• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/
1/*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 *	-----<snip>-----
9 *	Copyright 2001 MontaVista Software Inc.
10 *	Author: MontaVista Software, Inc.
11 *		ahennessy@mvista.com
12 *	Copyright (C) 2000-2001 Toshiba Corporation
13 *	static const char *version =
14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 *	-----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License.  See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25#define DRV_VERSION	"1.39"
26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27#define MODNAME			"tc35815"
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/interrupt.h>
34#include <linux/ioport.h>
35#include <linux/in.h>
36#include <linux/if_vlan.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/init.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/skbuff.h>
45#include <linux/delay.h>
46#include <linux/pci.h>
47#include <linux/phy.h>
48#include <linux/workqueue.h>
49#include <linux/platform_device.h>
50#include <asm/io.h>
51#include <asm/byteorder.h>
52
53enum tc35815_chiptype {
54	TC35815CF = 0,
55	TC35815_NWU,
56	TC35815_TX4939,
57};
58
59/* indexed by tc35815_chiptype, above */
60static const struct {
61	const char *name;
62} chip_info[] __devinitdata = {
63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64	{ "TOSHIBA TC35815 with Wake on LAN" },
65	{ "TOSHIBA TC35815/TX4939" },
66};
67
68static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72	{0,}
73};
74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76/* see MODULE_PARM_DESC */
77static struct tc35815_options {
78	int speed;
79	int duplex;
80} options;
81
82/*
83 * Registers
84 */
85struct tc35815_regs {
86	__u32 DMA_Ctl;		/* 0x00 */
87	__u32 TxFrmPtr;
88	__u32 TxThrsh;
89	__u32 TxPollCtr;
90	__u32 BLFrmPtr;
91	__u32 RxFragSize;
92	__u32 Int_En;
93	__u32 FDA_Bas;
94	__u32 FDA_Lim;		/* 0x20 */
95	__u32 Int_Src;
96	__u32 unused0[2];
97	__u32 PauseCnt;
98	__u32 RemPauCnt;
99	__u32 TxCtlFrmStat;
100	__u32 unused1;
101	__u32 MAC_Ctl;		/* 0x40 */
102	__u32 CAM_Ctl;
103	__u32 Tx_Ctl;
104	__u32 Tx_Stat;
105	__u32 Rx_Ctl;
106	__u32 Rx_Stat;
107	__u32 MD_Data;
108	__u32 MD_CA;
109	__u32 CAM_Adr;		/* 0x60 */
110	__u32 CAM_Data;
111	__u32 CAM_Ena;
112	__u32 PROM_Ctl;
113	__u32 PROM_Data;
114	__u32 Algn_Cnt;
115	__u32 CRC_Cnt;
116	__u32 Miss_Cnt;
117};
118
119/*
120 * Bit assignments
121 */
122/* DMA_Ctl bit asign ------------------------------------------------------- */
123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124#define DMA_RxAlign_1	       0x00400000
125#define DMA_RxAlign_2	       0x00800000
126#define DMA_RxAlign_3	       0x00c00000
127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128#define DMA_IntMask	       0x00040000 /* 1:Interupt mask		     */
129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136
137/* RxFragSize bit asign ---------------------------------------------------- */
138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140
141/* MAC_Ctl bit asign ------------------------------------------------------- */
142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154
155/* PROM_Ctl bit asign ------------------------------------------------------ */
156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157#define PROM_Read	       0x00004000 /*10:Read operation		     */
158#define PROM_Write	       0x00002000 /*01:Write operation		     */
159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160					  /*00:Enable or Disable Writting,   */
161					  /*	  as specified in PROM_Addr. */
162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163					  /*00xxxx:	      disable	     */
164
165/* CAM_Ctl bit asign ------------------------------------------------------- */
166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168					  /*			accept other */
169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172
173/* CAM_Ena bit asign ------------------------------------------------------- */
174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176#define CAM_Ena_Bit(index)	(1 << (index))
177#define CAM_ENTRY_DESTINATION	0
178#define CAM_ENTRY_SOURCE	1
179#define CAM_ENTRY_MACCTL	20
180
181/* Tx_Ctl bit asign -------------------------------------------------------- */
182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194
195/* Tx_Stat bit asign ------------------------------------------------------- */
196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201#define Tx_Under	       0x00000100 /* Underrun			     */
202#define Tx_Defer	       0x00000200 /* Deferral			     */
203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207#define Tx_Comp		       0x00004000 /* Completion			     */
208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210
211/* Rx_Ctl bit asign -------------------------------------------------------- */
212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224
225/* Rx_Stat bit asign ------------------------------------------------------- */
226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
227#define Rx_Good		       0x00004000 /* Rx Good			     */
228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238
239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240
241/* Int_En bit asign -------------------------------------------------------- */
242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254					  /*		   Exhausted Enable  */
255
256/* Int_Src bit asign ------------------------------------------------------- */
257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272
273/* MD_CA bit asign --------------------------------------------------------- */
274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Supress		     */
275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277
278
279/*
280 * Descriptors
281 */
282
283/* Frame descripter */
284struct FDesc {
285	volatile __u32 FDNext;
286	volatile __u32 FDSystem;
287	volatile __u32 FDStat;
288	volatile __u32 FDCtl;
289};
290
291/* Buffer descripter */
292struct BDesc {
293	volatile __u32 BuffData;
294	volatile __u32 BDCtl;
295};
296
297#define FD_ALIGN	16
298
299/* Frame Descripter bit asign ---------------------------------------------- */
300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310#define FD_BDCnt_SHIFT	       16
311
312/* Buffer Descripter bit asign --------------------------------------------- */
313#define BD_BuffLength_MASK     0x0000FFFF /* Recieve Data Size		     */
314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317#define BD_RxBDID_SHIFT	       16
318#define BD_RxBDSeqN_SHIFT      24
319
320
321/* Some useful constants. */
322
323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325	Tx_En)	/* maybe  0x7b01 */
326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329#define INT_EN_CMD  (Int_NRAbtEn | \
330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332	Int_STargAbtEn | \
333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334#define DMA_CTL_CMD	DMA_BURST_SIZE
335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336
337/* Tuning parameters */
338#define DMA_BURST_SIZE	32
339#define TX_THRESHOLD	1024
340/* used threshold with packet max byte for low pci transfer ability.*/
341#define TX_THRESHOLD_MAX 1536
342/* setting threshold max value when overrun error occured this count. */
343#define TX_THRESHOLD_KEEP_LIMIT 10
344
345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346#define FD_PAGE_NUM 4
347#define RX_BUF_NUM	128	/* < 256 */
348#define RX_FD_NUM	256	/* >= 32 */
349#define TX_FD_NUM	128
350#if RX_CTL_CMD & Rx_LongEn
351#define RX_BUF_SIZE	PAGE_SIZE
352#elif RX_CTL_CMD & Rx_StripCRC
353#define RX_BUF_SIZE	\
354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355#else
356#define RX_BUF_SIZE	\
357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358#endif
359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360#define NAPI_WEIGHT	16
361
362struct TxFD {
363	struct FDesc fd;
364	struct BDesc bd;
365	struct BDesc unused;
366};
367
368struct RxFD {
369	struct FDesc fd;
370	struct BDesc bd[0];	/* variable length */
371};
372
373struct FrFD {
374	struct FDesc fd;
375	struct BDesc bd[RX_BUF_NUM];
376};
377
378
379#define tc_readl(addr)	ioread32(addr)
380#define tc_writel(d, addr)	iowrite32(d, addr)
381
382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383
384/* Information that need to be kept for each controller. */
385struct tc35815_local {
386	struct pci_dev *pci_dev;
387
388	struct net_device *dev;
389	struct napi_struct napi;
390
391	/* statistics */
392	struct {
393		int max_tx_qlen;
394		int tx_ints;
395		int rx_ints;
396		int tx_underrun;
397	} lstats;
398
399	/* Tx control lock.  This protects the transmit buffer ring
400	 * state along with the "tx full" state of the driver.  This
401	 * means all netif_queue flow control actions are protected
402	 * by this lock as well.
403	 */
404	spinlock_t lock;
405	spinlock_t rx_lock;
406
407	struct mii_bus *mii_bus;
408	struct phy_device *phy_dev;
409	int duplex;
410	int speed;
411	int link;
412	struct work_struct restart_work;
413
414	/*
415	 * Transmitting: Batch Mode.
416	 *	1 BD in 1 TxFD.
