• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/sfc/
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
22#include <linux/topology.h>
23#include <linux/gfp.h>
24#include "net_driver.h"
25#include "efx.h"
26#include "mdio_10g.h"
27#include "nic.h"
28
29#include "mcdi.h"
30#include "workarounds.h"
31
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42	[LOOPBACK_NONE]		= "NONE",
43	[LOOPBACK_DATA]		= "DATAPATH",
44	[LOOPBACK_GMAC]		= "GMAC",
45	[LOOPBACK_XGMII]	= "XGMII",
46	[LOOPBACK_XGXS]		= "XGXS",
47	[LOOPBACK_XAUI]  	= "XAUI",
48	[LOOPBACK_GMII] 	= "GMII",
49	[LOOPBACK_SGMII] 	= "SGMII",
50	[LOOPBACK_XGBR]		= "XGBR",
51	[LOOPBACK_XFI]		= "XFI",
52	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56	[LOOPBACK_GPHY]		= "GPHY",
57	[LOOPBACK_PHYXS]	= "PHYXS",
58	[LOOPBACK_PCS]	 	= "PCS",
59	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
60	[LOOPBACK_XPORT]	= "XPORT",
61	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
63	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65	[LOOPBACK_GMII_WS] 	= "GMII_WS",
66	[LOOPBACK_XFI_WS]	= "XFI_WS",
67	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74	[EFX_INT_MODE_MSIX]   = "MSI-X",
75	[EFX_INT_MODE_MSI]    = "MSI",
76	[EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
82	[RESET_TYPE_ALL]           = "ALL",
83	[RESET_TYPE_WORLD]         = "WORLD",
84	[RESET_TYPE_DISABLE]       = "DISABLE",
85	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
86	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
87	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
88	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
91	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
92};
93
94#define EFX_MAX_MTU (9 * 1024)
95
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
108/*
109 * Use separate channels for TX and RX events
110 *
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
113 *
114 * This is only used in MSI-X interrupt mode
115 */
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119		 "Use separate channels for TX and RX");
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address.  This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings.  They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings.  They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full.  A queue is
154 * restarted when it drops below half full.  The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 *   512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185		 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190		 "Threshold score for increasing IRQ moderation");
191
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx)		\
210	do {						\
211		if ((efx->state == STATE_RUNNING) ||	\
212		    (efx->state == STATE_DISABLED))	\
213			ASSERT_RTNL();			\
214	} while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel.  The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
229static int efx_process_channel(struct efx_channel *channel, int budget)
230{
231	struct efx_nic *efx = channel->efx;
232	int spent;
233
234	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
235		     !channel->enabled))
236		return 0;
237
238	spent = efx_nic_process_eventq(channel, budget);
239	if (spent == 0)
240		return 0;
241
242	/* Deliver last RX packet. */
243	if (channel->rx_pkt) {
244		__efx_rx_packet(channel, channel->rx_pkt,
245				channel->rx_pkt_csummed);
246		channel->rx_pkt = NULL;
247	}
248
249	efx_rx_strategy(channel);
250
251	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
252
253	return spent;
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
264	/* The interrupt handler for this channel may set work_pending
265	 * as soon as we acknowledge the events we've seen.  Make sure
266	 * it's cleared before then. */
267	channel->work_pending = false;
268	smp_wmb();
269
270	efx_nic_eventq_read_ack(channel);
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280	struct efx_channel *channel =
281		container_of(napi, struct efx_channel, napi_str);
282	struct efx_nic *efx = channel->efx;
283	int spent;
284
285	netif_vdbg(efx, intr, efx->net_dev,
286		   "channel %d NAPI poll executing on CPU %d\n",
287		   channel->channel, raw_smp_processor_id());
288
289	spent = efx_process_channel(channel, budget);
290
291	if (spent < budget) {
292		if (channel->channel < efx->n_rx_channels &&
293		    efx->irq_rx_adaptive &&
294		    unlikely(++channel->irq_count == 1000)) {
295			if (unlikely(channel->irq_mod_score <
296				     irq_adapt_low_thresh)) {
297				if (channel->irq_moderation > 1) {
298					channel->irq_moderation -= 1;
299					efx->type->push_irq_moderation(channel);
300				}
301			} else if (unlikely(channel->irq_mod_score >
302					    irq_adapt_high_thresh)) {
303				if (channel->irq_moderation <
304				    efx->irq_rx_moderation) {
305					channel->irq_moderation += 1;
306					efx->type->push_irq_moderation(channel);
307				}
308			}
309			channel->irq_count = 0;
310			channel->irq_mod_score = 0;
311		}
312
313		/* There is no race here; although napi_disable() will
314		 * only wait for napi_complete(), this isn't a problem
315		 * since efx_channel_processed() will have no effect if
316		 * interrupts have already been disabled.
317		 */
318		napi_complete(napi);
319		efx_channel_processed(channel);
320	}
321
322	return spent;
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335	struct efx_nic *efx = channel->efx;
336
337	BUG_ON(!channel->enabled);
338
339	/* Disable interrupts and wait for ISRs to complete */
340	efx_nic_disable_interrupts(efx);
341	if (efx->legacy_irq)
342		synchronize_irq(efx->legacy_irq);
343	if (channel->irq)
344		synchronize_irq(channel->irq);
345
346	/* Wait for any NAPI processing to complete */
347	napi_disable(&channel->napi_str);
348
349	/* Poll the channel */
350	efx_process_channel(channel, EFX_EVQ_SIZE);
351
352	/* Ack the eventq. This may cause an interrupt to be generated
353	 * when they are reenabled */
354	efx_channel_processed(channel);
355
356	napi_enable(&channel->napi_str);
357	efx_nic_enable_interrupts(efx);
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once.  If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
367	netif_dbg(channel->efx, probe, channel->efx->net_dev,
368		  "chan %d create event queue\n", channel->channel);
369
370	return efx_nic_probe_eventq(channel);
371}
372
373/* Prepare channel's event queue */
374static void efx_init_eventq(struct efx_channel *channel)
375{
376	netif_dbg(channel->efx, drv, channel->efx->net_dev,
377		  "chan %d init event queue\n", channel->channel);
378
379	channel->eventq_read_ptr = 0;
380
381	efx_nic_init_eventq(channel);
382}
383
384static void efx_fini_eventq(struct efx_channel *channel)
385{
386	netif_dbg(channel->efx, drv, channel->efx->net_dev,
387		  "chan %d fini event queue\n", channel->channel);
388
389	efx_nic_fini_eventq(channel);
390}
391
392static void efx_remove_eventq(struct efx_channel *channel)
393{
394	netif_dbg(channel->efx, drv, channel->efx->net_dev,
395		  "chan %d remove event queue\n", channel->channel);
396
397	efx_nic_remove_eventq(channel);
398}
399
400/**************************************************************************
401 *
402 * Channel handling
403 *
404 *************************************************************************/
405
406static int efx_probe_channel(struct efx_channel *channel)
407{
408	struct efx_tx_queue *tx_queue;
409	struct efx_rx_queue *rx_queue;
410	int rc;
411
412	netif_dbg(channel->efx, probe, channel->efx->net_dev,
413		  "creating channel %d\n", channel->channel);
414
415	rc = efx_probe_eventq(channel);
416	if (rc)
417		goto fail1;
418
419	efx_for_each_channel_tx_queue(tx_queue, channel) {
420		rc = efx_probe_tx_queue(tx_queue);
421		if (rc)
422			goto fail2;
423	}
424
425	efx_for_each_channel_rx_queue(rx_queue, channel) {
426		rc = efx_probe_rx_queue(rx_queue);
427		if (rc)
428			goto fail3;
429	}
430
431	channel->n_rx_frm_trunc = 0;
432
433	return 0;
434
435 fail3:
436	efx_for_each_channel_rx_queue(rx_queue, channel)
437		efx_remove_rx_queue(rx_queue);
438 fail2:
439	efx_for_each_channel_tx_queue(tx_queue, channel)
440		efx_remove_tx_queue(tx_queue);
441 fail1:
442	return rc;
443}
444
445
446static void efx_set_channel_names(struct efx_nic *efx)
447{
448	struct efx_channel *channel;
449	const char *type = "";
450	int number;
451
452	efx_for_each_channel(channel, efx) {
453		number = channel->channel;
454		if (efx->n_channels > efx->n_rx_channels) {
455			if (channel->channel < efx->n_rx_channels) {
456				type = "-rx";
457			} else {
458				type = "-tx";
459				number -= efx->n_rx_channels;
460			}
461		}
462		snprintf(channel->name, sizeof(channel->name),
463			 "%s%s-%d", efx->name, type, number);
464	}
465}
466
467/* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
470 */
471static void efx_init_channels(struct efx_nic *efx)
472{
473	struct efx_tx_queue *tx_queue;
474	struct efx_rx_queue *rx_queue;
475	struct efx_channel *channel;
476
477	/* Calculate the rx buffer allocation parameters required to
478	 * support the current MTU, including padding for header
479	 * alignment and overruns.
