDEF_CARRY,
441			      &data->stats.tx_aborted_errors);
442
443	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
444			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
445
446	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
447			      TSI108_STAT_TXTCOL_CARRY,
448			      &data->stats.collisions);
449
450	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
451			      TSI108_STAT_TXPAUSEDROP_CARRY,
452			      &data->tx_pause_drop);
453
454	spin_unlock_irq(&data->misclock);
455}
456
457/* Read a stat counter atomically with respect to carries.
458 * data->misclock must be held.
459 */
460static inline unsigned long
461tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
462		 int carry_shift, unsigned long *upper)
463{
464	int carryreg;
465	unsigned long val;
466
467	if (reg < 0xb0)
468		carryreg = TSI108_STAT_CARRY1;
469	else
470		carryreg = TSI108_STAT_CARRY2;
471
472      again:
473	val = TSI_READ(reg) | *upper;
474
475	/* Check to see if it overflowed, but the interrupt hasn't
476	 * been serviced yet.  If so, handle the carry here, and
477	 * try again.
478	 */
479
480	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
481		*upper += carry_shift;
482		TSI_WRITE(carryreg, carry_bit);
483		goto again;
484	}
485
486	return val;
487}
488
489static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
490{
491	unsigned long excol;
492
493	struct tsi108_prv_data *data = netdev_priv(dev);
494	spin_lock_irq(&data->misclock);
495
496	data->tmpstats.rx_packets =
497	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
498			     TSI108_STAT_CARRY1_RXPKTS,
499			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
500
501	data->tmpstats.tx_packets =
502	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
503			     TSI108_STAT_CARRY2_TXPKTS,
504			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
505
506	data->tmpstats.rx_bytes =
507	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
508			     TSI108_STAT_CARRY1_RXBYTES,
509			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
510
511	data->tmpstats.tx_bytes =
512	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
513			     TSI108_STAT_CARRY2_TXBYTES,
514			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
515
516	data->tmpstats.multicast =
517	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
518			     TSI108_STAT_CARRY1_RXMCAST,
519			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
520
521	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
522				 TSI108_STAT_CARRY2_TXEXCOL,
523				 TSI108_STAT_TXEXCOL_CARRY,
524				 &data->tx_coll_abort);
525
526	data->tmpstats.collisions =
527	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
528			     TSI108_STAT_CARRY2_TXTCOL,
529			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
530
531	data->tmpstats.collisions += excol;
532
533	data->tmpstats.rx_length_errors =
534	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
535			     TSI108_STAT_CARRY1_RXLENGTH,
536			     TSI108_STAT_RXLENGTH_CARRY,
537			     &data->stats.rx_length_errors);
538
539	data->tmpstats.rx_length_errors +=
540	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
541			     TSI108_STAT_CARRY1_RXRUNT,
542			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
543
544	data->tmpstats.rx_length_errors +=
545	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
546			     TSI108_STAT_CARRY1_RXJUMBO,
547			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
548
549	data->tmpstats.rx_frame_errors =
550	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
551			     TSI108_STAT_CARRY1_RXALIGN,
552			     TSI108_STAT_RXALIGN_CARRY,
553			     &data->stats.rx_frame_errors);
554
555	data->tmpstats.rx_frame_errors +=
556	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
557			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
558			     &data->rx_fcs);
559
560	data->tmpstats.rx_frame_errors +=
561	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
562			     TSI108_STAT_CARRY1_RXFRAG,
563			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
564
565	data->tmpstats.rx_missed_errors =
566	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
567			     TSI108_STAT_CARRY1_RXDROP,
568			     TSI108_STAT_RXDROP_CARRY,
569			     &data->stats.rx_missed_errors);
570
571	/* These three are maintained by software. */
572	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
573	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
574
575	data->tmpstats.tx_aborted_errors =
576	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
577			     TSI108_STAT_CARRY2_TXEXDEF,
578			     TSI108_STAT_TXEXDEF_CARRY,
579			     &data->stats.tx_aborted_errors);
580
581	data->tmpstats.tx_aborted_errors +=
582	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
583			     TSI108_STAT_CARRY2_TXPAUSE,
584			     TSI108_STAT_TXPAUSEDROP_CARRY,
585			     &data->tx_pause_drop);
586
587	data->tmpstats.tx_aborted_errors += excol;
588
589	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
590	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
591	    data->tmpstats.rx_crc_errors +
592	    data->tmpstats.rx_frame_errors +
593	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
594
595	spin_unlock_irq(&data->misclock);
596	return &data->tmpstats;
597}
598
599static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
600{
601	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
602			     TSI108_EC_RXQ_PTRHIGH_VALID);
603
604	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
605			     | TSI108_EC_RXCTRL_QUEUE0);
606}
607
608static void tsi108_restart_tx(struct tsi108_prv_data * data)
609{
610	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
611			     TSI108_EC_TXQ_PTRHIGH_VALID);
612
613	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
614			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
615}
616
617/* txlock must be held by caller, with IRQs disabled, and
618 * with permission to re-enable them when the lock is dropped.
