• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/
1/* drivers/net/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 *	http://www.simtec.co.uk/
5 *	Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#define DEBUG
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/ethtool.h>
21#include <linux/cache.h>
22#include <linux/crc32.h>
23#include <linux/mii.h>
24
25#include <linux/spi/spi.h>
26
27#include "ks8851.h"
28
29/**
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
34 *
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
39 * commands.
40 */
41struct ks8851_rxctrl {
42	u16	mchash[4];
43	u16	rxcr1;
44	u16	rxcr2;
45};
46
47/**
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
51 *
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
55 */
56union ks8851_tx_hdr {
57	u8	txb[6];
58	__le16	txw[3];
59};
60
61/**
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
81 * @rc_ccr: Cached copy of KS_CCR.
82 * @rc_rxqcr: Cached copy of KS_RXQCR.
83 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
84 *
85 * The @lock ensures that the chip is protected when certain operations are
86 * in progress. When the read or write packet transfer is in progress, most
87 * of the chip registers are not ccessible until the transfer is finished and
88 * the DMA has been de-asserted.
89 *
90 * The @statelock is used to protect information in the structure which may
91 * need to be accessed via several sources, such as the network driver layer
92 * or one of the work queues.
93 *
94 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95 * wants to DMA map them, it will not have any problems with data the driver
96 * modifies.
97 */
98struct ks8851_net {
99	struct net_device	*netdev;
100	struct spi_device	*spidev;
101	struct mutex		lock;
102	spinlock_t		statelock;
103
104	union ks8851_tx_hdr	txh ____cacheline_aligned;
105	u8			rxd[8];
106	u8			txd[8];
107
108	u32			msg_enable ____cacheline_aligned;
109	u16			tx_space;
110	u8			fid;
111
112	u16			rc_ier;
113	u16			rc_rxqcr;
114	u16			rc_ccr;
115	u16			eeprom_size;
116
117	struct mii_if_info	mii;
118	struct ks8851_rxctrl	rxctrl;
119
120	struct work_struct	tx_work;
121	struct work_struct	irq_work;
122	struct work_struct	rxctrl_work;
123
124	struct sk_buff_head	txq;
125
126	struct spi_message	spi_msg1;
127	struct spi_message	spi_msg2;
128	struct spi_transfer	spi_xfer1;
129	struct spi_transfer	spi_xfer2[2];
130};
131
132static int msg_enable;
133
134/* shift for byte-enable data */
135#define BYTE_EN(_x)	((_x) << 2)
136
137/* turn register number and byte-enable mask into data for start of packet */
138#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
139
140/* SPI register read/write calls.
141 *
142 * All these calls issue SPI transactions to access the chip's registers. They
143 * all require that the necessary lock is held to prevent accesses when the
144 * chip is busy transfering packet data (RX/TX FIFO accesses).
145 */
146
147/**
148 * ks8851_wrreg16 - write 16bit register value to chip
149 * @ks: The chip state
150 * @reg: The register address
151 * @val: The value to write
152 *
153 * Issue a write to put the value @val into the register specified in @reg.
154 */
155static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
156{
157	struct spi_transfer *xfer = &ks->spi_xfer1;
158	struct spi_message *msg = &ks->spi_msg1;
159	__le16 txb[2];
160	int ret;
161
162	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
163	txb[1] = cpu_to_le16(val);
164
165	xfer->tx_buf = txb;
166	xfer->rx_buf = NULL;
167	xfer->len = 4;
168
169	ret = spi_sync(ks->spidev, msg);
170	if (ret < 0)
171		netdev_err(ks->netdev, "spi_sync() failed\n");
172}
173
174/**
175 * ks8851_wrreg8 - write 8bit register value to chip
176 * @ks: The chip state
177 * @reg: The register address
178 * @val: The value to write
179 *
180 * Issue a write to put the value @val into the register specified in @reg.
181 */
182static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
183{
184	struct spi_transfer *xfer = &ks->spi_xfer1;
185	struct spi_message *msg = &ks->spi_msg1;
186	__le16 txb[2];
187	int ret;
188	int bit;
189
190	bit = 1 << (reg & 3);
191
192	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
193	txb[1] = val;
194
195	xfer->tx_buf = txb;
196	xfer->rx_buf = NULL;
197	xfer->len = 3;
198
199	ret = spi_sync(ks->spidev, msg);
200	if (ret < 0)
201		netdev_err(ks->netdev, "spi_sync() failed\n");
202}
203
204/**
205 * ks8851_rx_1msg - select whether to use one or two messages for spi read
206 * @ks: The device structure
207 *
208 * Return whether to generate a single message with a tx and rx buffer
209 * supplied to spi_sync(), or alternatively send the tx and rx buffers
210 * as separate messages.
211 *
212 * Depending on the hardware in use, a single message may be more efficient
213 * on interrupts or work done by the driver.
214 *
215 * This currently always returns true until we add some per-device data passed
216 * from the platform code to specify which mode is better.