417	 * Receiving: Non-Packing Mode.
418	 *	1 circular FD for Free Buffer List.
419	 *	RX_BUF_NUM BD in Free Buffer FD.
420	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
421	 */
422	void *fd_buf;	/* for TxFD, RxFD, FrFD */
423	dma_addr_t fd_buf_dma;
424	struct TxFD *tfd_base;
425	unsigned int tfd_start;
426	unsigned int tfd_end;
427	struct RxFD *rfd_base;
428	struct RxFD *rfd_limit;
429	struct RxFD *rfd_cur;
430	struct FrFD *fbl_ptr;
431	unsigned int fbl_count;
432	struct {
433		struct sk_buff *skb;
434		dma_addr_t skb_dma;
435	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436	u32 msg_enable;
437	enum tc35815_chiptype chiptype;
438};
439
440static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441{
442	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443}
444#ifdef DEBUG
445static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446{
447	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448}
449#endif
450static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451				       struct pci_dev *hwdev,
452				       dma_addr_t *dma_handle)
453{
454	struct sk_buff *skb;
455	skb = dev_alloc_skb(RX_BUF_SIZE);
456	if (!skb)
457		return NULL;
458	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459				     PCI_DMA_FROMDEVICE);
460	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461		dev_kfree_skb_any(skb);
462		return NULL;
463	}
464	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
465	return skb;
466}
467
468static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469{
470	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471			 PCI_DMA_FROMDEVICE);
472	dev_kfree_skb_any(skb);
473}
474
475/* Index to functions, as function prototypes. */
476
477static int	tc35815_open(struct net_device *dev);
478static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480static int	tc35815_rx(struct net_device *dev, int limit);
481static int	tc35815_poll(struct napi_struct *napi, int budget);
482static void	tc35815_txdone(struct net_device *dev);
483static int	tc35815_close(struct net_device *dev);
484static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485static void	tc35815_set_multicast_list(struct net_device *dev);
486static void	tc35815_tx_timeout(struct net_device *dev);
487static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488#ifdef CONFIG_NET_POLL_CONTROLLER
489static void	tc35815_poll_controller(struct net_device *dev);
490#endif
491static const struct ethtool_ops tc35815_ethtool_ops;
492
493/* Example routines you must write ;->. */
494static void	tc35815_chip_reset(struct net_device *dev);
495static void	tc35815_chip_init(struct net_device *dev);
496
497#ifdef DEBUG
498static void	panic_queues(struct net_device *dev);
499#endif
500
501static void tc35815_restart_work(struct work_struct *work);
502
503static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504{
505	struct net_device *dev = bus->priv;
506	struct tc35815_regs __iomem *tr =
507		(struct tc35815_regs __iomem *)dev->base_addr;
508	unsigned long timeout = jiffies + HZ;
509
510	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511	udelay(12); /* it takes 32 x 400ns at least */
512	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513		if (time_after(jiffies, timeout))
514			return -EIO;
515		cpu_relax();
516	}
517	return tc_readl(&tr->MD_Data) & 0xffff;
518}
519
520static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521{
522	struct net_device *dev = bus->priv;
523	struct tc35815_regs __iomem *tr =
524		(struct tc35815_regs __iomem *)dev->base_addr;
525	unsigned long timeout = jiffies + HZ;
526
527	tc_writel(val, &tr->MD_Data);
528	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529		  &tr->MD_CA);
530	udelay(12); /* it takes 32 x 400ns at least */
531	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532		if (time_after(jiffies, timeout))
533			return -EIO;
534		cpu_relax();
535	}
536	return 0;
537}
538
539static void tc_handle_link_change(struct net_device *dev)
540{
541	struct tc35815_local *lp = netdev_priv(dev);
542	struct phy_device *phydev = lp->phy_dev;
543	unsigned long flags;
544	int status_change = 0;
545
546	spin_lock_irqsave(&lp->lock, flags);
547	if (phydev->link &&
548	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549		struct tc35815_regs __iomem *tr =
550			(struct tc35815_regs __iomem *)dev->base_addr;
551		u32 reg;
552
553		reg = tc_readl(&tr->MAC_Ctl);
554		reg |= MAC_HaltReq;
555		tc_writel(reg, &tr->MAC_Ctl);
556		if (phydev->duplex == DUPLEX_FULL)
557			reg |= MAC_FullDup;
558		else
559			reg &= ~MAC_FullDup;
560		tc_writel(reg, &tr->MAC_Ctl);
561		reg &= ~MAC_HaltReq;
562		tc_writel(reg, &tr->MAC_Ctl);
563
564		/*
565		 * TX4939 PCFG.SPEEDn bit will be changed on
566		 * NETDEV_CHANGE event.
567		 */
568		if (phydev->duplex == DUPLEX_HALF &&
569		    lp->chiptype != TC35815_TX4939)
570			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
571				  &tr->Tx_Ctl);
572
573		lp->speed = phydev->speed;
574		lp->duplex = phydev->duplex;
575		status_change = 1;
576	}
577
578	if (phydev->link != lp->link) {
579		if (phydev->link) {
580			/* delayed promiscuous enabling */
581			if (dev->flags & IFF_PROMISC)
582				tc35815_set_multicast_list(dev);
583		} else {
584			lp->speed = 0;
585			lp->duplex = -1;
586		}
587		lp->link = phydev->link;
588
589		status_change = 1;
590	}
591	spin_unlock_irqrestore(&lp->lock, flags);
592
593	if (status_change && netif_msg_link(lp)) {
594		phy_print_status(phydev);
595		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
596			 dev->name,
597			 phy_read(phydev, MII_BMCR),
598			 phy_read(phydev, MII_BMSR),
599			 phy_read(phydev, MII_LPA));
600	}
601}
602
603static int tc_mii_probe(struct net_device *dev)
604{
605	struct tc35815_local *lp = netdev_priv(dev);
606	struct phy_device *phydev = NULL;
607	int phy_addr;
608	u32 dropmask;
609
610	/* find the first phy */
611	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
612		if (lp->mii_bus->phy_map[phy_addr]) {
613			if (phydev) {
614				printk(KERN_ERR "%s: multiple PHYs found\n",
615				       dev->name);
616				return -EINVAL;
617			}
618			phydev = lp->mii_bus->phy_map[phy_addr];
619			break;
620		}
621	}
622
623	if (!phydev) {
624		printk(KERN_ERR "%s: no PHY found\n", dev->name);
625		return -ENODEV;
626	}
627
628	/* attach the mac to the phy */
629	phydev = phy_connect(dev, dev_name(&phydev->dev),
630			     &tc_handle_link_change, 0,
631			     lp->chiptype == TC35815_TX4939 ?
632			     PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
633	if (IS_ERR(phydev)) {
634		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
635		return PTR_ERR(phydev);
636	}
637	printk(KERN_INFO "%s: attached PHY driver [%s] "
638		"(mii_bus:phy_addr=%s, id=%x)\n",
639		dev->name, phydev->drv->name, dev_name(&phydev->dev),
640		phydev->phy_id);
641
642	/* mask with MAC supported features */
643	phydev->supported &= PHY_BASIC_FEATURES;
644	dropmask = 0;
645	if (options.speed == 10)
646		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
647	else if (options.speed == 100)
648		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
649	if (options.duplex == 1)
650		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
651	else if (options.duplex == 2)
652		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
653	phydev->supported &= ~dropmask;
654	phydev->advertising = phydev->supported;
655
656	lp->link = 0;
657	lp->speed = 0;
658	lp->duplex = -1;
659	lp->phy_dev = phydev;
660
661	return 0;
662}
663
664static int tc_mii_init(struct net_device *dev)
665{
666	struct tc35815_local *lp = netdev_priv(dev);
667	int err;
668	int i;
669
670	lp->mii_bus = mdiobus_alloc();
671	if (lp->mii_bus == NULL) {
672		err = -ENOMEM;
673		goto err_out;
674	}
675
676	lp->mii_bus->name = "tc35815_mii_bus";
677	lp->mii_bus->read = tc_mdio_read;
678	lp->mii_bus->write = tc_mdio_write;
679	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
680		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
681	lp->mii_bus->priv = dev;
682	lp->mii_bus->parent = &lp->pci_dev->dev;
683	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
684	if (!lp->mii_bus->irq) {
685		err = -ENOMEM;
686		goto err_out_free_mii_bus;
687	}
688
689	for (i = 0; i < PHY_MAX_ADDR; i++)
690		lp->mii_bus->irq[i] = PHY_POLL;
691
692	err = mdiobus_register(lp->mii_bus);
693	if (err)
694		goto err_out_free_mdio_irq;
695	err = tc_mii_probe(dev);
696	if (err)
697		goto err_out_unregister_bus;
698	return 0;
699
700err_out_unregister_bus:
701	mdiobus_unregister(lp->mii_bus);
702err_out_free_mdio_irq:
703	kfree(lp->mii_bus->irq);
704err_out_free_mii_bus:
705	mdiobus_free(lp->mii_bus);
706err_out:
707	return err;
708}
709
710#ifdef CONFIG_CPU_TX49XX
711/*
712 * Find a platform_device providing a MAC address.  The platform code
713 * should provide a "tc35815-mac" device with a MAC address in its
714 * platform_data.
