• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/sfc/
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#ifndef EFX_IO_H
12#define EFX_IO_H
13
14#include <linux/io.h>
15#include <linux/spinlock.h>
16
17/**************************************************************************
18 *
19 * NIC register I/O
20 *
21 **************************************************************************
22 *
23 * Notes on locking strategy:
24 *
25 * Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes
26 * which necessitates locking.
27 * Under normal operation few writes to NIC registers are made and these
28 * registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special
29 * cased to allow 4-byte (hence lockless) accesses.
30 *
31 * It *is* safe to write to these 4-byte registers in the middle of an
32 * access to an 8-byte or 16-byte register.  We therefore use a
33 * spinlock to protect accesses to the larger registers, but no locks
34 * for the 4-byte registers.
35 *
36 * A write barrier is needed to ensure that DW3 is written after DW0/1/2
37 * due to the way the 16byte registers are "collected" in the BIU.
38 *
39 * We also lock when carrying out reads, to ensure consistency of the
40 * data (made possible since the BIU reads all 128 bits into a cache).
41 * Reads are very rare, so this isn't a significant performance
42 * impact.  (Most data transferred from NIC to host is DMAed directly
43 * into host memory).
44 *
45 * I/O BAR access uses locks for both reads and writes (but is only provided
46 * for testing purposes).
47 */
48
49#if BITS_PER_LONG == 64
50#define EFX_USE_QWORD_IO 1
51#endif
52
53#ifdef EFX_USE_QWORD_IO
54static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
55				  unsigned int reg)
56{
57	__raw_writeq((__force u64)value, efx->membase + reg);
58}
59static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
60{
61	return (__force __le64)__raw_readq(efx->membase + reg);
62}
63#endif
64
65static inline void _efx_writed(struct efx_nic *efx, __le32 value,
66				  unsigned int reg)
67{
68	__raw_writel((__force u32)value, efx->membase + reg);
69}
70static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
71{
72	return (__force __le32)__raw_readl(efx->membase + reg);
73}
74
75/* Writes to a normal 16-byte Efx register, locking as appropriate. */
76static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
77			      unsigned int reg)
78{
79	unsigned long flags __attribute__ ((unused));
80
81	netif_vdbg(efx, hw, efx->net_dev,
82		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
83		   EFX_OWORD_VAL(*value));
84
85	spin_lock_irqsave(&efx->biu_lock, flags);
86#ifdef EFX_USE_QWORD_IO
87	_efx_writeq(efx, value->u64[0], reg + 0);
88	wmb();
89	_efx_writeq(efx, value->u64[1], reg + 8);
90#else
91	_efx_writed(efx, value->u32[0], reg + 0);
92	_efx_writed(efx, value->u32[1], reg + 4);
93	_efx_writed(efx, value->u32[2], reg + 8);
94	wmb();
95	_efx_writed(efx, value->u32[3], reg + 12);
96#endif
97	mmiowb();
98	spin_unlock_irqrestore(&efx->biu_lock, flags);
99}
100
101/* Write an 8-byte NIC SRAM entry through the supplied mapping,
102 * locking as appropriate. */
103static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
104				   efx_qword_t *value, unsigned int index)
105{
106	unsigned int addr = index * sizeof(*value);
107	unsigned long flags __attribute__ ((unused));
108
109	netif_vdbg(efx, hw, efx->net_dev,
110		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
111		   addr, EFX_QWORD_VAL(*value));
112
113	spin_lock_irqsave(&efx->biu_lock, flags);
114#ifdef EFX_USE_QWORD_IO
115	__raw_writeq((__force u64)value->u64[0], membase + addr);
116#else
117	__raw_writel((__force u32)value->u32[0], membase + addr);
118	wmb();
119	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
120#endif
121	mmiowb();
122	spin_unlock_irqrestore(&efx->biu_lock, flags);
123}
124
125/* Write dword to NIC register that allows partial writes
126 *
127 * Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
128 * TX_DESC_UPD_REG) can be written to as a single dword.  This allows
129 * for lockless writes.