217 */
218static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
219{
220	return true;
221}
222
223/**
224 * ks8851_rdreg - issue read register command and return the data
225 * @ks: The device state
226 * @op: The register address and byte enables in message format.
227 * @rxb: The RX buffer to return the result into
228 * @rxl: The length of data expected.
229 *
230 * This is the low level read call that issues the necessary spi message(s)
231 * to read data from the register specified in @op.
232 */
233static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
234			 u8 *rxb, unsigned rxl)
235{
236	struct spi_transfer *xfer;
237	struct spi_message *msg;
238	__le16 *txb = (__le16 *)ks->txd;
239	u8 *trx = ks->rxd;
240	int ret;
241
242	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
243
244	if (ks8851_rx_1msg(ks)) {
245		msg = &ks->spi_msg1;
246		xfer = &ks->spi_xfer1;
247
248		xfer->tx_buf = txb;
249		xfer->rx_buf = trx;
250		xfer->len = rxl + 2;
251	} else {
252		msg = &ks->spi_msg2;
253		xfer = ks->spi_xfer2;
254
255		xfer->tx_buf = txb;
256		xfer->rx_buf = NULL;
257		xfer->len = 2;
258
259		xfer++;
260		xfer->tx_buf = NULL;
261		xfer->rx_buf = trx;
262		xfer->len = rxl;
263	}
264
265	ret = spi_sync(ks->spidev, msg);
266	if (ret < 0)
267		netdev_err(ks->netdev, "read: spi_sync() failed\n");
268	else if (ks8851_rx_1msg(ks))
269		memcpy(rxb, trx + 2, rxl);
270	else
271		memcpy(rxb, trx, rxl);
272}
273
274/**
275 * ks8851_rdreg8 - read 8 bit register from device
276 * @ks: The chip information
277 * @reg: The register address
278 *
279 * Read a 8bit register from the chip, returning the result
280*/
281static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
282{
283	u8 rxb[1];
284
285	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
286	return rxb[0];
287}
288
289/**
290 * ks8851_rdreg16 - read 16 bit register from device
291 * @ks: The chip information
292 * @reg: The register address
293 *
294 * Read a 16bit register from the chip, returning the result
295*/
296static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
297{
298	__le16 rx = 0;
299
300	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
301	return le16_to_cpu(rx);
302}
303
304/**
305 * ks8851_rdreg32 - read 32 bit register from device
306 * @ks: The chip information
307 * @reg: The register address
308 *
309 * Read a 32bit register from the chip.
310 *
311 * Note, this read requires the address be aligned to 4 bytes.
312*/
313static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
314{
315	__le32 rx = 0;
316
317	WARN_ON(reg & 3);
318
319	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
320	return le32_to_cpu(rx);
321}
322
323/**
324 * ks8851_soft_reset - issue one of the soft reset to the device
325 * @ks: The device state.
326 * @op: The bit(s) to set in the GRR
327 *
328 * Issue the relevant soft-reset command to the device's GRR register
329 * specified by @op.
330 *
331 * Note, the delays are in there as a caution to ensure that the reset
332 * has time to take effect and then complete. Since the datasheet does
333 * not currently specify the exact sequence, we have chosen something
334 * that seems to work with our device.
335 */
336static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
337{
338	ks8851_wrreg16(ks, KS_GRR, op);
339	mdelay(1);	/* wait a short time to effect reset */
340	ks8851_wrreg16(ks, KS_GRR, 0);
341	mdelay(1);	/* wait for condition to clear */
342}
343
344/**
345 * ks8851_write_mac_addr - write mac address to device registers
346 * @dev: The network device
347 *
348 * Update the KS8851 MAC address registers from the address in @dev.
349 *
350 * This call assumes that the chip is not running, so there is no need to
351 * shutdown the RXQ process whilst setting this.
352*/
353static int ks8851_write_mac_addr(struct net_device *dev)
354{
355	struct ks8851_net *ks = netdev_priv(dev);
356	int i;
357
358	mutex_lock(&ks->lock);
359
360	for (i = 0; i < ETH_ALEN; i++)
361		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
362
363	mutex_unlock(&ks->lock);
364
365	return 0;
366}
367
368/**
369 * ks8851_init_mac - initialise the mac address
370 * @ks: The device structure
371 *
372 * Get or create the initial mac address for the device and then set that
373 * into the station address register. Currently we assume that the device
374 * does not have a valid mac address in it, and so we use random_ether_addr()
375 * to create a new one.
376 *
377 * In future, the driver should check to see if the device has an EEPROM
378 * attached and whether that has a valid ethernet address in it.
379 */
380static void ks8851_init_mac(struct ks8851_net *ks)
381{
382	struct net_device *dev = ks->netdev;
383
384	random_ether_addr(dev->dev_addr);
385	ks8851_write_mac_addr(dev);
386}
387
388/**
389 * ks8851_irq - device interrupt handler
390 * @irq: Interrupt number passed from the IRQ hnalder.