715 */
716static int __devinit tc35815_mac_match(struct device *dev, void *data)
717{
718	struct platform_device *plat_dev = to_platform_device(dev);
719	struct pci_dev *pci_dev = data;
720	unsigned int id = pci_dev->irq;
721	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
722}
723
724static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
725{
726	struct tc35815_local *lp = netdev_priv(dev);
727	struct device *pd = bus_find_device(&platform_bus_type, NULL,
728					    lp->pci_dev, tc35815_mac_match);
729	if (pd) {
730		if (pd->platform_data)
731			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
732		put_device(pd);
733		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
734	}
735	return -ENODEV;
736}
737#else
738static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
739{
740	return -ENODEV;
741}
742#endif
743
744static int __devinit tc35815_init_dev_addr(struct net_device *dev)
745{
746	struct tc35815_regs __iomem *tr =
747		(struct tc35815_regs __iomem *)dev->base_addr;
748	int i;
749
750	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
751		;
752	for (i = 0; i < 6; i += 2) {
753		unsigned short data;
754		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
755		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
756			;
757		data = tc_readl(&tr->PROM_Data);
758		dev->dev_addr[i] = data & 0xff;
759		dev->dev_addr[i+1] = data >> 8;
760	}
761	if (!is_valid_ether_addr(dev->dev_addr))
762		return tc35815_read_plat_dev_addr(dev);
763	return 0;
764}
765
766static const struct net_device_ops tc35815_netdev_ops = {
767	.ndo_open		= tc35815_open,
768	.ndo_stop		= tc35815_close,
769	.ndo_start_xmit		= tc35815_send_packet,
770	.ndo_get_stats		= tc35815_get_stats,
771	.ndo_set_multicast_list	= tc35815_set_multicast_list,
772	.ndo_tx_timeout		= tc35815_tx_timeout,
773	.ndo_do_ioctl		= tc35815_ioctl,
774	.ndo_validate_addr	= eth_validate_addr,
775	.ndo_change_mtu		= eth_change_mtu,
776	.ndo_set_mac_address	= eth_mac_addr,
777#ifdef CONFIG_NET_POLL_CONTROLLER
778	.ndo_poll_controller	= tc35815_poll_controller,
779#endif
780};
781
782static int __devinit tc35815_init_one(struct pci_dev *pdev,
783				      const struct pci_device_id *ent)
784{
785	void __iomem *ioaddr = NULL;
786	struct net_device *dev;
787	struct tc35815_local *lp;
788	int rc;
789
790	static int printed_version;
791	if (!printed_version++) {
792		printk(version);
793		dev_printk(KERN_DEBUG, &pdev->dev,
794			   "speed:%d duplex:%d\n",
795			   options.speed, options.duplex);
796	}
797
798	if (!pdev->irq) {
799		dev_warn(&pdev->dev, "no IRQ assigned.\n");
800		return -ENODEV;
801	}
802
803	/* dev zeroed in alloc_etherdev */
804	dev = alloc_etherdev(sizeof(*lp));
805	if (dev == NULL) {
806		dev_err(&pdev->dev, "unable to alloc new ethernet\n");
807		return -ENOMEM;
808	}
809	SET_NETDEV_DEV(dev, &pdev->dev);
810	lp = netdev_priv(dev);
811	lp->dev = dev;
812
813	/* enable device (incl. PCI PM wakeup), and bus-mastering */
814	rc = pcim_enable_device(pdev);
815	if (rc)
816		goto err_out;
817	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
818	if (rc)
819		goto err_out;
820	pci_set_master(pdev);
821	ioaddr = pcim_iomap_table(pdev)[1];
822
823	/* Initialize the device structure. */
824	dev->netdev_ops = &tc35815_netdev_ops;
825	dev->ethtool_ops = &tc35815_ethtool_ops;
826	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
827	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
828
829	dev->irq = pdev->irq;
830	dev->base_addr = (unsigned long)ioaddr;
831
832	INIT_WORK(&lp->restart_work, tc35815_restart_work);
833	spin_lock_init(&lp->lock);
834	spin_lock_init(&lp->rx_lock);
835	lp->pci_dev = pdev;
836	lp->chiptype = ent->driver_data;
837
838	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
839	pci_set_drvdata(pdev, dev);
840
841	/* Soft reset the chip. */
842	tc35815_chip_reset(dev);
843
844	/* Retrieve the ethernet address. */
845	if (tc35815_init_dev_addr(dev)) {
846		dev_warn(&pdev->dev, "not valid ether addr\n");
847		random_ether_addr(dev->dev_addr);
848	}
849
850	rc = register_netdev(dev);
851	if (rc)
852		goto err_out;
853
854	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
855	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
856		dev->name,
857		chip_info[ent->driver_data].name,
858		dev->base_addr,
859		dev->dev_addr,
860		dev->irq);
861
862	rc = tc_mii_init(dev);
863	if (rc)
864		goto err_out_unregister;
865
866	return 0;
867
868err_out_unregister:
869	unregister_netdev(dev);
870err_out:
871	free_netdev(dev);
872	return rc;
873}
874
875
876static void __devexit tc35815_remove_one(struct pci_dev *pdev)
877{
878	struct net_device *dev = pci_get_drvdata(pdev);
879	struct tc35815_local *lp = netdev_priv(dev);
880
881	phy_disconnect(lp->phy_dev);
882	mdiobus_unregister(lp->mii_bus);
883	kfree(lp->mii_bus->irq);
884	mdiobus_free(lp->mii_bus);
885	unregister_netdev(dev);
886	free_netdev(dev);
887	pci_set_drvdata(pdev, NULL);
888}
889
890static int
891tc35815_init_queues(struct net_device *dev)
892{
893	struct tc35815_local *lp = netdev_priv(dev);
894	int i;
895	unsigned long fd_addr;
896
897	if (!lp->fd_buf) {
898		BUG_ON(sizeof(struct FDesc) +
899		       sizeof(struct BDesc) * RX_BUF_NUM +
900		       sizeof(struct FDesc) * RX_FD_NUM +
901		       sizeof(struct TxFD) * TX_FD_NUM >
902		       PAGE_SIZE * FD_PAGE_NUM);
903
904		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
905						  PAGE_SIZE * FD_PAGE_NUM,
906						  &lp->fd_buf_dma);
907		if (!lp->fd_buf)
908			return -ENOMEM;
909		for (i = 0; i < RX_BUF_NUM; i++) {
910			lp->rx_skbs[i].skb =
911				alloc_rxbuf_skb(dev, lp->pci_dev,
912						&lp->rx_skbs[i].skb_dma);
913			if (!lp->rx_skbs[i].skb) {
914				while (--i >= 0) {
915					free_rxbuf_skb(lp->pci_dev,
916						       lp->rx_skbs[i].skb,
917						       lp->rx_skbs[i].skb_dma);
918					lp->rx_skbs[i].skb = NULL;
919				}
920				pci_free_consistent(lp->pci_dev,
921						    PAGE_SIZE * FD_PAGE_NUM,
922						    lp->fd_buf,
923						    lp->fd_buf_dma);
924				lp->fd_buf = NULL;
925				return -ENOMEM;
926			}
927		}
928		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
929		       dev->name, lp->fd_buf);
930		printk("\n");
931	} else {
932		for (i = 0; i < FD_PAGE_NUM; i++)
933			clear_page((void *)((unsigned long)lp->fd_buf +
934					    i * PAGE_SIZE));
935	}
936	fd_addr = (unsigned long)lp->fd_buf;
937
938	/* Free Descriptors (for Receive) */
939	lp->rfd_base = (struct RxFD *)fd_addr;
940	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
941	for (i = 0; i < RX_FD_NUM; i++)
942		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
943	lp->rfd_cur = lp->rfd_base;
944	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
945
946	/* Transmit Descriptors */
947	lp->tfd_base = (struct TxFD *)fd_addr;
948	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
949	for (i = 0; i < TX_FD_NUM; i++) {
950		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
951		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
952		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
953	}
954	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
955	lp->tfd_start = 0;
956	lp->tfd_end = 0;
957
958	/* Buffer List (for Receive) */
959	lp->fbl_ptr = (struct FrFD *)fd_addr;
960	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
961	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
962	/*
963	 * move all allocated skbs to head of rx_skbs[] array.