480	 */
481	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
483			      efx->type->rx_buffer_hash_size +
484			      efx->type->rx_buffer_padding);
485	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
486					 sizeof(struct efx_rx_page_state));
487
488	/* Initialise the channels */
489	efx_for_each_channel(channel, efx) {
490		netif_dbg(channel->efx, drv, channel->efx->net_dev,
491			  "init chan %d\n", channel->channel);
492
493		efx_init_eventq(channel);
494
495		efx_for_each_channel_tx_queue(tx_queue, channel)
496			efx_init_tx_queue(tx_queue);
497
498		/* The rx buffer allocation strategy is MTU dependent */
499		efx_rx_strategy(channel);
500
501		efx_for_each_channel_rx_queue(rx_queue, channel)
502			efx_init_rx_queue(rx_queue);
503
504		WARN_ON(channel->rx_pkt != NULL);
505		efx_rx_strategy(channel);
506	}
507}
508
509/* This enables event queue processing and packet transmission.
510 *
511 * Note that this function is not allowed to fail, since that would
512 * introduce too much complexity into the suspend/resume path.
513 */
514static void efx_start_channel(struct efx_channel *channel)
515{
516	struct efx_rx_queue *rx_queue;
517
518	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
519		  "starting chan %d\n", channel->channel);
520
521	/* The interrupt handler for this channel may set work_pending
522	 * as soon as we enable it.  Make sure it's cleared before
523	 * then.  Similarly, make sure it sees the enabled flag set. */
524	channel->work_pending = false;
525	channel->enabled = true;
526	smp_wmb();
527
528	/* Fill the queues before enabling NAPI */
529	efx_for_each_channel_rx_queue(rx_queue, channel)
530		efx_fast_push_rx_descriptors(rx_queue);
531
532	napi_enable(&channel->napi_str);
533}
534
535/* This disables event queue processing and packet transmission.
536 * This function does not guarantee that all queue processing
537 * (e.g. RX refill) is complete.
538 */
539static void efx_stop_channel(struct efx_channel *channel)
540{
541	if (!channel->enabled)
542		return;
543
544	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
545		  "stop chan %d\n", channel->channel);
546
547	channel->enabled = false;
548	napi_disable(&channel->napi_str);
549}
550
551static void efx_fini_channels(struct efx_nic *efx)
552{
553	struct efx_channel *channel;
554	struct efx_tx_queue *tx_queue;
555	struct efx_rx_queue *rx_queue;
556	int rc;
557
558	EFX_ASSERT_RESET_SERIALISED(efx);
559	BUG_ON(efx->port_enabled);
560
561	rc = efx_nic_flush_queues(efx);
562	if (rc && EFX_WORKAROUND_7803(efx)) {
563		/* Schedule a reset to recover from the flush failure. The
564		 * descriptor caches reference memory we're about to free,
565		 * but falcon_reconfigure_mac_wrapper() won't reconnect
566		 * the MACs because of the pending reset. */
567		netif_err(efx, drv, efx->net_dev,
568			  "Resetting to recover from flush failure\n");
569		efx_schedule_reset(efx, RESET_TYPE_ALL);
570	} else if (rc) {
571		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
572	} else {
573		netif_dbg(efx, drv, efx->net_dev,
574			  "successfully flushed all queues\n");
575	}
576
577	efx_for_each_channel(channel, efx) {
578		netif_dbg(channel->efx, drv, channel->efx->net_dev,
579			  "shut down chan %d\n", channel->channel);
580
581		efx_for_each_channel_rx_queue(rx_queue, channel)
582			efx_fini_rx_queue(rx_queue);
583		efx_for_each_channel_tx_queue(tx_queue, channel)
584			efx_fini_tx_queue(tx_queue);
585		efx_fini_eventq(channel);
586	}
587}
588
589static void efx_remove_channel(struct efx_channel *channel)
590{
591	struct efx_tx_queue *tx_queue;
592	struct efx_rx_queue *rx_queue;
593
594	netif_dbg(channel->efx, drv, channel->efx->net_dev,
595		  "destroy chan %d\n", channel->channel);
596
597	efx_for_each_channel_rx_queue(rx_queue, channel)
598		efx_remove_rx_queue(rx_queue);
599	efx_for_each_channel_tx_queue(tx_queue, channel)
600		efx_remove_tx_queue(tx_queue);
601	efx_remove_eventq(channel);
602}
603
604void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
605{
606	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
607}
608
609/**************************************************************************
610 *
611 * Port handling
612 *
613 **************************************************************************/
614
615/* This ensures that the kernel is kept informed (via
616 * netif_carrier_on/off) of the link status, and also maintains the
617 * link status's stop on the port's TX queue.
618 */
619void efx_link_status_changed(struct efx_nic *efx)
620{
621	struct efx_link_state *link_state = &efx->link_state;
622
623	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
624	 * that no events are triggered between unregister_netdev() and the
625	 * driver unloading. A more general condition is that NETDEV_CHANGE
626	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
627	if (!netif_running(efx->net_dev))
628		return;
629
630	if (efx->port_inhibited) {
631		netif_carrier_off(efx->net_dev);
632		return;
633	}
634
635	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
636		efx->n_link_state_changes++;
637
638		if (link_state->up)
639			netif_carrier_on(efx->net_dev);
640		else
641			netif_carrier_off(efx->net_dev);
642	}
643
644	/* Status message for kernel log */
645	if (link_state->up) {
646		netif_info(efx, link, efx->net_dev,
647			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
648			   link_state->speed, link_state->fd ? "full" : "half",
649			   efx->net_dev->mtu,
650			   (efx->promiscuous ? " [PROMISC]" : ""));
651	} else {
652		netif_info(efx, link, efx->net_dev, "link down\n");
653	}
654
655}
656
657void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
658{
659	efx->link_advertising = advertising;
660	if (advertising) {
661		if (advertising & ADVERTISED_Pause)
662			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
663		else
664			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
665		if (advertising & ADVERTISED_Asym_Pause)
666			efx->wanted_fc ^= EFX_FC_TX;
667	}
668}
669
670void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
671{
672	efx->wanted_fc = wanted_fc;
673	if (efx->link_advertising) {
674		if (wanted_fc & EFX_FC_RX)
675			efx->link_advertising |= (ADVERTISED_Pause |
676						  ADVERTISED_Asym_Pause);
677		else
678			efx->link_advertising &= ~(ADVERTISED_Pause |
679						   ADVERTISED_Asym_Pause);
680		if (wanted_fc & EFX_FC_TX)
681			efx->link_advertising ^= ADVERTISED_Asym_Pause;
682	}
683}
684
685static void efx_fini_port(struct efx_nic *efx);
686
687/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
688 * the MAC appropriately. All other PHY configuration changes are pushed
689 * through phy_op->set_settings(), and pushed asynchronously to the MAC
690 * through efx_monitor().