619 */
620static void tsi108_complete_tx(struct net_device *dev)
621{
622	struct tsi108_prv_data *data = netdev_priv(dev);
623	int tx;
624	struct sk_buff *skb;
625	int release = 0;
626
627	while (!data->txfree || data->txhead != data->txtail) {
628		tx = data->txtail;
629
630		if (data->txring[tx].misc & TSI108_TX_OWN)
631			break;
632
633		skb = data->txskbs[tx];
634
635		if (!(data->txring[tx].misc & TSI108_TX_OK))
636			printk("%s: bad tx packet, misc %x\n",
637			       dev->name, data->txring[tx].misc);
638
639		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
640		data->txfree++;
641
642		if (data->txring[tx].misc & TSI108_TX_EOF) {
643			dev_kfree_skb_any(skb);
644			release++;
645		}
646	}
647
648	if (release) {
649		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
650			netif_wake_queue(dev);
651	}
652}
653
654static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
655{
656	struct tsi108_prv_data *data = netdev_priv(dev);
657	int frags = skb_shinfo(skb)->nr_frags + 1;
658	int i;
659
660	if (!data->phy_ok && net_ratelimit())
661		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
662
663	if (!data->link_up) {
664		printk(KERN_ERR "%s: Transmit while link is down!\n",
665		       dev->name);
666		netif_stop_queue(dev);
667		return NETDEV_TX_BUSY;
668	}
669
670	if (data->txfree < MAX_SKB_FRAGS + 1) {
671		netif_stop_queue(dev);
672
673		if (net_ratelimit())
674			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
675			       dev->name);
676		return NETDEV_TX_BUSY;
677	}
678
679	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
680		netif_stop_queue(dev);
681	}
682
683	spin_lock_irq(&data->txlock);
684
685	for (i = 0; i < frags; i++) {
686		int misc = 0;
687		int tx = data->txhead;
688
689		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690		 * the interrupt bit.  TX descriptor-complete interrupts are
691		 * enabled when the queue fills up, and masked when there is
692		 * still free space.  This way, when saturating the outbound
693		 * link, the tx interrupts are kept to a reasonable level.
694		 * When the queue is not full, reclamation of skbs still occurs
695		 * as new packets are transmitted, or on a queue-empty
696		 * interrupt.
697		 */
698
699		if ((tx % TSI108_TX_INT_FREQ == 0) &&
700		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
701			misc = TSI108_TX_INT;
702
703		data->txskbs[tx] = skb;
704
705		if (i == 0) {
706			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
707					skb_headlen(skb), DMA_TO_DEVICE);
708			data->txring[tx].len = skb_headlen(skb);
709			misc |= TSI108_TX_SOF;
710		} else {
711			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
712
713			data->txring[tx].buf0 =
714			    dma_map_page(NULL, frag->page, frag->page_offset,
715					    frag->size, DMA_TO_DEVICE);
716			data->txring[tx].len = frag->size;
717		}
718
719		if (i == frags - 1)
720			misc |= TSI108_TX_EOF;
721
722		if (netif_msg_pktdata(data)) {
723			int i;
724			printk("%s: Tx Frame contents (%d)\n", dev->name,
725			       skb->len);
726			for (i = 0; i < skb->len; i++)
727				printk(" %2.2x", skb->data[i]);
728			printk(".\n");
729		}
730		data->txring[tx].misc = misc | TSI108_TX_OWN;
731
732		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
733		data->txfree--;
734	}
735
736	tsi108_complete_tx(dev);
737
738	/* This must be done after the check for completed tx descriptors,
739	 * so that the tail pointer is correct.