964	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
965	 * tc35815_rx() had failed.
966	 */
967	lp->fbl_count = 0;
968	for (i = 0; i < RX_BUF_NUM; i++) {
969		if (lp->rx_skbs[i].skb) {
970			if (i != lp->fbl_count) {
971				lp->rx_skbs[lp->fbl_count].skb =
972					lp->rx_skbs[i].skb;
973				lp->rx_skbs[lp->fbl_count].skb_dma =
974					lp->rx_skbs[i].skb_dma;
975			}
976			lp->fbl_count++;
977		}
978	}
979	for (i = 0; i < RX_BUF_NUM; i++) {
980		if (i >= lp->fbl_count) {
981			lp->fbl_ptr->bd[i].BuffData = 0;
982			lp->fbl_ptr->bd[i].BDCtl = 0;
983			continue;
984		}
985		lp->fbl_ptr->bd[i].BuffData =
986			cpu_to_le32(lp->rx_skbs[i].skb_dma);
987		/* BDID is index of FrFD.bd[] */
988		lp->fbl_ptr->bd[i].BDCtl =
989			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
990				    RX_BUF_SIZE);
991	}
992
993	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
994	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
995	return 0;
996}
997
998static void
999tc35815_clear_queues(struct net_device *dev)
1000{
1001	struct tc35815_local *lp = netdev_priv(dev);
1002	int i;
1003
1004	for (i = 0; i < TX_FD_NUM; i++) {
1005		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1006		struct sk_buff *skb =
1007			fdsystem != 0xffffffff ?
1008			lp->tx_skbs[fdsystem].skb : NULL;
1009#ifdef DEBUG
1010		if (lp->tx_skbs[i].skb != skb) {
1011			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1012			panic_queues(dev);
1013		}
1014#else
1015		BUG_ON(lp->tx_skbs[i].skb != skb);
1016#endif
1017		if (skb) {
1018			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1019			lp->tx_skbs[i].skb = NULL;
1020			lp->tx_skbs[i].skb_dma = 0;
1021			dev_kfree_skb_any(skb);
1022		}
1023		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1024	}
1025
1026	tc35815_init_queues(dev);
1027}
1028
1029static void
1030tc35815_free_queues(struct net_device *dev)
1031{
1032	struct tc35815_local *lp = netdev_priv(dev);
1033	int i;
1034
1035	if (lp->tfd_base) {
1036		for (i = 0; i < TX_FD_NUM; i++) {
1037			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1038			struct sk_buff *skb =
1039				fdsystem != 0xffffffff ?
1040				lp->tx_skbs[fdsystem].skb : NULL;
1041#ifdef DEBUG
1042			if (lp->tx_skbs[i].skb != skb) {
1043				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1044				panic_queues(dev);
1045			}
1046#else
1047			BUG_ON(lp->tx_skbs[i].skb != skb);
1048#endif
1049			if (skb) {
1050				dev_kfree_skb(skb);
1051				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1052				lp->tx_skbs[i].skb = NULL;
1053				lp->tx_skbs[i].skb_dma = 0;
1054			}
1055			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1056		}
1057	}
1058
1059	lp->rfd_base = NULL;
1060	lp->rfd_limit = NULL;
1061	lp->rfd_cur = NULL;
1062	lp->fbl_ptr = NULL;
1063
1064	for (i = 0; i < RX_BUF_NUM; i++) {
1065		if (lp->rx_skbs[i].skb) {
1066			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1067				       lp->rx_skbs[i].skb_dma);
1068			lp->rx_skbs[i].skb = NULL;
1069		}
1070	}
1071	if (lp->fd_buf) {
1072		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1073				    lp->fd_buf, lp->fd_buf_dma);
1074		lp->fd_buf = NULL;
1075	}
1076}
1077
1078static void
1079dump_txfd(struct TxFD *fd)
1080{
1081	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1082	       le32_to_cpu(fd->fd.FDNext),
1083	       le32_to_cpu(fd->fd.FDSystem),
1084	       le32_to_cpu(fd->fd.FDStat),
1085	       le32_to_cpu(fd->fd.FDCtl));
1086	printk("BD: ");
1087	printk(" %08x %08x",
1088	       le32_to_cpu(fd->bd.BuffData),
1089	       le32_to_cpu(fd->bd.BDCtl));
1090	printk("\n");
1091}
1092
1093static int
1094dump_rxfd(struct RxFD *fd)
1095{
1096	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1097	if (bd_count > 8)
1098		bd_count = 8;
1099	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1100	       le32_to_cpu(fd->fd.FDNext),
1101	       le32_to_cpu(fd->fd.FDSystem),
1102	       le32_to_cpu(fd->fd.FDStat),
1103	       le32_to_cpu(fd->fd.FDCtl));
1104	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1105		return 0;
1106	printk("BD: ");
1107	for (i = 0; i < bd_count; i++)
1108		printk(" %08x %08x",
1109		       le32_to_cpu(fd->bd[i].BuffData),
1110		       le32_to_cpu(fd->bd[i].BDCtl));
1111	printk("\n");
1112	return bd_count;
1113}
1114
1115#ifdef DEBUG
1116static void
1117dump_frfd(struct FrFD *fd)
1118{
1119	int i;
1120	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1121	       le32_to_cpu(fd->fd.FDNext),
1122	       le32_to_cpu(fd->fd.FDSystem),
1123	       le32_to_cpu(fd->fd.FDStat),
1124	       le32_to_cpu(fd->fd.FDCtl));
1125	printk("BD: ");
1126	for (i = 0; i < RX_BUF_NUM; i++)
1127		printk(" %08x %08x",
1128		       le32_to_cpu(fd->bd[i].BuffData),
1129		       le32_to_cpu(fd->bd[i].BDCtl));
1130	printk("\n");
1131}
1132
1133static void
1134panic_queues(struct net_device *dev)
1135{
1136	struct tc35815_local *lp = netdev_priv(dev);
1137	int i;
1138
1139	printk("TxFD base %p, start %u, end %u\n",
1140	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1141	printk("RxFD base %p limit %p cur %p\n",
1142	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1143	printk("FrFD %p\n", lp->fbl_ptr);
1144	for (i = 0; i < TX_FD_NUM; i++)
1145		dump_txfd(&lp->tfd_base[i]);
1146	for (i = 0; i < RX_FD_NUM; i++) {
1147		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1148		i += (bd_count + 1) / 2;	/* skip BDs */
1149	}
1150	dump_frfd(lp->fbl_ptr);
1151	panic("%s: Illegal queue state.", dev->name);
1152}
1153#endif
1154
1155static void print_eth(const u8 *add)
1156{
1157	printk(KERN_DEBUG "print_eth(%p)\n", add);
1158	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1159		add + 6, add, add[12], add[13]);
1160}
1161
1162static int tc35815_tx_full(struct net_device *dev)
1163{
1164	struct tc35815_local *lp = netdev_priv(dev);
1165	return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
1166}
1167
1168static void tc35815_restart(struct net_device *dev)
1169{
1170	struct tc35815_local *lp = netdev_priv(dev);
1171
1172	if (lp->phy_dev) {
1173		int timeout;
1174
1175		phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1176		timeout = 100;
1177		while (--timeout) {
1178			if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1179				break;
1180			udelay(1);
1181		}
1182		if (!timeout)
1183			printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1184	}
1185
1186	spin_lock_bh(&lp->rx_lock);
1187	spin_lock_irq(&lp->lock);
1188	tc35815_chip_reset(dev);
1189	tc35815_clear_queues(dev);
1190	tc35815_chip_init(dev);
1191	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1192	tc35815_set_multicast_list(dev);
1193	spin_unlock_irq(&lp->lock);
1194	spin_unlock_bh(&lp->rx_lock);
1195
1196	netif_wake_queue(dev);
1197}
1198
1199static void tc35815_restart_work(struct work_struct *work)
1200{
1201	struct tc35815_local *lp =
1202		container_of(work, struct tc35815_local, restart_work);
1203	struct net_device *dev = lp->dev;
1204
1205	tc35815_restart(dev);
1206}
1207
1208static void tc35815_schedule_restart(struct net_device *dev)
1209{
1210	struct tc35815_local *lp = netdev_priv(dev);
1211	struct tc35815_regs __iomem *tr =
1212		(struct tc35815_regs __iomem *)dev->base_addr;
1213	unsigned long flags;
1214
1215	/* disable interrupts */
1216	spin_lock_irqsave(&lp->lock, flags);
1217	tc_writel(0, &tr->Int_En);
1218	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1219	schedule_work(&lp->restart_work);
1220	spin_unlock_irqrestore(&lp->lock, flags);
1221}
1222
1223static void tc35815_tx_timeout(struct net_device *dev)
1224{
1225	struct tc35815_regs __iomem *tr =
1226		(struct tc35815_regs __iomem *)dev->base_addr;
1227
1228	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1229	       dev->name, tc_readl(&tr->Tx_Stat));
1230
1231	/* Try to restart the adaptor. */
1232	tc35815_schedule_restart(dev);
1233	dev->stats.tx_errors++;
1234}
1235
1236/*
1237 * Open/initialize the controller. This is called (in the current kernel)
1238 * sometime after booting when the 'ifconfig' program is run.