691 *
692 * Callers must hold the mac_lock
693 */
694int __efx_reconfigure_port(struct efx_nic *efx)
695{
696	enum efx_phy_mode phy_mode;
697	int rc;
698
699	WARN_ON(!mutex_is_locked(&efx->mac_lock));
700
701	/* Serialise the promiscuous flag with efx_set_multicast_list. */
702	if (efx_dev_registered(efx)) {
703		netif_addr_lock_bh(efx->net_dev);
704		netif_addr_unlock_bh(efx->net_dev);
705	}
706
707	/* Disable PHY transmit in mac level loopbacks */
708	phy_mode = efx->phy_mode;
709	if (LOOPBACK_INTERNAL(efx))
710		efx->phy_mode |= PHY_MODE_TX_DISABLED;
711	else
712		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
713
714	rc = efx->type->reconfigure_port(efx);
715
716	if (rc)
717		efx->phy_mode = phy_mode;
718
719	return rc;
720}
721
722/* Reinitialise the MAC to pick up new PHY settings, even if the port is
723 * disabled. */
724int efx_reconfigure_port(struct efx_nic *efx)
725{
726	int rc;
727
728	EFX_ASSERT_RESET_SERIALISED(efx);
729
730	mutex_lock(&efx->mac_lock);
731	rc = __efx_reconfigure_port(efx);
732	mutex_unlock(&efx->mac_lock);
733
734	return rc;
735}
736
737/* Asynchronous work item for changing MAC promiscuity and multicast
738 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
739 * MAC directly. */
740static void efx_mac_work(struct work_struct *data)
741{
742	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
743
744	mutex_lock(&efx->mac_lock);
745	if (efx->port_enabled) {
746		efx->type->push_multicast_hash(efx);
747		efx->mac_op->reconfigure(efx);
748	}
749	mutex_unlock(&efx->mac_lock);
750}
751
752static int efx_probe_port(struct efx_nic *efx)
753{
754	int rc;
755
756	netif_dbg(efx, probe, efx->net_dev, "create port\n");
757
758	if (phy_flash_cfg)
759		efx->phy_mode = PHY_MODE_SPECIAL;
760
761	/* Connect up MAC/PHY operations table */
762	rc = efx->type->probe_port(efx);
763	if (rc)
764		goto err;
765
766	/* Sanity check MAC address */
767	if (is_valid_ether_addr(efx->mac_address)) {
768		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
769	} else {
770		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
771			  efx->mac_address);
772		if (!allow_bad_hwaddr) {
773			rc = -EINVAL;
774			goto err;
775		}
776		random_ether_addr(efx->net_dev->dev_addr);
777		netif_info(efx, probe, efx->net_dev,
778			   "using locally-generated MAC %pM\n",
779			   efx->net_dev->dev_addr);
780	}
781
782	return 0;
783
784 err:
785	efx_remove_port(efx);
786	return rc;
787}
788
789static int efx_init_port(struct efx_nic *efx)
790{
791	int rc;
792
793	netif_dbg(efx, drv, efx->net_dev, "init port\n");
794
795	mutex_lock(&efx->mac_lock);
796
797	rc = efx->phy_op->init(efx);
798	if (rc)
799		goto fail1;
800
801	efx->port_initialized = true;
802
803	/* Reconfigure the MAC before creating dma queues (required for
804	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
805	efx->mac_op->reconfigure(efx);
806
807	/* Ensure the PHY advertises the correct flow control settings */
808	rc = efx->phy_op->reconfigure(efx);
809	if (rc)
810		goto fail2;
811
812	mutex_unlock(&efx->mac_lock);
813	return 0;
814
815fail2:
816	efx->phy_op->fini(efx);
817fail1:
818	mutex_unlock(&efx->mac_lock);
819	return rc;
820}
821
822static void efx_start_port(struct efx_nic *efx)
823{
824	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
825	BUG_ON(efx->port_enabled);
826
827	mutex_lock(&efx->mac_lock);
828	efx->port_enabled = true;
829
830	/* efx_mac_work() might have been scheduled after efx_stop_port(),
831	 * and then cancelled by efx_flush_all() */
832	efx->type->push_multicast_hash(efx);
833	efx->mac_op->reconfigure(efx);
834
835	mutex_unlock(&efx->mac_lock);
836}
837
838/* Prevent efx_mac_work() and efx_monitor() from working */
839static void efx_stop_port(struct efx_nic *efx)
840{
841	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
842
843	mutex_lock(&efx->mac_lock);
844	efx->port_enabled = false;
845	mutex_unlock(&efx->mac_lock);
846
847	/* Serialise against efx_set_multicast_list() */
848	if (efx_dev_registered(efx)) {
849		netif_addr_lock_bh(efx->net_dev);
850		netif_addr_unlock_bh(efx->net_dev);
851	}
852}
853
854static void efx_fini_port(struct efx_nic *efx)
855{
856	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
857
858	if (!efx->port_initialized)
859		return;
860
861	efx->phy_op->fini(efx);
862	efx->port_initialized = false;
863
864	efx->link_state.up = false;
865	efx_link_status_changed(efx);
866}
867
868static void efx_remove_port(struct efx_nic *efx)
869{
870	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
871
872	efx->type->remove_port(efx);
873}
874
875/**************************************************************************
876 *
877 * NIC handling
878 *
879 **************************************************************************/
880
881/* This configures the PCI device to enable I/O and DMA. */
882static int efx_init_io(struct efx_nic *efx)
883{
884	struct pci_dev *pci_dev = efx->pci_dev;
885	dma_addr_t dma_mask = efx->type->max_dma_mask;
886	int rc;
887
888	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
889
890	rc = pci_enable_device(pci_dev);
891	if (rc) {
892		netif_err(efx, probe, efx->net_dev,
893			  "failed to enable PCI device\n");
894		goto fail1;
895	}
896
897	pci_set_master(pci_dev);
898
899	/* Set the PCI DMA mask.  Try all possibilities from our
900	 * genuine mask down to 32 bits, because some architectures
901	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
902	 * masks event though they reject 46 bit masks.
903	 */
904	while (dma_mask > 0x7fffffffUL) {
905		if (pci_dma_supported(pci_dev, dma_mask) &&
906		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
907			break;
908		dma_mask >>= 1;
909	}
910	if (rc) {
911		netif_err(efx, probe, efx->net_dev,
912			  "could not find a suitable DMA mask\n");
913		goto fail2;
914	}
915	netif_dbg(efx, probe, efx->net_dev,
916		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
917	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
918	if (rc) {
919		/* pci_set_consistent_dma_mask() is not *allowed* to
920		 * fail with a mask that pci_set_dma_mask() accepted,
921		 * but just in case...
922		 */
923		netif_err(efx, probe, efx->net_dev,
924			  "failed to set consistent DMA mask\n");
925		goto fail2;
926	}
927
928	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
929	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
930	if (rc) {
931		netif_err(efx, probe, efx->net_dev,
932			  "request for memory BAR failed\n");
933		rc = -EIO;
934		goto fail3;
935	}
936	efx->membase = ioremap_nocache(efx->membase_phys,
937				       efx->type->mem_map_size);
938	if (!efx->membase) {
939		netif_err(efx, probe, efx->net_dev,
940			  "could not map memory BAR at %llx+%x\n",
941			  (unsigned long long)efx->membase_phys,
942			  efx->type->mem_map_size);
943		rc = -ENOMEM;
944		goto fail4;
945	}
946	netif_dbg(efx, probe, efx->net_dev,
947		  "memory BAR at %llx+%x (virtual %p)\n",
948		  (unsigned long long)efx->membase_phys,
949		  efx->type->mem_map_size, efx->membase);
950
951	return 0;
952
953 fail4:
954	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
955 fail3:
956	efx->membase_phys = 0;
957 fail2:
958	pci_disable_device(efx->pci_dev);
959 fail1:
960	return rc;
961}
962
963static void efx_fini_io(struct efx_nic *efx)
964{
965	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
966
967	if (efx->membase) {
968		iounmap(efx->membase);
969		efx->membase = NULL;
970	}
971
972	if (efx->membase_phys) {
973		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
974		efx->membase_phys = 0;
975	}
976
977	pci_disable_device(efx->pci_dev);
978}
979
980/* Get number of channels wanted.  Each channel will have its own IRQ,
981 * 1 RX queue and/or 2 TX queues. */
982static int efx_wanted_channels(void)
983{
984	cpumask_var_t core_mask;
985	int count;
986	int cpu;
987
988	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
989		printk(KERN_WARNING
990		       "sfc: RSS disabled due to allocation failure\n");
991		return 1;
992	}
993
994	count = 0;
995	for_each_online_cpu(cpu) {
996		if (!cpumask_test_cpu(cpu, core_mask)) {
997			++count;
998			cpumask_or(core_mask, core_mask,
999				   topology_core_cpumask(cpu));
1000		}
1001	}
1002
1003	free_cpumask_var(core_mask);
1004	return count;
1005}
1006
1007/* Probe the number and type of interrupts we are able to obtain, and
1008 * the resulting numbers of channels and RX queues.