740	 */
741
742	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
743		tsi108_restart_tx(data);
744
745	spin_unlock_irq(&data->txlock);
746	return NETDEV_TX_OK;
747}
748
749static int tsi108_complete_rx(struct net_device *dev, int budget)
750{
751	struct tsi108_prv_data *data = netdev_priv(dev);
752	int done = 0;
753
754	while (data->rxfree && done != budget) {
755		int rx = data->rxtail;
756		struct sk_buff *skb;
757
758		if (data->rxring[rx].misc & TSI108_RX_OWN)
759			break;
760
761		skb = data->rxskbs[rx];
762		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
763		data->rxfree--;
764		done++;
765
766		if (data->rxring[rx].misc & TSI108_RX_BAD) {
767			spin_lock_irq(&data->misclock);
768
769			if (data->rxring[rx].misc & TSI108_RX_CRC)
770				data->stats.rx_crc_errors++;
771			if (data->rxring[rx].misc & TSI108_RX_OVER)
772				data->stats.rx_fifo_errors++;
773
774			spin_unlock_irq(&data->misclock);
775
776			dev_kfree_skb_any(skb);
777			continue;
778		}
779		if (netif_msg_pktdata(data)) {
780			int i;
781			printk("%s: Rx Frame contents (%d)\n",
782			       dev->name, data->rxring[rx].len);
783			for (i = 0; i < data->rxring[rx].len; i++)
784				printk(" %2.2x", skb->data[i]);
785			printk(".\n");
786		}
787
788		skb_put(skb, data->rxring[rx].len);
789		skb->protocol = eth_type_trans(skb, dev);
790		netif_receive_skb(skb);
791	}
792
793	return done;
794}
795
796static int tsi108_refill_rx(struct net_device *dev, int budget)
797{
798	struct tsi108_prv_data *data = netdev_priv(dev);
799	int done = 0;
800
801	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802		int rx = data->rxhead;
803		struct sk_buff *skb;
804
805		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
806		data->rxskbs[rx] = skb;
807		if (!skb)
808			break;
809
810		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
811							TSI108_RX_SKB_SIZE,
812							DMA_FROM_DEVICE);
813
814		/* Sometimes the hardware sets blen to zero after packet
815		 * reception, even though the manual says that it's only ever
816		 * modified by the driver.
817		 */
818
819		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
820		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
821
822		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
823		data->rxfree++;
824		done++;
825	}
826
827	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
828			   TSI108_EC_RXSTAT_QUEUE0))
829		tsi108_restart_rx(data, dev);
830
831	return done;
832}
833
834static int tsi108_poll(struct napi_struct *napi, int budget)
835{
836	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
837	struct net_device *dev = data->dev;
838	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
839	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
840	int num_received = 0, num_filled = 0;
841
842	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
843	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
844
845	TSI_WRITE(TSI108_EC_RXESTAT, estat);
846	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
847
848	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
849		num_received = tsi108_complete_rx(dev, budget);
850
851	/* This should normally fill no more slots than the number of
852	 * packets received in tsi108_complete_rx().  The exception
853	 * is when we previously ran out of memory for RX SKBs.  In that
854	 * case, it's helpful to obey the budget, not only so that the
855	 * CPU isn't hogged, but so that memory (which may still be low)
856	 * is not hogged by one device.
857	 *
858	 * A work unit is considered to be two SKBs to allow us to catch
859	 * up when the ring has shrunk due to out-of-memory but we're
860	 * still removing the full budget's worth of packets each time.
861	 */
862
863	if (data->rxfree < TSI108_RXRING_LEN)
864		num_filled = tsi108_refill_rx(dev, budget * 2);
865
866	if (intstat & TSI108_INT_RXERROR) {
867		u32 err = TSI_READ(TSI108_EC_RXERR);
868		TSI_WRITE(TSI108_EC_RXERR, err);
869
870		if (err) {
871			if (net_ratelimit())
872				printk(KERN_DEBUG "%s: RX error %x\n",
873				       dev->name, err);
874
875			if (!(TSI_READ(TSI108_EC_RXSTAT) &
876			      TSI108_EC_RXSTAT_QUEUE0))
877				tsi108_restart_rx(data, dev);
878		}
879	}
880
881	if (intstat & TSI108_INT_RXOVERRUN) {
882		spin_lock_irq(&data->misclock);
883		data->stats.rx_fifo_errors++;
884		spin_unlock_irq(&data->misclock);
885	}
886
887	if (num_received < budget) {
888		data->rxpending = 0;
889		napi_complete(napi);
890
891		TSI_WRITE(TSI108_EC_INTMASK,
892				     TSI_READ(TSI108_EC_INTMASK)
893				     & ~(TSI108_INT_RXQUEUE0
894					 | TSI108_INT_RXTHRESH |
895					 TSI108_INT_RXOVERRUN |
896					 TSI108_INT_RXERROR |
897					 TSI108_INT_RXWAIT));
898	} else {
899		data->rxpending = 1;
900	}
901
902	return num_received;
903}
904
905static void tsi108_rx_int(struct net_device *dev)
906{
907	struct tsi108_prv_data *data = netdev_priv(dev);
908
909	/* A race could cause dev to already be scheduled, so it's not an
910	 * error if that happens (and interrupts shouldn't be re-masked,
911	 * because that can cause harmful races, if poll has already
912	 * unmasked them but not cleared LINK_STATE_SCHED).
913	 *
914	 * This can happen if this code races with tsi108_poll(), which masks
915	 * the interrupts after tsi108_irq_one() read the mask, but before
916	 * napi_schedule is called.  It could also happen due to calls
917	 * from tsi108_check_rxring().
918	 */
919
920	if (napi_schedule_prep(&data->napi)) {
921		/* Mask, rather than ack, the receive interrupts.  The ack
922		 * will happen in tsi108_poll().