1239 *
1240 * This routine should set everything up anew at each open, even
1241 * registers that "should" only need to be set once at boot, so that
1242 * there is non-reboot way to recover if something goes wrong.
1243 */
1244static int
1245tc35815_open(struct net_device *dev)
1246{
1247	struct tc35815_local *lp = netdev_priv(dev);
1248
1249	/*
1250	 * This is used if the interrupt line can turned off (shared).
1251	 * See 3c503.c for an example of selecting the IRQ at config-time.
1252	 */
1253	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1254			dev->name, dev))
1255		return -EAGAIN;
1256
1257	tc35815_chip_reset(dev);
1258
1259	if (tc35815_init_queues(dev) != 0) {
1260		free_irq(dev->irq, dev);
1261		return -EAGAIN;
1262	}
1263
1264	napi_enable(&lp->napi);
1265
1266	/* Reset the hardware here. Don't forget to set the station address. */
1267	spin_lock_irq(&lp->lock);
1268	tc35815_chip_init(dev);
1269	spin_unlock_irq(&lp->lock);
1270
1271	netif_carrier_off(dev);
1272	/* schedule a link state check */
1273	phy_start(lp->phy_dev);
1274
1275	/* We are now ready to accept transmit requeusts from
1276	 * the queueing layer of the networking.
1277	 */
1278	netif_start_queue(dev);
1279
1280	return 0;
1281}
1282
1283/* This will only be invoked if your driver is _not_ in XOFF state.
1284 * What this means is that you need not check it, and that this
1285 * invariant will hold if you make sure that the netif_*_queue()
1286 * calls are done at the proper times.
1287 */
1288static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1289{
1290	struct tc35815_local *lp = netdev_priv(dev);
1291	struct TxFD *txfd;
1292	unsigned long flags;
1293
1294	/* If some error occurs while trying to transmit this
1295	 * packet, you should return '1' from this function.
1296	 * In such a case you _may not_ do anything to the
1297	 * SKB, it is still owned by the network queueing
1298	 * layer when an error is returned.  This means you
1299	 * may not modify any SKB fields, you may not free
1300	 * the SKB, etc.
1301	 */
1302
1303	/* This is the most common case for modern hardware.
1304	 * The spinlock protects this code from the TX complete
1305	 * hardware interrupt handler.  Queue flow control is
1306	 * thus managed under this lock as well.
1307	 */
1308	spin_lock_irqsave(&lp->lock, flags);
1309
1310	/* failsafe... (handle txdone now if half of FDs are used) */
1311	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1312	    TX_FD_NUM / 2)
1313		tc35815_txdone(dev);
1314
1315	if (netif_msg_pktdata(lp))
1316		print_eth(skb->data);
1317#ifdef DEBUG
1318	if (lp->tx_skbs[lp->tfd_start].skb) {
1319		printk("%s: tx_skbs conflict.\n", dev->name);
1320		panic_queues(dev);
1321	}
1322#else
1323	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1324#endif
1325	lp->tx_skbs[lp->tfd_start].skb = skb;
1326	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1327
1328	/*add to ring */
1329	txfd = &lp->tfd_base[lp->tfd_start];
1330	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1331	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1332	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1333	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1334
1335	if (lp->tfd_start == lp->tfd_end) {
1336		struct tc35815_regs __iomem *tr =
1337			(struct tc35815_regs __iomem *)dev->base_addr;
1338		/* Start DMA Transmitter. */
1339		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1340		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1341		if (netif_msg_tx_queued(lp)) {
1342			printk("%s: starting TxFD.\n", dev->name);
1343			dump_txfd(txfd);
1344		}
1345		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1346	} else {
1347		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1348		if (netif_msg_tx_queued(lp)) {
1349			printk("%s: queueing TxFD.\n", dev->name);
1350			dump_txfd(txfd);
1351		}
1352	}
1353	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1354
1355	/* If we just used up the very last entry in the
1356	 * TX ring on this device, tell the queueing
1357	 * layer to send no more.
1358	 */
1359	if (tc35815_tx_full(dev)) {
1360		if (netif_msg_tx_queued(lp))
1361			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1362		netif_stop_queue(dev);
1363	}
1364
1365	/* When the TX completion hw interrupt arrives, this
1366	 * is when the transmit statistics are updated.
1367	 */
1368
1369	spin_unlock_irqrestore(&lp->lock, flags);
1370	return NETDEV_TX_OK;
1371}
1372
1373#define FATAL_ERROR_INT \
1374	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1375static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1376{
1377	static int count;
1378	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1379	       dev->name, status);
1380	if (status & Int_IntPCI)
1381		printk(" IntPCI");
1382	if (status & Int_DmParErr)
1383		printk(" DmParErr");
1384	if (status & Int_IntNRAbt)
1385		printk(" IntNRAbt");
1386	printk("\n");
1387	if (count++ > 100)
1388		panic("%s: Too many fatal errors.", dev->name);
1389	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1390	/* Try to restart the adaptor. */
1391	tc35815_schedule_restart(dev);
1392}
1393
1394static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1395{
1396	struct tc35815_local *lp = netdev_priv(dev);
1397	int ret = -1;
1398
1399	/* Fatal errors... */
1400	if (status & FATAL_ERROR_INT) {
1401		tc35815_fatal_error_interrupt(dev, status);
1402		return 0;
1403	}
1404	/* recoverable errors */
1405	if (status & Int_IntFDAEx) {
1406		if (netif_msg_rx_err(lp))
1407			dev_warn(&dev->dev,
1408				 "Free Descriptor Area Exhausted (%#x).\n",
1409				 status);
1410		dev->stats.rx_dropped++;
1411		ret = 0;
1412	}
1413	if (status & Int_IntBLEx) {
1414		if (netif_msg_rx_err(lp))
1415			dev_warn(&dev->dev,
1416				 "Buffer List Exhausted (%#x).\n",
1417				 status);
1418		dev->stats.rx_dropped++;
1419		ret = 0;
1420	}
1421	if (status & Int_IntExBD) {
1422		if (netif_msg_rx_err(lp))
1423			dev_warn(&dev->dev,
1424				 "Excessive Buffer Descriptiors (%#x).\n",
1425				 status);
1426		dev->stats.rx_length_errors++;
1427		ret = 0;
1428	}
1429
1430	/* normal notification */
1431	if (status & Int_IntMacRx) {
1432		/* Got a packet(s). */
1433		ret = tc35815_rx(dev, limit);
1434		lp->lstats.rx_ints++;
1435	}
1436	if (status & Int_IntMacTx) {
1437		/* Transmit complete. */
1438		lp->lstats.tx_ints++;
1439		spin_lock_irq(&lp->lock);
1440		tc35815_txdone(dev);
1441		spin_unlock_irq(&lp->lock);
1442		if (ret < 0)
1443			ret = 0;
1444	}
1445	return ret;
1446}
1447
1448/*
1449 * The typical workload of the driver:
1450 * Handle the network interface interrupts.