1009 */
1010static void efx_probe_interrupts(struct efx_nic *efx)
1011{
1012	int max_channels =
1013		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1014	int rc, i;
1015
1016	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1017		struct msix_entry xentries[EFX_MAX_CHANNELS];
1018		int n_channels;
1019
1020		n_channels = efx_wanted_channels();
1021		if (separate_tx_channels)
1022			n_channels *= 2;
1023		n_channels = min(n_channels, max_channels);
1024
1025		for (i = 0; i < n_channels; i++)
1026			xentries[i].entry = i;
1027		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1028		if (rc > 0) {
1029			netif_err(efx, drv, efx->net_dev,
1030				  "WARNING: Insufficient MSI-X vectors"
1031				  " available (%d < %d).\n", rc, n_channels);
1032			netif_err(efx, drv, efx->net_dev,
1033				  "WARNING: Performance may be reduced.\n");
1034			EFX_BUG_ON_PARANOID(rc >= n_channels);
1035			n_channels = rc;
1036			rc = pci_enable_msix(efx->pci_dev, xentries,
1037					     n_channels);
1038		}
1039
1040		if (rc == 0) {
1041			efx->n_channels = n_channels;
1042			if (separate_tx_channels) {
1043				efx->n_tx_channels =
1044					max(efx->n_channels / 2, 1U);
1045				efx->n_rx_channels =
1046					max(efx->n_channels -
1047					    efx->n_tx_channels, 1U);
1048			} else {
1049				efx->n_tx_channels = efx->n_channels;
1050				efx->n_rx_channels = efx->n_channels;
1051			}
1052			for (i = 0; i < n_channels; i++)
1053				efx->channel[i].irq = xentries[i].vector;
1054		} else {
1055			/* Fall back to single channel MSI */
1056			efx->interrupt_mode = EFX_INT_MODE_MSI;
1057			netif_err(efx, drv, efx->net_dev,
1058				  "could not enable MSI-X\n");
1059		}
1060	}
1061
1062	/* Try single interrupt MSI */
1063	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1064		efx->n_channels = 1;
1065		efx->n_rx_channels = 1;
1066		efx->n_tx_channels = 1;
1067		rc = pci_enable_msi(efx->pci_dev);
1068		if (rc == 0) {
1069			efx->channel[0].irq = efx->pci_dev->irq;
1070		} else {
1071			netif_err(efx, drv, efx->net_dev,
1072				  "could not enable MSI\n");
1073			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1074		}
1075	}
1076
1077	/* Assume legacy interrupts */
1078	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1079		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1080		efx->n_rx_channels = 1;
1081		efx->n_tx_channels = 1;
1082		efx->legacy_irq = efx->pci_dev->irq;
1083	}
1084}
1085
1086static void efx_remove_interrupts(struct efx_nic *efx)
1087{
1088	struct efx_channel *channel;
1089
1090	/* Remove MSI/MSI-X interrupts */
1091	efx_for_each_channel(channel, efx)
1092		channel->irq = 0;
1093	pci_disable_msi(efx->pci_dev);
1094	pci_disable_msix(efx->pci_dev);
1095
1096	/* Remove legacy interrupt */
1097	efx->legacy_irq = 0;
1098}
1099
1100static void efx_set_channels(struct efx_nic *efx)
1101{
1102	struct efx_channel *channel;
1103	struct efx_tx_queue *tx_queue;
1104	struct efx_rx_queue *rx_queue;
1105	unsigned tx_channel_offset =
1106		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1107
1108	efx_for_each_channel(channel, efx) {
1109		if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1110			channel->tx_queue = &efx->tx_queue[
1111				(channel->channel - tx_channel_offset) *
1112				EFX_TXQ_TYPES];
1113			efx_for_each_channel_tx_queue(tx_queue, channel)
1114				tx_queue->channel = channel;
1115		}
1116	}
1117
1118	efx_for_each_rx_queue(rx_queue, efx)
1119		rx_queue->channel = &efx->channel[rx_queue->queue];
1120}
1121
1122static int efx_probe_nic(struct efx_nic *efx)
1123{
1124	size_t i;
1125	int rc;
1126
1127	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1128
1129	/* Carry out hardware-type specific initialisation */
1130	rc = efx->type->probe(efx);
1131	if (rc)
1132		return rc;
1133
1134	/* Determine the number of channels and queues by trying to hook
1135	 * in MSI-X interrupts. */
1136	efx_probe_interrupts(efx);
1137
1138	if (efx->n_channels > 1)
1139		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1140	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1141		efx->rx_indir_table[i] = i % efx->n_rx_channels;
1142
1143	efx_set_channels(efx);
1144	efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
1145
1146	/* Initialise the interrupt moderation settings */
1147	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1148
1149	return 0;
1150}
1151
1152static void efx_remove_nic(struct efx_nic *efx)
1153{
1154	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1155
1156	efx_remove_interrupts(efx);
1157	efx->type->remove(efx);
1158}
1159
1160/**************************************************************************
1161 *
1162 * NIC startup/shutdown
1163 *
1164 *************************************************************************/
1165
1166static int efx_probe_all(struct efx_nic *efx)
1167{
1168	struct efx_channel *channel;
1169	int rc;
1170
1171	/* Create NIC */
1172	rc = efx_probe_nic(efx);
1173	if (rc) {
1174		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1175		goto fail1;
1176	}
1177
1178	/* Create port */
1179	rc = efx_probe_port(efx);
1180	if (rc) {
1181		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1182		goto fail2;
1183	}
1184
1185	/* Create channels */
1186	efx_for_each_channel(channel, efx) {
1187		rc = efx_probe_channel(channel);
1188		if (rc) {
1189			netif_err(efx, probe, efx->net_dev,
1190				  "failed to create channel %d\n",
1191				  channel->channel);
1192			goto fail3;
1193		}
1194	}
1195	efx_set_channel_names(efx);
1196
1197	return 0;
1198
1199 fail3:
1200	efx_for_each_channel(channel, efx)
1201		efx_remove_channel(channel);
1202	efx_remove_port(efx);
1203 fail2:
1204	efx_remove_nic(efx);
1205 fail1:
1206	return rc;
1207}
1208
1209/* Called after previous invocation(s) of efx_stop_all, restarts the
1210 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1211 * and ensures that the port is scheduled to be reconfigured.
1212 * This function is safe to call multiple times when the NIC is in any
1213 * state. */
1214static void efx_start_all(struct efx_nic *efx)
1215{
1216	struct efx_channel *channel;
1217
1218	EFX_ASSERT_RESET_SERIALISED(efx);
1219
1220	/* Check that it is appropriate to restart the interface. All
1221	 * of these flags are safe to read under just the rtnl lock */
1222	if (efx->port_enabled)
1223		return;
1224	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1225		return;
1226	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1227		return;
1228
1229	/* Mark the port as enabled so port reconfigurations can start, then
1230	 * restart the transmit interface early so the watchdog timer stops */
1231	efx_start_port(efx);
1232
1233	efx_for_each_channel(channel, efx) {
1234		if (efx_dev_registered(efx))
1235			efx_wake_queue(channel);
1236		efx_start_channel(channel);
1237	}
1238
1239	efx_nic_enable_interrupts(efx);
1240
1241	/* Switch to event based MCDI completions after enabling interrupts.
1242	 * If a reset has been scheduled, then we need to stay in polled mode.
1243	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1244	 * reset_pending [modified from an atomic context], we instead guarantee
1245	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1246	efx_mcdi_mode_event(efx);
1247	if (efx->reset_pending != RESET_TYPE_NONE)
1248		efx_mcdi_mode_poll(efx);
1249
1250	/* Start the hardware monitor if there is one. Otherwise (we're link
1251	 * event driven), we have to poll the PHY because after an event queue
1252	 * flush, we could have a missed a link state change */
1253	if (efx->type->monitor != NULL) {
1254		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1255				   efx_monitor_interval);
1256	} else {
1257		mutex_lock(&efx->mac_lock);
1258		if (efx->phy_op->poll(efx))
1259			efx_link_status_changed(efx);
1260		mutex_unlock(&efx->mac_lock);
1261	}
1262
1263	efx->type->start_stats(efx);
1264}
1265
1266/* Flush all delayed work. Should only be called when no more delayed work
1267 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1268 * since we're holding the rtnl_lock at this point. */
1269static void efx_flush_all(struct efx_nic *efx)
1270{
1271	/* Make sure the hardware monitor is stopped */
1272	cancel_delayed_work_sync(&efx->monitor_work);
1273	/* Stop scheduled port reconfigurations */
1274	cancel_work_sync(&efx->mac_work);
1275}
1276
1277/* Quiesce hardware and software without bringing the link down.
1278 * Safe to call multiple times, when the nic and interface is in any
1279 * state. The caller is guaranteed to subsequently be in a position
1280 * to modify any hardware and software state they see fit without
1281 * taking locks. */
1282static void efx_stop_all(struct efx_nic *efx)
1283{
1284	struct efx_channel *channel;
1285
1286	EFX_ASSERT_RESET_SERIALISED(efx);
1287
1288	/* port_enabled can be read safely under the rtnl lock */
1289	if (!efx->port_enabled)
1290		return;
1291
1292	efx->type->stop_stats(efx);
1293
1294	/* Switch to MCDI polling on Siena before disabling interrupts */
1295	efx_mcdi_mode_poll(efx);
1296
1297	/* Disable interrupts and wait for ISR to complete */
1298	efx_nic_disable_interrupts(efx);
1299	if (efx->legacy_irq)
1300		synchronize_irq(efx->legacy_irq);
1301	efx_for_each_channel(channel, efx) {
1302		if (channel->irq)
1303			synchronize_irq(channel->irq);
1304	}
1305
1306	/* Stop all NAPI processing and synchronous rx refills */
1307	efx_for_each_channel(channel, efx)
1308		efx_stop_channel(channel);
1309
1310	/* Stop all asynchronous port reconfigurations. Since all
1311	 * event processing has already been stopped, there is no
1312	 * window to loose phy events */
1313	efx_stop_port(efx);
1314
1315	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1316	efx_flush_all(efx);
1317
1318	/* Stop the kernel transmit interface late, so the watchdog
1319	 * timer isn't ticking over the flush */
1320	if (efx_dev_registered(efx)) {
1321		struct efx_channel *channel;
1322		efx_for_each_channel(channel, efx)
1323			efx_stop_queue(channel);
1324		netif_tx_lock_bh(efx->net_dev);
1325		netif_tx_unlock_bh(efx->net_dev);
1326	}
1327}
1328
1329static void efx_remove_all(struct efx_nic *efx)
1330{
1331	struct efx_channel *channel;
1332
1333	efx_for_each_channel(channel, efx)
1334		efx_remove_channel(channel);
1335	efx_remove_port(efx);
1336	efx_remove_nic(efx);
1337}
1338
1339/**************************************************************************
1340 *
1341 * Interrupt moderation
1342 *
1343 **************************************************************************/
1344
1345static unsigned irq_mod_ticks(int usecs, int resolution)
1346{
1347	if (usecs <= 0)
1348		return 0; /* cannot receive interrupts ahead of time :-) */
1349	if (usecs < resolution)
1350		return 1; /* never round down to 0 */
1351	return usecs / resolution;
1352}
1353
1354/* Set interrupt moderation parameters */
1355void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1356			     bool rx_adaptive)
1357{
1358	struct efx_tx_queue *tx_queue;
1359	struct efx_rx_queue *rx_queue;
1360	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1361	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1362
1363	EFX_ASSERT_RESET_SERIALISED(efx);
1364
1365	efx_for_each_tx_queue(tx_queue, efx)
1366		tx_queue->channel->irq_moderation = tx_ticks;
1367
1368	efx->irq_rx_adaptive = rx_adaptive;
1369	efx->irq_rx_moderation = rx_ticks;
1370	efx_for_each_rx_queue(rx_queue, efx)
1371		rx_queue->channel->irq_moderation = rx_ticks;
1372}
1373
1374/**************************************************************************
1375 *
1376 * Hardware monitor
1377 *
1378 **************************************************************************/
1379
1380/* Run periodically off the general workqueue. Serialised against
1381 * efx_reconfigure_port via the mac_lock */
1382static void efx_monitor(struct work_struct *data)
1383{
1384	struct efx_nic *efx = container_of(data, struct efx_nic,
1385					   monitor_work.work);
1386
1387	netif_vdbg(efx, timer, efx->net_dev,
1388		   "hardware monitor executing on CPU %d\n",
1389		   raw_smp_processor_id());
1390	BUG_ON(efx->type->monitor == NULL);
1391
1392	/* If the mac_lock is already held then it is likely a port
1393	 * reconfiguration is already in place, which will likely do
1394	 * most of the work of check_hw() anyway. */
1395	if (!mutex_trylock(&efx->mac_lock))
1396		goto out_requeue;
1397	if (!efx->port_enabled)
1398		goto out_unlock;
1399	efx->type->monitor(efx);
1400
1401out_unlock:
1402	mutex_unlock(&efx->mac_lock);
1403out_requeue:
1404	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1405			   efx_monitor_interval);
1406}
1407
1408/**************************************************************************
1409 *
1410 * ioctls
1411 *
1412 *************************************************************************/
1413
1414/* Net device ioctl
1415 * Context: process, rtnl_lock() held.