923		 */
924
925		TSI_WRITE(TSI108_EC_INTMASK,
926				     TSI_READ(TSI108_EC_INTMASK) |
927				     TSI108_INT_RXQUEUE0
928				     | TSI108_INT_RXTHRESH |
929				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
930				     TSI108_INT_RXWAIT);
931		__napi_schedule(&data->napi);
932	} else {
933		if (!netif_running(dev)) {
934			/* This can happen if an interrupt occurs while the
935			 * interface is being brought down, as the START
936			 * bit is cleared before the stop function is called.
937			 *
938			 * In this case, the interrupts must be masked, or
939			 * they will continue indefinitely.
940			 *
941			 * There's a race here if the interface is brought down
942			 * and then up in rapid succession, as the device could
943			 * be made running after the above check and before
944			 * the masking below.  This will only happen if the IRQ
945			 * thread has a lower priority than the task brining
946			 * up the interface.  Fixing this race would likely
947			 * require changes in generic code.
948			 */
949
950			TSI_WRITE(TSI108_EC_INTMASK,
951					     TSI_READ
952					     (TSI108_EC_INTMASK) |
953					     TSI108_INT_RXQUEUE0 |
954					     TSI108_INT_RXTHRESH |
955					     TSI108_INT_RXOVERRUN |
956					     TSI108_INT_RXERROR |
957					     TSI108_INT_RXWAIT);
958		}
959	}
960}
961
962/* If the RX ring has run out of memory, try periodically
963 * to allocate some more, as otherwise poll would never
964 * get called (apart from the initial end-of-queue condition).
965 *
966 * This is called once per second (by default) from the thread.
967 */
968
969static void tsi108_check_rxring(struct net_device *dev)
970{
971	struct tsi108_prv_data *data = netdev_priv(dev);
972
973	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
974	 * directly, so as to keep the receive path single-threaded
975	 * (and thus not needing a lock).
976	 */
977
978	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
979		tsi108_rx_int(dev);
980}
981
982static void tsi108_tx_int(struct net_device *dev)
983{
984	struct tsi108_prv_data *data = netdev_priv(dev);
985	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
986
987	TSI_WRITE(TSI108_EC_TXESTAT, estat);
988	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
989			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
990	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
991		u32 err = TSI_READ(TSI108_EC_TXERR);
992		TSI_WRITE(TSI108_EC_TXERR, err);
993
994		if (err && net_ratelimit())
995			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
996	}
997
998	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
999		spin_lock(&data->txlock);
1000		tsi108_complete_tx(dev);
1001		spin_unlock(&data->txlock);
1002	}
1003}
1004
1005
1006static irqreturn_t tsi108_irq(int irq, void *dev_id)
1007{
1008	struct net_device *dev = dev_id;
1009	struct tsi108_prv_data *data = netdev_priv(dev);
1010	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1011
1012	if (!(stat & TSI108_INT_ANY))
1013		return IRQ_NONE;	/* Not our interrupt */
1014
1015	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1016
1017	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1018		    TSI108_INT_TXERROR))
1019		tsi108_tx_int(dev);
1020	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1021		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1022		    TSI108_INT_RXERROR))
1023		tsi108_rx_int(dev);
1024
1025	if (stat & TSI108_INT_SFN) {
1026		if (net_ratelimit())
1027			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1028		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1029	}
1030
1031	if (stat & TSI108_INT_STATCARRY) {
1032		tsi108_stat_carry(dev);
1033		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1034	}
1035
1036	return IRQ_HANDLED;
1037}
1038
1039static void tsi108_stop_ethernet(struct net_device *dev)
1040{
1041	struct tsi108_prv_data *data = netdev_priv(dev);
1042	int i = 1000;
1043	/* Disable all TX and RX queues ... */
1044	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1045	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1046
1047	/* ...and wait for them to become idle */
1048	while(i--) {
1049		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1050			break;
1051		udelay(10);
1052	}
1053	i = 1000;
1054	while(i--){
1055		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1056			return;
1057		udelay(10);
1058	}
1059	printk(KERN_ERR "%s function time out\n", __func__);
1060}
1061
1062static void tsi108_reset_ether(struct tsi108_prv_data * data)
1063{
1064	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1065	udelay(100);
1066	TSI_WRITE(TSI108_MAC_CFG1, 0);
1067
1068	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1069	udelay(100);
1070	TSI_WRITE(TSI108_EC_PORTCTRL,
1071			     TSI_READ(TSI108_EC_PORTCTRL) &
1072			     ~TSI108_EC_PORTCTRL_STATRST);
1073
1074	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1075	udelay(100);
1076	TSI_WRITE(TSI108_EC_TXCFG,
1077			     TSI_READ(TSI108_EC_TXCFG) &
1078			     ~TSI108_EC_TXCFG_RST);
1079
1080	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1081	udelay(100);
1082	TSI_WRITE(TSI108_EC_RXCFG,
1083			     TSI_READ(TSI108_EC_RXCFG) &
1084			     ~TSI108_EC_RXCFG_RST);
1085
1086	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1087			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1088			     TSI108_MAC_MII_MGMT_RST);
1089	udelay(100);
1090	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1092			     ~(TSI108_MAC_MII_MGMT_RST |
1093			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1094}
1095
1096static int tsi108_get_mac(struct net_device *dev)
1097{
1098	struct tsi108_prv_data *data = netdev_priv(dev);
1099	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1100	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1101
1102	/* Note that the octets are reversed from what the manual says,
1103	 * producing an even weirder ordering...