1451 */
1452static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1453{
1454	struct net_device *dev = dev_id;
1455	struct tc35815_local *lp = netdev_priv(dev);
1456	struct tc35815_regs __iomem *tr =
1457		(struct tc35815_regs __iomem *)dev->base_addr;
1458	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1459
1460	if (!(dmactl & DMA_IntMask)) {
1461		/* disable interrupts */
1462		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1463		if (napi_schedule_prep(&lp->napi))
1464			__napi_schedule(&lp->napi);
1465		else {
1466			printk(KERN_ERR "%s: interrupt taken in poll\n",
1467			       dev->name);
1468			BUG();
1469		}
1470		(void)tc_readl(&tr->Int_Src);	/* flush */
1471		return IRQ_HANDLED;
1472	}
1473	return IRQ_NONE;
1474}
1475
1476#ifdef CONFIG_NET_POLL_CONTROLLER
1477static void tc35815_poll_controller(struct net_device *dev)
1478{
1479	disable_irq(dev->irq);
1480	tc35815_interrupt(dev->irq, dev);
1481	enable_irq(dev->irq);
1482}
1483#endif
1484
1485/* We have a good packet(s), get it/them out of the buffers. */
1486static int
1487tc35815_rx(struct net_device *dev, int limit)
1488{
1489	struct tc35815_local *lp = netdev_priv(dev);
1490	unsigned int fdctl;
1491	int i;
1492	int received = 0;
1493
1494	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1495		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1496		int pkt_len = fdctl & FD_FDLength_MASK;
1497		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1498#ifdef DEBUG
1499		struct RxFD *next_rfd;
1500#endif
1501#if (RX_CTL_CMD & Rx_StripCRC) == 0
1502		pkt_len -= ETH_FCS_LEN;
1503#endif
1504
1505		if (netif_msg_rx_status(lp))
1506			dump_rxfd(lp->rfd_cur);
1507		if (status & Rx_Good) {
1508			struct sk_buff *skb;
1509			unsigned char *data;
1510			int cur_bd;
1511
1512			if (--limit < 0)
1513				break;
1514			BUG_ON(bd_count > 1);
1515			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1516				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1517#ifdef DEBUG
1518			if (cur_bd >= RX_BUF_NUM) {
1519				printk("%s: invalid BDID.\n", dev->name);
1520				panic_queues(dev);
1521			}
1522			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1523			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1524			if (!lp->rx_skbs[cur_bd].skb) {
1525				printk("%s: NULL skb.\n", dev->name);
1526				panic_queues(dev);
1527			}
1528#else
1529			BUG_ON(cur_bd >= RX_BUF_NUM);
1530#endif
1531			skb = lp->rx_skbs[cur_bd].skb;
1532			prefetch(skb->data);
1533			lp->rx_skbs[cur_bd].skb = NULL;
1534			pci_unmap_single(lp->pci_dev,
1535					 lp->rx_skbs[cur_bd].skb_dma,
1536					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1537			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1538				memmove(skb->data, skb->data - NET_IP_ALIGN,
1539					pkt_len);
1540			data = skb_put(skb, pkt_len);
1541			if (netif_msg_pktdata(lp))
1542				print_eth(data);
1543			skb->protocol = eth_type_trans(skb, dev);
1544			netif_receive_skb(skb);
1545			received++;
1546			dev->stats.rx_packets++;
1547			dev->stats.rx_bytes += pkt_len;
1548		} else {
1549			dev->stats.rx_errors++;
1550			if (netif_msg_rx_err(lp))
1551				dev_info(&dev->dev, "Rx error (status %x)\n",
1552					 status & Rx_Stat_Mask);
1553			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1554				status &= ~(Rx_LongErr|Rx_CRCErr);
1555				status |= Rx_Over;
1556			}
1557			if (status & Rx_LongErr)
1558				dev->stats.rx_length_errors++;
1559			if (status & Rx_Over)
1560				dev->stats.rx_fifo_errors++;
1561			if (status & Rx_CRCErr)
1562				dev->stats.rx_crc_errors++;
1563			if (status & Rx_Align)
1564				dev->stats.rx_frame_errors++;
1565		}
1566
1567		if (bd_count > 0) {
1568			/* put Free Buffer back to controller */
1569			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1570			unsigned char id =
1571				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1572#ifdef DEBUG
1573			if (id >= RX_BUF_NUM) {
1574				printk("%s: invalid BDID.\n", dev->name);
1575				panic_queues(dev);
1576			}
1577#else
1578			BUG_ON(id >= RX_BUF_NUM);
1579#endif
1580			/* free old buffers */
1581			lp->fbl_count--;
1582			while (lp->fbl_count < RX_BUF_NUM)
1583			{
1584				unsigned char curid =
1585					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1586				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1587#ifdef DEBUG
1588				bdctl = le32_to_cpu(bd->BDCtl);
1589				if (bdctl & BD_CownsBD) {
1590					printk("%s: Freeing invalid BD.\n",
1591					       dev->name);
1592					panic_queues(dev);
1593				}
1594#endif
1595				/* pass BD to controller */
1596				if (!lp->rx_skbs[curid].skb) {
1597					lp->rx_skbs[curid].skb =
1598						alloc_rxbuf_skb(dev,
1599								lp->pci_dev,
1600								&lp->rx_skbs[curid].skb_dma);
1601					if (!lp->rx_skbs[curid].skb)
1602						break; /* try on next reception */
1603					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1604				}
1605				/* Note: BDLength was modified by chip. */
1606				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1607							(curid << BD_RxBDID_SHIFT) |
1608							RX_BUF_SIZE);
1609				lp->fbl_count++;
1610			}
1611		}
1612
1613		/* put RxFD back to controller */
1614#ifdef DEBUG
1615		next_rfd = fd_bus_to_virt(lp,
1616					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1617		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1618			printk("%s: RxFD FDNext invalid.\n", dev->name);
1619			panic_queues(dev);
1620		}
1621#endif
1622		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1623			/* pass FD to controller */
1624#ifdef DEBUG
1625			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1626#else
1627			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1628#endif
1629			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1630			lp->rfd_cur++;
1631		}
1632		if (lp->rfd_cur > lp->rfd_limit)
1633			lp->rfd_cur = lp->rfd_base;
1634#ifdef DEBUG
1635		if (lp->rfd_cur != next_rfd)
1636			printk("rfd_cur = %p, next_rfd %p\n",
1637			       lp->rfd_cur, next_rfd);
1638#endif
1639	}
1640
1641	return received;
1642}
1643
1644static int tc35815_poll(struct napi_struct *napi, int budget)
1645{
1646	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1647	struct net_device *dev = lp->dev;
1648	struct tc35815_regs __iomem *tr =
1649		(struct tc35815_regs __iomem *)dev->base_addr;
1650	int received = 0, handled;
1651	u32 status;
1652
1653	spin_lock(&lp->rx_lock);
1654	status = tc_readl(&tr->Int_Src);
1655	do {
1656		/* BLEx, FDAEx will be cleared later */
1657		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1658			  &tr->Int_Src);	/* write to clear */
1659
1660		handled = tc35815_do_interrupt(dev, status, budget - received);
1661		if (status & (Int_BLEx | Int_FDAEx))
1662			tc_writel(status & (Int_BLEx | Int_FDAEx),
1663				  &tr->Int_Src);
1664		if (handled >= 0) {
1665			received += handled;
1666			if (received >= budget)
1667				break;
1668		}
1669		status = tc_readl(&tr->Int_Src);
1670	} while (status);
1671	spin_unlock(&lp->rx_lock);
1672
1673	if (received < budget) {
1674		napi_complete(napi);
1675		/* enable interrupts */
1676		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1677	}
1678	return received;
1679}
1680
1681#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1682
1683static void
1684tc35815_check_tx_stat(struct net_device *dev, int status)
1685{
1686	struct tc35815_local *lp = netdev_priv(dev);
1687	const char *msg = NULL;
1688
1689	/* count collisions */
1690	if (status & Tx_ExColl)
1691		dev->stats.collisions += 16;
1692	if (status & Tx_TxColl_MASK)
1693		dev->stats.collisions += status & Tx_TxColl_MASK;
1694
1695	/* TX4939 does not have NCarr */
1696	if (lp->chiptype == TC35815_TX4939)
1697		status &= ~Tx_NCarr;
1698	if (!lp->link || lp->duplex == DUPLEX_FULL)
1699		status &= ~Tx_NCarr;
1700
1701	if (!(status & TX_STA_ERR)) {
1702		/* no error. */
1703		dev->stats.tx_packets++;
1704		return;
1705	}
1706
1707	dev->stats.tx_errors++;
1708	if (status & Tx_ExColl) {
1709		dev->stats.tx_aborted_errors++;
1710		msg = "Excessive Collision.";
1711	}
1712	if (status & Tx_Under) {
1713		dev->stats.tx_fifo_errors++;
1714		msg = "Tx FIFO Underrun.";
1715		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1716			lp->lstats.tx_underrun++;
1717			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1718				struct tc35815_regs __iomem *tr =
1719					(struct tc35815_regs __iomem *)dev->base_addr;
1720				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1721				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1722			}
1723		}
1724	}
1725	if (status & Tx_Defer) {
1726		dev->stats.tx_fifo_errors++;
1727		msg = "Excessive Deferral.";
1728	}
1729	if (status & Tx_NCarr) {
1730		dev->stats.tx_carrier_errors++;
1731		msg = "Lost Carrier Sense.";
1732	}
1733	if (status & Tx_LateColl) {
1734		dev->stats.tx_aborted_errors++;
1735		msg = "Late Collision.";
1736	}
1737	if (status & Tx_TxPar) {
1738		dev->stats.tx_fifo_errors++;
1739		msg = "Transmit Parity Error.";
1740	}
1741	if (status & Tx_SQErr) {
1742		dev->stats.tx_heartbeat_errors++;
1743		msg = "Signal Quality Error.";
1744	}
1745	if (msg && netif_msg_tx_err(lp))
1746		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1747}
1748
1749/* This handles TX complete events posted by the device
1750 * via interrupts.