1416 */
1417static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1418{
1419	struct efx_nic *efx = netdev_priv(net_dev);
1420	struct mii_ioctl_data *data = if_mii(ifr);
1421
1422	EFX_ASSERT_RESET_SERIALISED(efx);
1423
1424	/* Convert phy_id from older PRTAD/DEVAD format */
1425	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1426	    (data->phy_id & 0xfc00) == 0x0400)
1427		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1428
1429	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1430}
1431
1432/**************************************************************************
1433 *
1434 * NAPI interface
1435 *
1436 **************************************************************************/
1437
1438static int efx_init_napi(struct efx_nic *efx)
1439{
1440	struct efx_channel *channel;
1441
1442	efx_for_each_channel(channel, efx) {
1443		channel->napi_dev = efx->net_dev;
1444		netif_napi_add(channel->napi_dev, &channel->napi_str,
1445			       efx_poll, napi_weight);
1446	}
1447	return 0;
1448}
1449
1450static void efx_fini_napi(struct efx_nic *efx)
1451{
1452	struct efx_channel *channel;
1453
1454	efx_for_each_channel(channel, efx) {
1455		if (channel->napi_dev)
1456			netif_napi_del(&channel->napi_str);
1457		channel->napi_dev = NULL;
1458	}
1459}
1460
1461/**************************************************************************
1462 *
1463 * Kernel netpoll interface
1464 *
1465 *************************************************************************/
1466
1467#ifdef CONFIG_NET_POLL_CONTROLLER
1468
1469/* Although in the common case interrupts will be disabled, this is not
1470 * guaranteed. However, all our work happens inside the NAPI callback,
1471 * so no locking is required.
1472 */
1473static void efx_netpoll(struct net_device *net_dev)
1474{
1475	struct efx_nic *efx = netdev_priv(net_dev);
1476	struct efx_channel *channel;
1477
1478	efx_for_each_channel(channel, efx)
1479		efx_schedule_channel(channel);
1480}
1481
1482#endif
1483
1484/**************************************************************************
1485 *
1486 * Kernel net device interface
1487 *
1488 *************************************************************************/
1489
1490/* Context: process, rtnl_lock() held. */
1491static int efx_net_open(struct net_device *net_dev)
1492{
1493	struct efx_nic *efx = netdev_priv(net_dev);
1494	EFX_ASSERT_RESET_SERIALISED(efx);
1495
1496	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1497		  raw_smp_processor_id());
1498
1499	if (efx->state == STATE_DISABLED)
1500		return -EIO;
1501	if (efx->phy_mode & PHY_MODE_SPECIAL)
1502		return -EBUSY;
1503	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1504		return -EIO;
1505
1506	/* Notify the kernel of the link state polled during driver load,
1507	 * before the monitor starts running */
1508	efx_link_status_changed(efx);
1509
1510	efx_start_all(efx);
1511	return 0;
1512}
1513
1514/* Context: process, rtnl_lock() held.
1515 * Note that the kernel will ignore our return code; this method
1516 * should really be a void.
1517 */
1518static int efx_net_stop(struct net_device *net_dev)
1519{
1520	struct efx_nic *efx = netdev_priv(net_dev);
1521
1522	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1523		  raw_smp_processor_id());
1524
1525	if (efx->state != STATE_DISABLED) {
1526		/* Stop the device and flush all the channels */
1527		efx_stop_all(efx);
1528		efx_fini_channels(efx);
1529		efx_init_channels(efx);
1530	}
1531
1532	return 0;
1533}
1534
1535/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1536static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1537{
1538	struct efx_nic *efx = netdev_priv(net_dev);
1539	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1540
1541	spin_lock_bh(&efx->stats_lock);
1542	efx->type->update_stats(efx);
1543	spin_unlock_bh(&efx->stats_lock);
1544
1545	stats->rx_packets = mac_stats->rx_packets;
1546	stats->tx_packets = mac_stats->tx_packets;
1547	stats->rx_bytes = mac_stats->rx_bytes;
1548	stats->tx_bytes = mac_stats->tx_bytes;
1549	stats->multicast = mac_stats->rx_multicast;
1550	stats->collisions = mac_stats->tx_collision;
1551	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1552				   mac_stats->rx_length_error);
1553	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1554	stats->rx_crc_errors = mac_stats->rx_bad;
1555	stats->rx_frame_errors = mac_stats->rx_align_error;
1556	stats->rx_fifo_errors = mac_stats->rx_overflow;
1557	stats->rx_missed_errors = mac_stats->rx_missed;
1558	stats->tx_window_errors = mac_stats->tx_late_collision;
1559
1560	stats->rx_errors = (stats->rx_length_errors +
1561			    stats->rx_crc_errors +
1562			    stats->rx_frame_errors +
1563			    mac_stats->rx_symbol_error);
1564	stats->tx_errors = (stats->tx_window_errors +
1565			    mac_stats->tx_bad);
1566
1567	return stats;
1568}
1569
1570/* Context: netif_tx_lock held, BHs disabled. */
1571static void efx_watchdog(struct net_device *net_dev)
1572{
1573	struct efx_nic *efx = netdev_priv(net_dev);
1574
1575	netif_err(efx, tx_err, efx->net_dev,
1576		  "TX stuck with port_enabled=%d: resetting channels\n",
1577		  efx->port_enabled);
1578
1579	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1580}
1581
1582
1583/* Context: process, rtnl_lock() held. */
1584static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1585{
1586	struct efx_nic *efx = netdev_priv(net_dev);
1587	int rc = 0;
1588
1589	EFX_ASSERT_RESET_SERIALISED(efx);
1590
1591	if (new_mtu > EFX_MAX_MTU)
1592		return -EINVAL;
1593
1594	efx_stop_all(efx);
1595
1596	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1597
1598	efx_fini_channels(efx);
1599
1600	mutex_lock(&efx->mac_lock);
1601	/* Reconfigure the MAC before enabling the dma queues so that
1602	 * the RX buffers don't overflow */
1603	net_dev->mtu = new_mtu;
1604	efx->mac_op->reconfigure(efx);
1605	mutex_unlock(&efx->mac_lock);
1606
1607	efx_init_channels(efx);
1608
1609	efx_start_all(efx);
1610	return rc;
1611}
1612
1613static int efx_set_mac_address(struct net_device *net_dev, void *data)
1614{
1615	struct efx_nic *efx = netdev_priv(net_dev);
1616	struct sockaddr *addr = data;
1617	char *new_addr = addr->sa_data;
1618
1619	EFX_ASSERT_RESET_SERIALISED(efx);
1620
1621	if (!is_valid_ether_addr(new_addr)) {
1622		netif_err(efx, drv, efx->net_dev,
1623			  "invalid ethernet MAC address requested: %pM\n",
1624			  new_addr);
1625		return -EINVAL;
1626	}
1627
1628	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1629
1630	/* Reconfigure the MAC */
1631	mutex_lock(&efx->mac_lock);
1632	efx->mac_op->reconfigure(efx);
1633	mutex_unlock(&efx->mac_lock);
1634
1635	return 0;
1636}
1637
1638/* Context: netif_addr_lock held, BHs disabled. */
1639static void efx_set_multicast_list(struct net_device *net_dev)
1640{
1641	struct efx_nic *efx = netdev_priv(net_dev);
1642	struct netdev_hw_addr *ha;
1643	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1644	u32 crc;
1645	int bit;
1646
1647	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1648
1649	/* Build multicast hash table */
1650	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1651		memset(mc_hash, 0xff, sizeof(*mc_hash));
1652	} else {
1653		memset(mc_hash, 0x00, sizeof(*mc_hash));
1654		netdev_for_each_mc_addr(ha, net_dev) {
1655			crc = ether_crc_le(ETH_ALEN, ha->addr);
1656			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1657			set_bit_le(bit, mc_hash->byte);
1658		}
1659
1660		/* Broadcast packets go through the multicast hash filter.