1104	 */
1105	if (word2 == 0 && word1 == 0) {
1106		dev->dev_addr[0] = 0x00;
1107		dev->dev_addr[1] = 0x06;
1108		dev->dev_addr[2] = 0xd2;
1109		dev->dev_addr[3] = 0x00;
1110		dev->dev_addr[4] = 0x00;
1111		if (0x8 == data->phy)
1112			dev->dev_addr[5] = 0x01;
1113		else
1114			dev->dev_addr[5] = 0x02;
1115
1116		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1117
1118		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1119		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1120
1121		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1122		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1123	} else {
1124		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1125		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1126		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1127		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1128		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1129		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1130	}
1131
1132	if (!is_valid_ether_addr(dev->dev_addr)) {
1133		printk(KERN_ERR
1134		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1135		       dev->name, word1, word2);
1136		return -EINVAL;
1137	}
1138
1139	return 0;
1140}
1141
1142static int tsi108_set_mac(struct net_device *dev, void *addr)
1143{
1144	struct tsi108_prv_data *data = netdev_priv(dev);
1145	u32 word1, word2;
1146	int i;
1147
1148	if (!is_valid_ether_addr(addr))
1149		return -EINVAL;
1150
1151	for (i = 0; i < 6; i++)
1152		/* +2 is for the offset of the HW addr type */
1153		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1154
1155	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1156
1157	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1158	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1159
1160	spin_lock_irq(&data->misclock);
1161	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1162	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1163	spin_lock(&data->txlock);
1164
1165	if (data->txfree && data->link_up)
1166		netif_wake_queue(dev);
1167
1168	spin_unlock(&data->txlock);
1169	spin_unlock_irq(&data->misclock);
1170	return 0;
1171}
1172
1173/* Protected by dev->xmit_lock. */
1174static void tsi108_set_rx_mode(struct net_device *dev)
1175{
1176	struct tsi108_prv_data *data = netdev_priv(dev);
1177	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1178
1179	if (dev->flags & IFF_PROMISC) {
1180		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1181		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1182		goto out;
1183	}
1184
1185	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1186
1187	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1188		int i;
1189		struct netdev_hw_addr *ha;
1190		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1191
1192		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1193
1194		netdev_for_each_mc_addr(ha, dev) {
1195			u32 hash, crc;
1196
1197			crc = ether_crc(6, ha->addr);
1198			hash = crc >> 23;
1199			__set_bit(hash, &data->mc_hash[0]);
1200		}
1201
1202		TSI_WRITE(TSI108_EC_HASHADDR,
1203				     TSI108_EC_HASHADDR_AUTOINC |
1204				     TSI108_EC_HASHADDR_MCAST);
1205
1206		for (i = 0; i < 16; i++) {
1207			/* The manual says that the hardware may drop
1208			 * back-to-back writes to the data register.
1209			 */
1210			udelay(1);
1211			TSI_WRITE(TSI108_EC_HASHDATA,
1212					     data->mc_hash[i]);
1213		}
1214	}
1215
1216      out:
1217	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1218}
1219
1220static void tsi108_init_phy(struct net_device *dev)
1221{
1222	struct tsi108_prv_data *data = netdev_priv(dev);
1223	u32 i = 0;
1224	u16 phyval = 0;
1225	unsigned long flags;
1226
1227	spin_lock_irqsave(&phy_lock, flags);
1228
1229	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1230	while (--i) {
1231		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1232			break;
1233		udelay(10);
1234	}
1235	if (i == 0)
1236		printk(KERN_ERR "%s function time out\n", __func__);
1237
1238	if (data->phy_type == TSI108_PHY_BCM54XX) {
1239		tsi108_write_mii(data, 0x09, 0x0300);
1240		tsi108_write_mii(data, 0x10, 0x1020);
1241		tsi108_write_mii(data, 0x1c, 0x8c00);
1242	}
1243
1244	tsi108_write_mii(data,
1245			 MII_BMCR,
1246			 BMCR_ANENABLE | BMCR_ANRESTART);
1247	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1248		cpu_relax();
1249
1250	/* Set G/MII mode and receive clock select in TBI control #2.  The
1251	 * second port won't work if this isn't done, even though we don't
1252	 * use TBI mode.