130 */
131static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
132			      unsigned int reg)
133{
134	netif_vdbg(efx, hw, efx->net_dev,
135		   "writing partial register %x with "EFX_DWORD_FMT"\n",
136		   reg, EFX_DWORD_VAL(*value));
137
138	/* No lock required */
139	_efx_writed(efx, value->u32[0], reg);
140}
141
142/* Read from a NIC register
143 *
144 * This reads an entire 16-byte register in one go, locking as
145 * appropriate.  It is essential to read the first dword first, as this
146 * prompts the NIC to load the current value into the shadow register.
147 */
148static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
149			     unsigned int reg)
150{
151	unsigned long flags __attribute__ ((unused));
152
153	spin_lock_irqsave(&efx->biu_lock, flags);
154	value->u32[0] = _efx_readd(efx, reg + 0);
155	rmb();
156	value->u32[1] = _efx_readd(efx, reg + 4);
157	value->u32[2] = _efx_readd(efx, reg + 8);
158	value->u32[3] = _efx_readd(efx, reg + 12);
159	spin_unlock_irqrestore(&efx->biu_lock, flags);
160
161	netif_vdbg(efx, hw, efx->net_dev,
162		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
163		   EFX_OWORD_VAL(*value));
164}
165
166/* Read an 8-byte SRAM entry through supplied mapping,
167 * locking as appropriate. */
168static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
169				  efx_qword_t *value, unsigned int index)
170{
171	unsigned int addr = index * sizeof(*value);
172	unsigned long flags __attribute__ ((unused));
173
174	spin_lock_irqsave(&efx->biu_lock, flags);
175#ifdef EFX_USE_QWORD_IO
176	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
177#else
178	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
179	rmb();
180	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
181#endif
182	spin_unlock_irqrestore(&efx->biu_lock, flags);
183
184	netif_vdbg(efx, hw, efx->net_dev,
185		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
186		   addr, EFX_QWORD_VAL(*value));
187}
188
189/* Read dword from register that allows partial writes (sic) */
190static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
191				unsigned int reg)
192{
193	value->u32[0] = _efx_readd(efx, reg);
194	netif_vdbg(efx, hw, efx->net_dev,
195		   "read from register %x, got "EFX_DWORD_FMT"\n",
196		   reg, EFX_DWORD_VAL(*value));
197}
198
199/* Write to a register forming part of a table */
200static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
201				      unsigned int reg, unsigned int index)
202{
203	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
204}
205
206/* Read to a register forming part of a table */
207static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
208				     unsigned int reg, unsigned int index)
209{
210	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
211}
212
213/* Write to a dword register forming part of a table */
214static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
215				       unsigned int reg, unsigned int index)
216{
217	efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
218}
219
220/* Read from a dword register forming part of a table */
221static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
222				   unsigned int reg, unsigned int index)
223{
224	efx_readd(efx, value, reg + index * sizeof(efx_dword_t));
225}
226
227/* Page-mapped register block size */
228#define EFX_PAGE_BLOCK_SIZE 0x2000
229
230/* Calculate offset to page-mapped register block */
231#define EFX_PAGED_REG(page, reg) \
232	((page) * EFX_PAGE_BLOCK_SIZE + (reg))
233
234/* As for efx_writeo(), but for a page-mapped register. */
235static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
236				   unsigned int reg, unsigned int page)
237{
238	efx_writeo(efx, value, EFX_PAGED_REG(page, reg));
239}
240
241/* As for efx_writed(), but for a page-mapped register. */
242static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
243				   unsigned int reg, unsigned int page)
244{
245	efx_writed(efx, value, EFX_PAGED_REG(page, reg));
246}
247
248/* Write dword to page-mapped register with an extra lock.
249 *
250 * As for efx_writed_page(), but for a register that suffers from
251 * SFC bug 3181. Take out a lock so the BIU collector cannot be
252 * confused. */
253static inline void efx_writed_page_locked(struct efx_nic *efx,
254					  efx_dword_t *value,
255					  unsigned int reg,
256					  unsigned int page)
257{
258	unsigned long flags __attribute__ ((unused));
259
260	if (page == 0) {
261		spin_lock_irqsave(&efx->biu_lock, flags);
262		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
263		spin_unlock_irqrestore(&efx->biu_lock, flags);
264	} else {
265		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
266	}
267}
268
269#endif /* EFX_IO_H */
270