1751 */
1752static void
1753tc35815_txdone(struct net_device *dev)
1754{
1755	struct tc35815_local *lp = netdev_priv(dev);
1756	struct TxFD *txfd;
1757	unsigned int fdctl;
1758
1759	txfd = &lp->tfd_base[lp->tfd_end];
1760	while (lp->tfd_start != lp->tfd_end &&
1761	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1762		int status = le32_to_cpu(txfd->fd.FDStat);
1763		struct sk_buff *skb;
1764		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1765		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1766
1767		if (netif_msg_tx_done(lp)) {
1768			printk("%s: complete TxFD.\n", dev->name);
1769			dump_txfd(txfd);
1770		}
1771		tc35815_check_tx_stat(dev, status);
1772
1773		skb = fdsystem != 0xffffffff ?
1774			lp->tx_skbs[fdsystem].skb : NULL;
1775#ifdef DEBUG
1776		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1777			printk("%s: tx_skbs mismatch.\n", dev->name);
1778			panic_queues(dev);
1779		}
1780#else
1781		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1782#endif
1783		if (skb) {
1784			dev->stats.tx_bytes += skb->len;
1785			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1786			lp->tx_skbs[lp->tfd_end].skb = NULL;
1787			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1788			dev_kfree_skb_any(skb);
1789		}
1790		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1791
1792		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1793		txfd = &lp->tfd_base[lp->tfd_end];
1794#ifdef DEBUG
1795		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1796			printk("%s: TxFD FDNext invalid.\n", dev->name);
1797			panic_queues(dev);
1798		}
1799#endif
1800		if (fdnext & FD_Next_EOL) {
1801			/* DMA Transmitter has been stopping... */
1802			if (lp->tfd_end != lp->tfd_start) {
1803				struct tc35815_regs __iomem *tr =
1804					(struct tc35815_regs __iomem *)dev->base_addr;
1805				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1806				struct TxFD *txhead = &lp->tfd_base[head];
1807				int qlen = (lp->tfd_start + TX_FD_NUM
1808					    - lp->tfd_end) % TX_FD_NUM;
1809
1810#ifdef DEBUG
1811				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1812					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1813					panic_queues(dev);
1814				}
1815#endif
1816				/* log max queue length */
1817				if (lp->lstats.max_tx_qlen < qlen)
1818					lp->lstats.max_tx_qlen = qlen;
1819
1820
1821				/* start DMA Transmitter again */
1822				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1823				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1824				if (netif_msg_tx_queued(lp)) {
1825					printk("%s: start TxFD on queue.\n",
1826					       dev->name);
1827					dump_txfd(txfd);
1828				}
1829				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1830			}
1831			break;
1832		}
1833	}
1834
1835	/* If we had stopped the queue due to a "tx full"
1836	 * condition, and space has now been made available,
1837	 * wake up the queue.
1838	 */
1839	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1840		netif_wake_queue(dev);
1841}
1842
1843/* The inverse routine to tc35815_open(). */
1844static int
1845tc35815_close(struct net_device *dev)
1846{
1847	struct tc35815_local *lp = netdev_priv(dev);
1848
1849	netif_stop_queue(dev);
1850	napi_disable(&lp->napi);
1851	if (lp->phy_dev)
1852		phy_stop(lp->phy_dev);
1853	cancel_work_sync(&lp->restart_work);
1854
1855	/* Flush the Tx and disable Rx here. */
1856	tc35815_chip_reset(dev);
1857	free_irq(dev->irq, dev);
1858
1859	tc35815_free_queues(dev);
1860
1861	return 0;
1862
1863}
1864
1865/*
1866 * Get the current statistics.
1867 * This may be called with the card open or closed.
1868 */
1869static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1870{
1871	struct tc35815_regs __iomem *tr =
1872		(struct tc35815_regs __iomem *)dev->base_addr;
1873	if (netif_running(dev))
1874		/* Update the statistics from the device registers. */
1875		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1876
1877	return &dev->stats;
1878}
1879
1880static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1881{
1882	struct tc35815_local *lp = netdev_priv(dev);
1883	struct tc35815_regs __iomem *tr =
1884		(struct tc35815_regs __iomem *)dev->base_addr;
1885	int cam_index = index * 6;
1886	u32 cam_data;
1887	u32 saved_addr;
1888
1889	saved_addr = tc_readl(&tr->CAM_Adr);
1890
1891	if (netif_msg_hw(lp))
1892		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1893			dev->name, index, addr);
1894	if (index & 1) {
1895		/* read modify write */
1896		tc_writel(cam_index - 2, &tr->CAM_Adr);
1897		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1898		cam_data |= addr[0] << 8 | addr[1];
1899		tc_writel(cam_data, &tr->CAM_Data);
1900		/* write whole word */
1901		tc_writel(cam_index + 2, &tr->CAM_Adr);
1902		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1903		tc_writel(cam_data, &tr->CAM_Data);
1904	} else {
1905		/* write whole word */
1906		tc_writel(cam_index, &tr->CAM_Adr);
1907		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1908		tc_writel(cam_data, &tr->CAM_Data);
1909		/* read modify write */
1910		tc_writel(cam_index + 4, &tr->CAM_Adr);
1911		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1912		cam_data |= addr[4] << 24 | (addr[5] << 16);
1913		tc_writel(cam_data, &tr->CAM_Data);
1914	}
1915
1916	tc_writel(saved_addr, &tr->CAM_Adr);
1917}
1918
1919
1920/*
1921 * Set or clear the multicast filter for this adaptor.
1922 * num_addrs == -1	Promiscuous mode, receive all packets
1923 * num_addrs == 0	Normal mode, clear multicast list
1924 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1925 *			and do best-effort filtering.