1253	 */
1254
1255	tsi108_write_tbi(data, 0x11, 0x30);
1256
1257
1258	data->link_up = 0;
1259
1260	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1261		 BMSR_LSTATUS)) {
1262		if (i++ > (MII_READ_DELAY / 10)) {
1263			break;
1264		}
1265		spin_unlock_irqrestore(&phy_lock, flags);
1266		msleep(10);
1267		spin_lock_irqsave(&phy_lock, flags);
1268	}
1269
1270	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1271	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1272	data->phy_ok = 1;
1273	data->init_media = 1;
1274	spin_unlock_irqrestore(&phy_lock, flags);
1275}
1276
1277static void tsi108_kill_phy(struct net_device *dev)
1278{
1279	struct tsi108_prv_data *data = netdev_priv(dev);
1280	unsigned long flags;
1281
1282	spin_lock_irqsave(&phy_lock, flags);
1283	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1284	data->phy_ok = 0;
1285	spin_unlock_irqrestore(&phy_lock, flags);
1286}
1287
1288static int tsi108_open(struct net_device *dev)
1289{
1290	int i;
1291	struct tsi108_prv_data *data = netdev_priv(dev);
1292	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1293	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1294
1295	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1296	if (i != 0) {
1297		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1298		       data->id, data->irq_num);
1299		return i;
1300	} else {
1301		dev->irq = data->irq_num;
1302		printk(KERN_NOTICE
1303		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1304		       data->id, dev->irq, dev->name);
1305	}
1306
1307	data->rxring = dma_alloc_coherent(NULL, rxring_size,
1308			&data->rxdma, GFP_KERNEL);
1309
1310	if (!data->rxring) {
1311		printk(KERN_DEBUG
1312		       "TSI108_ETH: failed to allocate memory for rxring!\n");
1313		return -ENOMEM;
1314	} else {
1315		memset(data->rxring, 0, rxring_size);
1316	}
1317
1318	data->txring = dma_alloc_coherent(NULL, txring_size,
1319			&data->txdma, GFP_KERNEL);
1320
1321	if (!data->txring) {
1322		printk(KERN_DEBUG
1323		       "TSI108_ETH: failed to allocate memory for txring!\n");
1324		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1325		return -ENOMEM;
1326	} else {
1327		memset(data->txring, 0, txring_size);
1328	}
1329
1330	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1331		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1332		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1333		data->rxring[i].vlan = 0;
1334	}
1335
1336	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1337
1338	data->rxtail = 0;
1339	data->rxhead = 0;
1340
1341	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1342		struct sk_buff *skb;
1343
1344		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1345		if (!skb) {
1346			/* Bah.  No memory for now, but maybe we'll get
1347			 * some more later.
1348			 * For now, we'll live with the smaller ring.
1349			 */
1350			printk(KERN_WARNING
1351			       "%s: Could only allocate %d receive skb(s).\n",
1352			       dev->name, i);
1353			data->rxhead = i;
1354			break;
1355		}
1356
1357		data->rxskbs[i] = skb;
1358		data->rxskbs[i] = skb;
1359		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1360		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1361	}
1362
1363	data->rxfree = i;
1364	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1365
1366	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1367		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1368		data->txring[i].misc = 0;
1369	}
1370
1371	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1372	data->txtail = 0;
1373	data->txhead = 0;
1374	data->txfree = TSI108_TXRING_LEN;
1375	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1376	tsi108_init_phy(dev);
1377
1378	napi_enable(&data->napi);
1379
1380	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1381	mod_timer(&data->timer, jiffies + 1);
1382
1383	tsi108_restart_rx(data, dev);
1384
1385	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1386
1387	TSI_WRITE(TSI108_EC_INTMASK,
1388			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1389			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1390			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1391			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1392
1393	TSI_WRITE(TSI108_MAC_CFG1,
1394			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1395	netif_start_queue(dev);
1396	return 0;
1397}
1398
1399static int tsi108_close(struct net_device *dev)
1400{
1401	struct tsi108_prv_data *data = netdev_priv(dev);
1402
1403	netif_stop_queue(dev);
1404	napi_disable(&data->napi);
1405
1406	del_timer_sync(&data->timer);
1407
1408	tsi108_stop_ethernet(dev);
1409	tsi108_kill_phy(dev);
1410	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1411	TSI_WRITE(TSI108_MAC_CFG1, 0);
1412