1661		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1662		 * so we always add bit 0xff to the mask.
1663		 */
1664		set_bit_le(0xff, mc_hash->byte);
1665	}
1666
1667	if (efx->port_enabled)
1668		queue_work(efx->workqueue, &efx->mac_work);
1669	/* Otherwise efx_start_port() will do this */
1670}
1671
1672static const struct net_device_ops efx_netdev_ops = {
1673	.ndo_open		= efx_net_open,
1674	.ndo_stop		= efx_net_stop,
1675	.ndo_get_stats64	= efx_net_stats,
1676	.ndo_tx_timeout		= efx_watchdog,
1677	.ndo_start_xmit		= efx_hard_start_xmit,
1678	.ndo_validate_addr	= eth_validate_addr,
1679	.ndo_do_ioctl		= efx_ioctl,
1680	.ndo_change_mtu		= efx_change_mtu,
1681	.ndo_set_mac_address	= efx_set_mac_address,
1682	.ndo_set_multicast_list = efx_set_multicast_list,
1683#ifdef CONFIG_NET_POLL_CONTROLLER
1684	.ndo_poll_controller = efx_netpoll,
1685#endif
1686};
1687
1688static void efx_update_name(struct efx_nic *efx)
1689{
1690	strcpy(efx->name, efx->net_dev->name);
1691	efx_mtd_rename(efx);
1692	efx_set_channel_names(efx);
1693}
1694
1695static int efx_netdev_event(struct notifier_block *this,
1696			    unsigned long event, void *ptr)
1697{
1698	struct net_device *net_dev = ptr;
1699
1700	if (net_dev->netdev_ops == &efx_netdev_ops &&
1701	    event == NETDEV_CHANGENAME)
1702		efx_update_name(netdev_priv(net_dev));
1703
1704	return NOTIFY_DONE;
1705}
1706
1707static struct notifier_block efx_netdev_notifier = {
1708	.notifier_call = efx_netdev_event,
1709};
1710
1711static ssize_t
1712show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1713{
1714	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1715	return sprintf(buf, "%d\n", efx->phy_type);
1716}
1717static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1718
1719static int efx_register_netdev(struct efx_nic *efx)
1720{
1721	struct net_device *net_dev = efx->net_dev;
1722	int rc;
1723
1724	net_dev->watchdog_timeo = 5 * HZ;
1725	net_dev->irq = efx->pci_dev->irq;
1726	net_dev->netdev_ops = &efx_netdev_ops;
1727	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1728
1729	/* Clear MAC statistics */
1730	efx->mac_op->update_stats(efx);
1731	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1732
1733	rtnl_lock();
1734
1735	rc = dev_alloc_name(net_dev, net_dev->name);
1736	if (rc < 0)
1737		goto fail_locked;
1738	efx_update_name(efx);
1739
1740	rc = register_netdevice(net_dev);
1741	if (rc)
1742		goto fail_locked;
1743
1744	/* Always start with carrier off; PHY events will detect the link */
1745	netif_carrier_off(efx->net_dev);
1746
1747	rtnl_unlock();
1748
1749	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1750	if (rc) {
1751		netif_err(efx, drv, efx->net_dev,
1752			  "failed to init net dev attributes\n");
1753		goto fail_registered;
1754	}
1755
1756	return 0;
1757
1758fail_locked:
1759	rtnl_unlock();
1760	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1761	return rc;
1762
1763fail_registered:
1764	unregister_netdev(net_dev);
1765	return rc;
1766}
1767
1768static void efx_unregister_netdev(struct efx_nic *efx)
1769{
1770	struct efx_tx_queue *tx_queue;
1771
1772	if (!efx->net_dev)
1773		return;
1774
1775	BUG_ON(netdev_priv(efx->net_dev) != efx);
1776
1777	/* Free up any skbs still remaining. This has to happen before
1778	 * we try to unregister the netdev as running their destructors
1779	 * may be needed to get the device ref. count to 0. */
1780	efx_for_each_tx_queue(tx_queue, efx)
1781		efx_release_tx_buffers(tx_queue);
1782
1783	if (efx_dev_registered(efx)) {
1784		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1785		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1786		unregister_netdev(efx->net_dev);
1787	}
1788}
1789
1790/**************************************************************************
1791 *
1792 * Device reset and suspend
1793 *
1794 **************************************************************************/
1795
1796/* Tears down the entire software state and most of the hardware state
1797 * before reset.  */
1798void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1799{
1800	EFX_ASSERT_RESET_SERIALISED(efx);
1801
1802	efx_stop_all(efx);
1803	mutex_lock(&efx->mac_lock);
1804	mutex_lock(&efx->spi_lock);
1805
1806	efx_fini_channels(efx);
1807	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1808		efx->phy_op->fini(efx);
1809	efx->type->fini(efx);
1810}
1811
1812/* This function will always ensure that the locks acquired in
1813 * efx_reset_down() are released. A failure return code indicates
1814 * that we were unable to reinitialise the hardware, and the
1815 * driver should be disabled. If ok is false, then the rx and tx
1816 * engines are not restarted, pending a RESET_DISABLE. */
1817int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1818{
1819	int rc;
1820
1821	EFX_ASSERT_RESET_SERIALISED(efx);
1822
1823	rc = efx->type->init(efx);
1824	if (rc) {
1825		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
1826		goto fail;
1827	}
1828
1829	if (!ok)
1830		goto fail;
1831
1832	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1833		rc = efx->phy_op->init(efx);
1834		if (rc)
1835			goto fail;
1836		if (efx->phy_op->reconfigure(efx))
1837			netif_err(efx, drv, efx->net_dev,
1838				  "could not restore PHY settings\n");
1839	}
1840
1841	efx->mac_op->reconfigure(efx);
1842
1843	efx_init_channels(efx);
1844
1845	mutex_unlock(&efx->spi_lock);
1846	mutex_unlock(&efx->mac_lock);
1847
1848	efx_start_all(efx);
1849
1850	return 0;
1851
1852fail:
1853	efx->port_initialized = false;
1854
1855	mutex_unlock(&efx->spi_lock);
1856	mutex_unlock(&efx->mac_lock);
1857
1858	return rc;
1859}
1860
1861/* Reset the NIC using the specified method.  Note that the reset may
1862 * fail, in which case the card will be left in an unusable state.
1863 *
1864 * Caller must hold the rtnl_lock.
1865 */
1866int efx_reset(struct efx_nic *efx, enum reset_type method)
1867{
1868	int rc, rc2;
1869	bool disabled;
1870
1871	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1872		   RESET_TYPE(method));
1873
1874	efx_reset_down(efx, method);
1875
1876	rc = efx->type->reset(efx, method);
1877	if (rc) {
1878		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
1879		goto out;
1880	}
1881
1882	/* Allow resets to be rescheduled. */
1883	efx->reset_pending = RESET_TYPE_NONE;
1884
1885	/* Reinitialise bus-mastering, which may have been turned off before
1886	 * the reset was scheduled. This is still appropriate, even in the
1887	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1888	 * can respond to requests. */
1889	pci_set_master(efx->pci_dev);
1890
1891out:
1892	/* Leave device stopped if necessary */
1893	disabled = rc || method == RESET_TYPE_DISABLE;
1894	rc2 = efx_reset_up(efx, method, !disabled);
1895	if (rc2) {
1896		disabled = true;
1897		if (!rc)
1898			rc = rc2;
1899	}
1900
1901	if (disabled) {
1902		dev_close(efx->net_dev);
1903		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
1904		efx->state = STATE_DISABLED;
1905	} else {
1906		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
1907	}
1908	return rc;
1909}
1910
1911/* The worker thread exists so that code that cannot sleep can
1912 * schedule a reset for later.