1926 */
1927static void
1928tc35815_set_multicast_list(struct net_device *dev)
1929{
1930	struct tc35815_regs __iomem *tr =
1931		(struct tc35815_regs __iomem *)dev->base_addr;
1932
1933	if (dev->flags & IFF_PROMISC) {
1934		/* With some (all?) 100MHalf HUB, controller will hang
1935		 * if we enabled promiscuous mode before linkup... */
1936		struct tc35815_local *lp = netdev_priv(dev);
1937
1938		if (!lp->link)
1939			return;
1940		/* Enable promiscuous mode */
1941		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1942	} else if ((dev->flags & IFF_ALLMULTI) ||
1943		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1944		/* CAM 0, 1, 20 are reserved. */
1945		/* Disable promiscuous mode, use normal mode. */
1946		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1947	} else if (!netdev_mc_empty(dev)) {
1948		struct netdev_hw_addr *ha;
1949		int i;
1950		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1951
1952		tc_writel(0, &tr->CAM_Ctl);
1953		/* Walk the address list, and load the filter */
1954		i = 0;
1955		netdev_for_each_mc_addr(ha, dev) {
1956			/* entry 0,1 is reserved. */
1957			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1958			ena_bits |= CAM_Ena_Bit(i + 2);
1959			i++;
1960		}
1961		tc_writel(ena_bits, &tr->CAM_Ena);
1962		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1963	} else {
1964		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1965		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1966	}
1967}
1968
1969static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1970{
1971	struct tc35815_local *lp = netdev_priv(dev);
1972	strcpy(info->driver, MODNAME);
1973	strcpy(info->version, DRV_VERSION);
1974	strcpy(info->bus_info, pci_name(lp->pci_dev));
1975}
1976
1977static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978{
1979	struct tc35815_local *lp = netdev_priv(dev);
1980
1981	if (!lp->phy_dev)
1982		return -ENODEV;
1983	return phy_ethtool_gset(lp->phy_dev, cmd);
1984}
1985
1986static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987{
1988	struct tc35815_local *lp = netdev_priv(dev);
1989
1990	if (!lp->phy_dev)
1991		return -ENODEV;
1992	return phy_ethtool_sset(lp->phy_dev, cmd);
1993}
1994
1995static u32 tc35815_get_msglevel(struct net_device *dev)
1996{
1997	struct tc35815_local *lp = netdev_priv(dev);
1998	return lp->msg_enable;
1999}
2000
2001static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002{
2003	struct tc35815_local *lp = netdev_priv(dev);
2004	lp->msg_enable = datum;
2005}
2006
2007static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008{
2009	struct tc35815_local *lp = netdev_priv(dev);
2010
2011	switch (sset) {
2012	case ETH_SS_STATS:
2013		return sizeof(lp->lstats) / sizeof(int);
2014	default:
2015		return -EOPNOTSUPP;
2016	}
2017}
2018
2019static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020{
2021	struct tc35815_local *lp = netdev_priv(dev);
2022	data[0] = lp->lstats.max_tx_qlen;
2023	data[1] = lp->lstats.tx_ints;
2024	data[2] = lp->lstats.rx_ints;
2025	data[3] = lp->lstats.tx_underrun;
2026}
2027
2028static struct {
2029	const char str[ETH_GSTRING_LEN];
2030} ethtool_stats_keys[] = {
2031	{ "max_tx_qlen" },
2032	{ "tx_ints" },
2033	{ "rx_ints" },
2034	{ "tx_underrun" },
2035};
2036
2037static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038{
2039	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040}
2041
2042static const struct ethtool_ops tc35815_ethtool_ops = {
2043	.get_drvinfo		= tc35815_get_drvinfo,
2044	.get_settings		= tc35815_get_settings,
2045	.set_settings		= tc35815_set_settings,
2046	.get_link		= ethtool_op_get_link,
2047	.get_msglevel		= tc35815_get_msglevel,
2048	.set_msglevel		= tc35815_set_msglevel,
2049	.get_strings		= tc35815_get_strings,
2050	.get_sset_count		= tc35815_get_sset_count,
2051	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2052};
2053
2054static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055{
2056	struct tc35815_local *lp = netdev_priv(dev);
2057
2058	if (!netif_running(dev))
2059		return -EINVAL;
2060	if (!lp->phy_dev)
2061		return -ENODEV;
2062	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2063}
2064
2065static void tc35815_chip_reset(struct net_device *dev)
2066{
2067	struct tc35815_regs __iomem *tr =
2068		(struct tc35815_regs __iomem *)dev->base_addr;
2069	int i;
2070	/* reset the controller */
2071	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072	udelay(4); /* 3200ns */
2073	i = 0;
2074	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075		if (i++ > 100) {
2076			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077			break;
2078		}
2079		mdelay(1);
2080	}
2081	tc_writel(0, &tr->MAC_Ctl);
2082
2083	/* initialize registers to default value */
2084	tc_writel(0, &tr->DMA_Ctl);
2085	tc_writel(0, &tr->TxThrsh);
2086	tc_writel(0, &tr->TxPollCtr);
2087	tc_writel(0, &tr->RxFragSize);
2088	tc_writel(0, &tr->Int_En);
2089	tc_writel(0, &tr->FDA_Bas);
2090	tc_writel(0, &tr->FDA_Lim);
2091	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2092	tc_writel(0, &tr->CAM_Ctl);
2093	tc_writel(0, &tr->Tx_Ctl);
2094	tc_writel(0, &tr->Rx_Ctl);
2095	tc_writel(0, &tr->CAM_Ena);
2096	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2097
2098	/* initialize internal SRAM */
2099	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100	for (i = 0; i < 0x1000; i += 4) {
2101		tc_writel(i, &tr->CAM_Adr);
2102		tc_writel(0, &tr->CAM_Data);
2103	}
2104	tc_writel(0, &tr->DMA_Ctl);
2105}
2106
2107static void tc35815_chip_init(struct net_device *dev)
2108{
2109	struct tc35815_local *lp = netdev_priv(dev);
2110	struct tc35815_regs __iomem *tr =
2111		(struct tc35815_regs __iomem *)dev->base_addr;
2112	unsigned long txctl = TX_CTL_CMD;
2113
2114	/* load station address to CAM */
2115	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116
2117	/* Enable CAM (broadcast and unicast) */
2118	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120
2121	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122	if (HAVE_DMA_RXALIGN(lp))
2123		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124	else
2125		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2127	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128	tc_writel(INT_EN_CMD, &tr->Int_En);
2129
2130	/* set queues */
2131	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133		  &tr->FDA_Lim);
2134	/*
2135	 * Activation method:
2136	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138	 */
2139	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2140	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2141
2142	/* start MAC transmitter */
2143	/* TX4939 does not have EnLCarr */
2144	if (lp->chiptype == TC35815_TX4939)
2145		txctl &= ~Tx_EnLCarr;
2146	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2147		txctl &= ~Tx_EnLCarr;
2148	tc_writel(txctl, &tr->Tx_Ctl);
2149}
2150
2151#ifdef CONFIG_PM
2152static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2153{
2154	struct net_device *dev = pci_get_drvdata(pdev);
2155	struct tc35815_local *lp = netdev_priv(dev);
2156	unsigned long flags;
2157
2158	pci_save_state(pdev);
2159	if (!netif_running(dev))
2160		return 0;
2161	netif_device_detach(dev);
2162	if (lp->phy_dev)
2163		phy_stop(lp->phy_dev);
2164	spin_lock_irqsave(&lp->lock, flags);
2165	tc35815_chip_reset(dev);
2166	spin_unlock_irqrestore(&lp->lock, flags);
2167	pci_set_power_state(pdev, PCI_D3hot);
2168	return 0;
2169}
2170
2171static int tc35815_resume(struct pci_dev *pdev)
2172{
2173	struct net_device *dev = pci_get_drvdata(pdev);
2174	struct tc35815_local *lp = netdev_priv(dev);
2175
2176	pci_restore_state(pdev);
2177	if (!netif_running(dev))
2178		return 0;
2179	pci_set_power_state(pdev, PCI_D0);
2180	tc35815_restart(dev);
2181	netif_carrier_off(dev);
2182	if (lp->phy_dev)
2183		phy_start(lp->phy_dev);
2184	netif_device_attach(dev);
2185	return 0;
2186}
2187#endif /* CONFIG_PM */
2188
2189static struct pci_driver tc35815_pci_driver = {
2190	.name		= MODNAME,
2191	.id_table	= tc35815_pci_tbl,
2192	.probe		= tc35815_init_one,
2193	.remove		= __devexit_p(tc35815_remove_one),
2194#ifdef CONFIG_PM
2195	.suspend	= tc35815_suspend,
2196	.resume		= tc35815_resume,
2197#endif
2198};
2199
2200module_param_named(speed, options.speed, int, 0);
2201MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2202module_param_named(duplex, options.duplex, int, 0);
2203MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2204
2205static int __init tc35815_init_module(void)
2206{
2207	return pci_register_driver(&tc35815_pci_driver);
2208}
2209
2210static void __exit tc35815_cleanup_module(void)
2211{
2212	pci_unregister_driver(&tc35815_pci_driver);
2213}
2214
2215module_init(tc35815_init_module);
2216module_exit(tc35815_cleanup_module);
2217
2218MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2219MODULE_LICENSE("GPL");
2220