1413	/* Check for any pending TX packets, and drop them. */
1414
1415	while (!data->txfree || data->txhead != data->txtail) {
1416		int tx = data->txtail;
1417		struct sk_buff *skb;
1418		skb = data->txskbs[tx];
1419		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1420		data->txfree++;
1421		dev_kfree_skb(skb);
1422	}
1423
1424	free_irq(data->irq_num, dev);
1425
1426	/* Discard the RX ring. */
1427
1428	while (data->rxfree) {
1429		int rx = data->rxtail;
1430		struct sk_buff *skb;
1431
1432		skb = data->rxskbs[rx];
1433		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1434		data->rxfree--;
1435		dev_kfree_skb(skb);
1436	}
1437
1438	dma_free_coherent(0,
1439			    TSI108_RXRING_LEN * sizeof(rx_desc),
1440			    data->rxring, data->rxdma);
1441	dma_free_coherent(0,
1442			    TSI108_TXRING_LEN * sizeof(tx_desc),
1443			    data->txring, data->txdma);
1444
1445	return 0;
1446}
1447
1448static void tsi108_init_mac(struct net_device *dev)
1449{
1450	struct tsi108_prv_data *data = netdev_priv(dev);
1451
1452	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1453			     TSI108_MAC_CFG2_PADCRC);
1454
1455	TSI_WRITE(TSI108_EC_TXTHRESH,
1456			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1457			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1458
1459	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1460			     ~(TSI108_STAT_CARRY1_RXBYTES |
1461			       TSI108_STAT_CARRY1_RXPKTS |
1462			       TSI108_STAT_CARRY1_RXFCS |
1463			       TSI108_STAT_CARRY1_RXMCAST |
1464			       TSI108_STAT_CARRY1_RXALIGN |
1465			       TSI108_STAT_CARRY1_RXLENGTH |
1466			       TSI108_STAT_CARRY1_RXRUNT |
1467			       TSI108_STAT_CARRY1_RXJUMBO |
1468			       TSI108_STAT_CARRY1_RXFRAG |
1469			       TSI108_STAT_CARRY1_RXJABBER |
1470			       TSI108_STAT_CARRY1_RXDROP));
1471
1472	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1473			     ~(TSI108_STAT_CARRY2_TXBYTES |
1474			       TSI108_STAT_CARRY2_TXPKTS |
1475			       TSI108_STAT_CARRY2_TXEXDEF |
1476			       TSI108_STAT_CARRY2_TXEXCOL |
1477			       TSI108_STAT_CARRY2_TXTCOL |
1478			       TSI108_STAT_CARRY2_TXPAUSE));
1479
1480	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1481	TSI_WRITE(TSI108_MAC_CFG1, 0);
1482
1483	TSI_WRITE(TSI108_EC_RXCFG,
1484			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1485
1486	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1487			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1488			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1489						TSI108_EC_TXQ_CFG_SFNPORT));
1490
1491	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1492			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1493			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1494						TSI108_EC_RXQ_CFG_SFNPORT));
1495
1496	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1497			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1498			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1499						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1500
1501	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1502			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1503			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1504						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1505
1506	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1507}
1508
1509static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1510{
1511	struct tsi108_prv_data *data = netdev_priv(dev);
1512	unsigned long flags;
1513	int rc;
1514
1515	spin_lock_irqsave(&data->txlock, flags);
1516	rc = mii_ethtool_gset(&data->mii_if, cmd);
1517	spin_unlock_irqrestore(&data->txlock, flags);
1518
1519	return rc;
1520}
1521
1522static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1523{
1524	struct tsi108_prv_data *data = netdev_priv(dev);
1525	unsigned long flags;
1526	int rc;
1527
1528	spin_lock_irqsave(&data->txlock, flags);
1529	rc = mii_ethtool_sset(&data->mii_if, cmd);
1530	spin_unlock_irqrestore(&data->txlock, flags);
1531
1532	return rc;
1533}
1534
1535static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1536{
1537	struct tsi108_prv_data *data = netdev_priv(dev);
1538	if (!netif_running(dev))
1539		return -EINVAL;
1540	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1541}
1542
1543static const struct ethtool_ops tsi108_ethtool_ops = {
1544	.get_link 	= ethtool_op_get_link,
1545	.get_settings	= tsi108_get_settings,
1546	.set_settings	= tsi108_set_settings,
1547};
1548
1549static const struct net_device_ops tsi108_netdev_ops = {
1550	.ndo_open		= tsi108_open,
1551	.ndo_stop		= tsi108_close,
1552	.ndo_start_xmit		= tsi108_send_packet,
1553	.ndo_set_multicast_list	= tsi108_set_rx_mode,
1554	.ndo_get_stats		= tsi108_get_stats,
1555	.ndo_do_ioctl		= tsi108_do_ioctl,