1913 */
1914static void efx_reset_work(struct work_struct *data)
1915{
1916	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1917
1918	if (efx->reset_pending == RESET_TYPE_NONE)
1919		return;
1920
1921	/* If we're not RUNNING then don't reset. Leave the reset_pending
1922	 * flag set so that efx_pci_probe_main will be retried */
1923	if (efx->state != STATE_RUNNING) {
1924		netif_info(efx, drv, efx->net_dev,
1925			   "scheduled reset quenched. NIC not RUNNING\n");
1926		return;
1927	}
1928
1929	rtnl_lock();
1930	(void)efx_reset(efx, efx->reset_pending);
1931	rtnl_unlock();
1932}
1933
1934void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1935{
1936	enum reset_type method;
1937
1938	if (efx->reset_pending != RESET_TYPE_NONE) {
1939		netif_info(efx, drv, efx->net_dev,
1940			   "quenching already scheduled reset\n");
1941		return;
1942	}
1943
1944	switch (type) {
1945	case RESET_TYPE_INVISIBLE:
1946	case RESET_TYPE_ALL:
1947	case RESET_TYPE_WORLD:
1948	case RESET_TYPE_DISABLE:
1949		method = type;
1950		break;
1951	case RESET_TYPE_RX_RECOVERY:
1952	case RESET_TYPE_RX_DESC_FETCH:
1953	case RESET_TYPE_TX_DESC_FETCH:
1954	case RESET_TYPE_TX_SKIP:
1955		method = RESET_TYPE_INVISIBLE;
1956		break;
1957	case RESET_TYPE_MC_FAILURE:
1958	default:
1959		method = RESET_TYPE_ALL;
1960		break;
1961	}
1962
1963	if (method != type)
1964		netif_dbg(efx, drv, efx->net_dev,
1965			  "scheduling %s reset for %s\n",
1966			  RESET_TYPE(method), RESET_TYPE(type));
1967	else
1968		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1969			  RESET_TYPE(method));
1970
1971	efx->reset_pending = method;
1972
1973	/* efx_process_channel() will no longer read events once a
1974	 * reset is scheduled. So switch back to poll'd MCDI completions. */
1975	efx_mcdi_mode_poll(efx);
1976
1977	queue_work(reset_workqueue, &efx->reset_work);
1978}
1979
1980/**************************************************************************
1981 *
1982 * List of NICs we support
1983 *
1984 **************************************************************************/
1985
1986/* PCI device ID table */
1987static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
1988	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1989	 .driver_data = (unsigned long) &falcon_a1_nic_type},
1990	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1991	 .driver_data = (unsigned long) &falcon_b0_nic_type},
1992	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1993	 .driver_data = (unsigned long) &siena_a0_nic_type},
1994	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1995	 .driver_data = (unsigned long) &siena_a0_nic_type},
1996	{0}			/* end of list */
1997};
1998
1999/**************************************************************************
2000 *
2001 * Dummy PHY/MAC operations
2002 *
2003 * Can be used for some unimplemented operations
2004 * Needed so all function pointers are valid and do not have to be tested
2005 * before use
2006 *
2007 **************************************************************************/
2008int efx_port_dummy_op_int(struct efx_nic *efx)
2009{
2010	return 0;
2011}
2012void efx_port_dummy_op_void(struct efx_nic *efx) {}
2013void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2014{
2015}
2016bool efx_port_dummy_op_poll(struct efx_nic *efx)
2017{
2018	return false;
2019}
2020
2021static struct efx_phy_operations efx_dummy_phy_operations = {
2022	.init		 = efx_port_dummy_op_int,
2023	.reconfigure	 = efx_port_dummy_op_int,
2024	.poll		 = efx_port_dummy_op_poll,
2025	.fini		 = efx_port_dummy_op_void,
2026};
2027
2028/**************************************************************************
2029 *
2030 * Data housekeeping
2031 *
2032 **************************************************************************/
2033
2034/* This zeroes out and then fills in the invariants in a struct
2035 * efx_nic (including all sub-structures).
2036 */
2037static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2038			   struct pci_dev *pci_dev, struct net_device *net_dev)
2039{
2040	struct efx_channel *channel;
2041	struct efx_tx_queue *tx_queue;
2042	struct efx_rx_queue *rx_queue;
2043	int i;
2044
2045	/* Initialise common structures */
2046	memset(efx, 0, sizeof(*efx));
2047	spin_lock_init(&efx->biu_lock);
2048	mutex_init(&efx->mdio_lock);
2049	mutex_init(&efx->spi_lock);
2050#ifdef CONFIG_SFC_MTD
2051	INIT_LIST_HEAD(&efx->mtd_list);
2052#endif
2053	INIT_WORK(&efx->reset_work, efx_reset_work);
2054	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2055	efx->pci_dev = pci_dev;
2056	efx->msg_enable = debug;
2057	efx->state = STATE_INIT;
2058	efx->reset_pending = RESET_TYPE_NONE;
2059	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2060
2061	efx->net_dev = net_dev;
2062	efx->rx_checksum_enabled = true;
2063	spin_lock_init(&efx->stats_lock);
2064	mutex_init(&efx->mac_lock);
2065	efx->mac_op = type->default_mac_ops;
2066	efx->phy_op = &efx_dummy_phy_operations;
2067	efx->mdio.dev = net_dev;
2068	INIT_WORK(&efx->mac_work, efx_mac_work);
2069
2070	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2071		channel = &efx->channel[i];
2072		channel->efx = efx;
2073		channel->channel = i;
2074		channel->work_pending = false;
2075		spin_lock_init(&channel->tx_stop_lock);
2076		atomic_set(&channel->tx_stop_count, 1);
2077	}
2078	for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
2079		tx_queue = &efx->tx_queue[i];
2080		tx_queue->efx = efx;
2081		tx_queue->queue = i;
2082		tx_queue->buffer = NULL;
2083		tx_queue->channel = &efx->channel[0]; /* for safety */
2084		tx_queue->tso_headers_free = NULL;
2085	}
2086	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2087		rx_queue = &efx->rx_queue[i];
2088		rx_queue->efx = efx;
2089		rx_queue->queue = i;
2090		rx_queue->channel = &efx->channel[0]; /* for safety */
2091		rx_queue->buffer = NULL;
2092		setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2093			    (unsigned long)rx_queue);
2094	}
2095
2096	efx->type = type;
2097
2098	/* As close as we can get to guaranteeing that we don't overflow */
2099	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2100
2101	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2102
2103	/* Higher numbered interrupt modes are less capable! */
2104	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2105				  interrupt_mode);
2106
2107	/* Would be good to use the net_dev name, but we're too early */
2108	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2109		 pci_name(pci_dev));
2110	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2111	if (!efx->workqueue)
2112		return -ENOMEM;
2113
2114	return 0;
2115}
2116
2117static void efx_fini_struct(struct efx_nic *efx)
2118{
2119	if (efx->workqueue) {
2120		destroy_workqueue(efx->workqueue);
2121		efx->workqueue = NULL;
2122	}
2123}
2124
2125/**************************************************************************
2126 *
2127 * PCI interface
2128 *
2129 **************************************************************************/
2130
2131/* Main body of final NIC shutdown code
2132 * This is called only at module unload (or hotplug removal).
2133 */
2134static void efx_pci_remove_main(struct efx_nic *efx)
2135{
2136	efx_nic_fini_interrupt(efx);
2137	efx_fini_channels(efx);
2138	efx_fini_port(efx);
2139	efx->type->fini(efx);
2140	efx_fini_napi(efx);
2141	efx_remove_all(efx);
2142}
2143
2144/* Final NIC shutdown
2145 * This is called only at module unload (or hotplug removal).
2146 */
2147static void efx_pci_remove(struct pci_dev *pci_dev)
2148{
2149	struct efx_nic *efx;
2150
2151	efx = pci_get_drvdata(pci_dev);
2152	if (!efx)
2153		return;
2154
2155	/* Mark the NIC as fini, then stop the interface */
2156	rtnl_lock();
2157	efx->state = STATE_FINI;
2158	dev_close(efx->net_dev);
2159
2160	/* Allow any queued efx_resets() to complete */
2161	rtnl_unlock();
2162
2163	efx_unregister_netdev(efx);
2164
2165	efx_mtd_remove(efx);
2166
2167	/* Wait for any scheduled resets to complete. No more will be
2168	 * scheduled from this point because efx_stop_all() has been
2169	 * called, we are no longer registered with driverlink, and
2170	 * the net_device's have been removed. */
2171	cancel_work_sync(&efx->reset_work);
2172
2173	efx_pci_remove_main(efx);
2174
2175	efx_fini_io(efx);
2176	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2177
2178	pci_set_drvdata(pci_dev, NULL);
2179	efx_fini_struct(efx);
2180	free_netdev(efx->net_dev);
2181};
2182
2183/* Main body of NIC initialisation
2184 * This is called at module load (or hotplug insertion, theoretically).
2185 */
2186static int efx_pci_probe_main(struct efx_nic *efx)
2187{
2188	int rc;
2189
2190	/* Do start-of-day initialisation */
2191	rc = efx_probe_all(efx);
2192	if (rc)
2193		goto fail1;
2194
2195	rc = efx_init_napi(efx);
2196	if (rc)
2197		goto fail2;
2198
2199	rc = efx->type->init(efx);
2200	if (rc) {
2201		netif_err(efx, probe, efx->net_dev,
2202			  "failed to initialise NIC\n");
2203		goto fail3;
2204	}
2205
2206	rc = efx_init_port(efx);
2207	if (rc) {
2208		netif_err(efx, probe, efx->net_dev,
2209			  "failed to initialise port\n");
2210		goto fail4;
2211	}
2212
2213	efx_init_channels(efx);
2214
2215	rc = efx_nic_init_interrupt(efx);
2216	if (rc)
2217		goto fail5;
2218
2219	return 0;
2220
2221 fail5:
2222	efx_fini_channels(efx);
2223	efx_fini_port(efx);
2224 fail4:
2225	efx->type->fini(efx);
2226 fail3:
2227	efx_fini_napi(efx);
2228 fail2:
2229	efx_remove_all(efx);
2230 fail1:
2231	return rc;
2232}
2233
2234/* NIC initialisation
2235 *
2236 * This is called at module load (or hotplug insertion,
2237 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
2238 * sets up and registers the network devices with the kernel and hooks
2239 * the interrupt service routine.  It does not prepare the device for
2240 * transmission; this is left to the first time one of the network
2241 * interfaces is brought up (i.e. efx_net_open).
2242 */
2243static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2244				   const struct pci_device_id *entry)
2245{
2246	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2247	struct net_device *net_dev;
2248	struct efx_nic *efx;
2249	int i, rc;
2250
2251	/* Allocate and initialise a struct net_device and struct efx_nic */
2252	net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2253	if (!net_dev)
2254		return -ENOMEM;
2255	net_dev->features |= (type->offload_features | NETIF_F_SG |
2256			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2257			      NETIF_F_GRO);
2258	if (type->offload_features & NETIF_F_V6_CSUM)
2259		net_dev->features |= NETIF_F_TSO6;
2260	/* Mask for features that also apply to VLAN devices */
2261	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2262				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2263	efx = netdev_priv(net_dev);
2264	pci_set_drvdata(pci_dev, efx);
2265	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2266	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2267	if (rc)
2268		goto fail1;
2269
2270	netif_info(efx, probe, efx->net_dev,
2271		   "Solarflare Communications NIC detected\n");
2272
2273	/* Set up basic I/O (BAR mappings etc) */
2274	rc = efx_init_io(efx);
2275	if (rc)
2276		goto fail2;
2277
2278	/* No serialisation is required with the reset path because
2279	 * we're in STATE_INIT. */
2280	for (i = 0; i < 5; i++) {
2281		rc = efx_pci_probe_main(efx);
2282
2283		/* Serialise against efx_reset(). No more resets will be
2284		 * scheduled since efx_stop_all() has been called, and we
2285		 * have not and never have been registered with either
2286		 * the rtnetlink or driverlink layers. */
2287		cancel_work_sync(&efx->reset_work);
2288
2289		if (rc == 0) {
2290			if (efx->reset_pending != RESET_TYPE_NONE) {
2291				/* If there was a scheduled reset during
2292				 * probe, the NIC is probably hosed anyway */
2293				efx_pci_remove_main(efx);
2294				rc = -EIO;
2295			} else {
2296				break;
2297			}
2298		}
2299
2300		/* Retry if a recoverably reset event has been scheduled */
2301		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2302		    (efx->reset_pending != RESET_TYPE_ALL))
2303			goto fail3;
2304
2305		efx->reset_pending = RESET_TYPE_NONE;
2306	}
2307
2308	if (rc) {
2309		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2310		goto fail4;
2311	}
2312
2313	/* Switch to the running state before we expose the device to the OS,
2314	 * so that dev_open()|efx_start_all() will actually start the device */
2315	efx->state = STATE_RUNNING;
2316
2317	rc = efx_register_netdev(efx);
2318	if (rc)
2319		goto fail5;
2320
2321	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2322
2323	rtnl_lock();
2324	efx_mtd_probe(efx); /* allowed to fail */
2325	rtnl_unlock();
2326	return 0;
2327
2328 fail5:
2329	efx_pci_remove_main(efx);
2330 fail4:
2331 fail3:
2332	efx_fini_io(efx);
2333 fail2:
2334	efx_fini_struct(efx);
2335 fail1:
2336	WARN_ON(rc > 0);
2337	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2338	free_netdev(net_dev);
2339	return rc;
2340}
2341
2342static int efx_pm_freeze(struct device *dev)
2343{
2344	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2345
2346	efx->state = STATE_FINI;
2347
2348	netif_device_detach(efx->net_dev);
2349
2350	efx_stop_all(efx);
2351	efx_fini_channels(efx);
2352
2353	return 0;
2354}
2355
2356static int efx_pm_thaw(struct device *dev)
2357{
2358	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2359
2360	efx->state = STATE_INIT;
2361
2362	efx_init_channels(efx);
2363
2364	mutex_lock(&efx->mac_lock);
2365	efx->phy_op->reconfigure(efx);
2366	mutex_unlock(&efx->mac_lock);
2367
2368	efx_start_all(efx);
2369
2370	netif_device_attach(efx->net_dev);
2371
2372	efx->state = STATE_RUNNING;
2373
2374	efx->type->resume_wol(efx);
2375
2376	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2377	queue_work(reset_workqueue, &efx->reset_work);
2378
2379	return 0;
2380}
2381
2382static int efx_pm_poweroff(struct device *dev)
2383{
2384	struct pci_dev *pci_dev = to_pci_dev(dev);
2385	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2386
2387	efx->type->fini(efx);
2388
2389	efx->reset_pending = RESET_TYPE_NONE;
2390
2391	pci_save_state(pci_dev);
2392	return pci_set_power_state(pci_dev, PCI_D3hot);
2393}
2394
2395/* Used for both resume and restore */
2396static int efx_pm_resume(struct device *dev)
2397{
2398	struct pci_dev *pci_dev = to_pci_dev(dev);
2399	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2400	int rc;
2401
2402	rc = pci_set_power_state(pci_dev, PCI_D0);
2403	if (rc)
2404		return rc;
2405	pci_restore_state(pci_dev);
2406	rc = pci_enable_device(pci_dev);
2407	if (rc)
2408		return rc;
2409	pci_set_master(efx->pci_dev);
2410	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2411	if (rc)
2412		return rc;
2413	rc = efx->type->init(efx);
2414	if (rc)
2415		return rc;
2416	efx_pm_thaw(dev);
2417	return 0;
2418}
2419
2420static int efx_pm_suspend(struct device *dev)
2421{
2422	int rc;
2423
2424	efx_pm_freeze(dev);
2425	rc = efx_pm_poweroff(dev);
2426	if (rc)
2427		efx_pm_resume(dev);
2428	return rc;
2429}
2430
2431static struct dev_pm_ops efx_pm_ops = {
2432	.suspend	= efx_pm_suspend,
2433	.resume		= efx_pm_resume,
2434	.freeze		= efx_pm_freeze,
2435	.thaw		= efx_pm_thaw,
2436	.poweroff	= efx_pm_poweroff,
2437	.restore	= efx_pm_resume,
2438};
2439
2440static struct pci_driver efx_pci_driver = {
2441	.name		= KBUILD_MODNAME,
2442	.id_table	= efx_pci_table,
2443	.probe		= efx_pci_probe,
2444	.remove		= efx_pci_remove,
2445	.driver.pm	= &efx_pm_ops,
2446};
2447
2448/**************************************************************************
2449 *
2450 * Kernel module interface
2451 *
2452 *************************************************************************/
2453
2454module_param(interrupt_mode, uint, 0444);
2455MODULE_PARM_DESC(interrupt_mode,
2456		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2457
2458static int __init efx_init_module(void)
2459{
2460	int rc;
2461
2462	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2463
2464	rc = register_netdevice_notifier(&efx_netdev_notifier);
2465	if (rc)
2466		goto err_notifier;
2467
2468	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2469	if (!reset_workqueue) {
2470		rc = -ENOMEM;
2471		goto err_reset;
2472	}
2473
2474	rc = pci_register_driver(&efx_pci_driver);
2475	if (rc < 0)
2476		goto err_pci;
2477
2478	return 0;
2479
2480 err_pci:
2481	destroy_workqueue(reset_workqueue);
2482 err_reset:
2483	unregister_netdevice_notifier(&efx_netdev_notifier);
2484 err_notifier:
2485	return rc;
2486}
2487
2488static void __exit efx_exit_module(void)
2489{
2490	printk(KERN_INFO "Solarflare NET driver unloading\n");
2491
2492	pci_unregister_driver(&efx_pci_driver);
2493	destroy_workqueue(reset_workqueue);
2494	unregister_netdevice_notifier(&efx_netdev_notifier);
2495
2496}
2497
2498module_init(efx_init_module);
2499module_exit(efx_exit_module);
2500
2501MODULE_AUTHOR("Solarflare Communications and "
2502	      "Michael Brown <mbrown@fensystems.co.uk>");
2503MODULE_DESCRIPTION("Solarflare Communications network driver");
2504MODULE_LICENSE("GPL");
2505MODULE_DEVICE_TABLE(pci, efx_pci_table);
2506