1556	.ndo_set_mac_address	= tsi108_set_mac,
1557	.ndo_validate_addr	= eth_validate_addr,
1558	.ndo_change_mtu		= eth_change_mtu,
1559};
1560
1561static int
1562tsi108_init_one(struct platform_device *pdev)
1563{
1564	struct net_device *dev = NULL;
1565	struct tsi108_prv_data *data = NULL;
1566	hw_info *einfo;
1567	int err = 0;
1568
1569	einfo = pdev->dev.platform_data;
1570
1571	if (NULL == einfo) {
1572		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1573		       pdev->id);
1574		return -ENODEV;
1575	}
1576
1577	/* Create an ethernet device instance */
1578
1579	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1580	if (!dev) {
1581		printk("tsi108_eth: Could not allocate a device structure\n");
1582		return -ENOMEM;
1583	}
1584
1585	printk("tsi108_eth%d: probe...\n", pdev->id);
1586	data = netdev_priv(dev);
1587	data->dev = dev;
1588
1589	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1590			pdev->id, einfo->regs, einfo->phyregs,
1591			einfo->phy, einfo->irq_num);
1592
1593	data->regs = ioremap(einfo->regs, 0x400);
1594	if (NULL == data->regs) {
1595		err = -ENOMEM;
1596		goto regs_fail;
1597	}
1598
1599	data->phyregs = ioremap(einfo->phyregs, 0x400);
1600	if (NULL == data->phyregs) {
1601		err = -ENOMEM;
1602		goto regs_fail;
1603	}
1604/* MII setup */
1605	data->mii_if.dev = dev;
1606	data->mii_if.mdio_read = tsi108_mdio_read;
1607	data->mii_if.mdio_write = tsi108_mdio_write;
1608	data->mii_if.phy_id = einfo->phy;
1609	data->mii_if.phy_id_mask = 0x1f;
1610	data->mii_if.reg_num_mask = 0x1f;
1611
1612	data->phy = einfo->phy;
1613	data->phy_type = einfo->phy_type;
1614	data->irq_num = einfo->irq_num;
1615	data->id = pdev->id;
1616	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1617	dev->netdev_ops = &tsi108_netdev_ops;
1618	dev->ethtool_ops = &tsi108_ethtool_ops;
1619
1620	/* Apparently, the Linux networking code won't use scatter-gather
1621	 * if the hardware doesn't do checksums.  However, it's faster
1622	 * to checksum in place and use SG, as (among other reasons)
1623	 * the cache won't be dirtied (which then has to be flushed
1624	 * before DMA).  The checksumming is done by the driver (via
1625	 * a new function skb_csum_dev() in net/core/skbuff.c).
1626	 */
1627
1628	dev->features = NETIF_F_HIGHDMA;
1629
1630	spin_lock_init(&data->txlock);
1631	spin_lock_init(&data->misclock);
1632
1633	tsi108_reset_ether(data);
1634	tsi108_kill_phy(dev);
1635
1636	if ((err = tsi108_get_mac(dev)) != 0) {
1637		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1638		       dev->name);
1639		goto register_fail;
1640	}
1641
1642	tsi108_init_mac(dev);
1643	err = register_netdev(dev);
1644	if (err) {
1645		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1646				dev->name);
1647		goto register_fail;
1648	}
1649
1650	platform_set_drvdata(pdev, dev);
1651	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1652	       dev->name, dev->dev_addr);
1653#ifdef DEBUG
1654	data->msg_enable = DEBUG;
1655	dump_eth_one(dev);
1656#endif
1657
1658	return 0;
1659
1660register_fail:
1661	iounmap(data->regs);
1662	iounmap(data->phyregs);
1663
1664regs_fail:
1665	free_netdev(dev);
1666	return err;
1667}
1668
1669/* There's no way to either get interrupts from the PHY when
1670 * something changes, or to have the Tsi108 automatically communicate
1671 * with the PHY to reconfigure itself.
1672 *
1673 * Thus, we have to do it using a timer.
1674 */
1675
1676static void tsi108_timed_checker(unsigned long dev_ptr)
1677{
1678	struct net_device *dev = (struct net_device *)dev_ptr;
1679	struct tsi108_prv_data *data = netdev_priv(dev);
1680
1681	tsi108_check_phy(dev);
1682	tsi108_check_rxring(dev);
1683	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1684}
1685
1686static int tsi108_ether_init(void)
1687{
1688	int ret;
1689	ret = platform_driver_register (&tsi_eth_driver);
1690	if (ret < 0){
1691		printk("tsi108_ether_init: error initializing ethernet "
1692		       "device\n");
1693		return ret;
1694	}
1695	return 0;
1696}
1697
1698static int tsi108_ether_remove(struct platform_device *pdev)
1699{
1700	struct net_device *dev = platform_get_drvdata(pdev);
1701	struct tsi108_prv_data *priv = netdev_priv(dev);
1702
1703	unregister_netdev(dev);
1704	tsi108_stop_ethernet(dev);
1705	platform_set_drvdata(pdev, NULL);
1706	iounmap(priv->regs);
1707	iounmap(priv->phyregs);
1708	free_netdev(dev);
1709
1710	return 0;
1711}
1712static void tsi108_ether_exit(void)
1713{
1714	platform_driver_unregister(&tsi_eth_driver);
1715}
1716
1717module_init(tsi108_ether_init);
1718module_exit(tsi108_ether_exit);
1719
1720MODULE_AUTHOR("Tundra Semiconductor Corporation");
1721MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1722MODULE_LICENSE("GPL");
1723MODULE_ALIAS("platform:tsi-ethernet");
1724