391 * @pw: The private word passed to register_irq(), our struct ks8851_net.
392 *
393 * Disable the interrupt from happening again until we've processed the
394 * current status by scheduling ks8851_irq_work().
395 */
396static irqreturn_t ks8851_irq(int irq, void *pw)
397{
398	struct ks8851_net *ks = pw;
399
400	disable_irq_nosync(irq);
401	schedule_work(&ks->irq_work);
402	return IRQ_HANDLED;
403}
404
405/**
406 * ks8851_rdfifo - read data from the receive fifo
407 * @ks: The device state.
408 * @buff: The buffer address
409 * @len: The length of the data to read
410 *
411 * Issue an RXQ FIFO read command and read the @len amount of data from
412 * the FIFO into the buffer specified by @buff.
413 */
414static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
415{
416	struct spi_transfer *xfer = ks->spi_xfer2;
417	struct spi_message *msg = &ks->spi_msg2;
418	u8 txb[1];
419	int ret;
420
421	netif_dbg(ks, rx_status, ks->netdev,
422		  "%s: %d@%p\n", __func__, len, buff);
423
424	/* set the operation we're issuing */
425	txb[0] = KS_SPIOP_RXFIFO;
426
427	xfer->tx_buf = txb;
428	xfer->rx_buf = NULL;
429	xfer->len = 1;
430
431	xfer++;
432	xfer->rx_buf = buff;
433	xfer->tx_buf = NULL;
434	xfer->len = len;
435
436	ret = spi_sync(ks->spidev, msg);
437	if (ret < 0)
438		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
439}
440
441/**
442 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443 * @ks: The device state
444 * @rxpkt: The data for the received packet
445 *
446 * Dump the initial data from the packet to dev_dbg().
447*/
448static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
449{
450	netdev_dbg(ks->netdev,
451		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
453		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
454		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
455}
456
457/**
458 * ks8851_rx_pkts - receive packets from the host
459 * @ks: The device information.
460 *
461 * This is called from the IRQ work queue when the system detects that there
462 * are packets in the receive queue. Find out how many packets there are and
463 * read them from the FIFO.
464 */
465static void ks8851_rx_pkts(struct ks8851_net *ks)
466{
467	struct sk_buff *skb;
468	unsigned rxfc;
469	unsigned rxlen;
470	unsigned rxstat;
471	u32 rxh;
472	u8 *rxpkt;
473
474	rxfc = ks8851_rdreg8(ks, KS_RXFC);
475
476	netif_dbg(ks, rx_status, ks->netdev,
477		  "%s: %d packets\n", __func__, rxfc);
478
479	/* Currently we're issuing a read per packet, but we could possibly
480	 * improve the code by issuing a single read, getting the receive
481	 * header, allocating the packet and then reading the packet data
482	 * out in one go.
483	 *
484	 * This form of operation would require us to hold the SPI bus'
485	 * chipselect low during the entie transaction to avoid any
486	 * reset to the data stream comming from the chip.
487	 */
488
489	for (; rxfc != 0; rxfc--) {
490		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
491		rxstat = rxh & 0xffff;
492		rxlen = rxh >> 16;
493
494		netif_dbg(ks, rx_status, ks->netdev,
495			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
496
497		/* the length of the packet includes the 32bit CRC */
498
499		/* set dma read address */
500		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
501
502		/* start the packet dma process, and set auto-dequeue rx */
503		ks8851_wrreg16(ks, KS_RXQCR,
504			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
505
506		if (rxlen > 4) {
507			unsigned int rxalign;
508
509			rxlen -= 4;
510			rxalign = ALIGN(rxlen, 4);
511			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
512			if (skb) {
513
514				/* 4 bytes of status header + 4 bytes of
515				 * garbage: we put them before ethernet
516				 * header, so that they are copied,
517				 * but ignored.
518				 */
519
520				rxpkt = skb_put(skb, rxlen) - 8;
521
522				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
523
524				if (netif_msg_pktdata(ks))
525					ks8851_dbg_dumpkkt(ks, rxpkt);
526
527				skb->protocol = eth_type_trans(skb, ks->netdev);
528				netif_rx(skb);
529
530				ks->netdev->stats.rx_packets++;
531				ks->netdev->stats.rx_bytes += rxlen;
532			}
533		}
534
535		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
536	}
537}
538
539/**
540 * ks8851_irq_work - work queue handler for dealing with interrupt requests
541 * @work: The work structure that was scheduled by schedule_work()
542 *
543 * This is the handler invoked when the ks8851_irq() is called to find out
544 * what happened, as we cannot allow ourselves to sleep whilst waiting for
545 * anything other process has the chip's lock.
546 *
547 * Read the interrupt status, work out what needs to be done and then clear
548 * any of the interrupts that are not needed.
549 */
550static void ks8851_irq_work(struct work_struct *work)
551{
552	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
553	unsigned status;
554	unsigned handled = 0;
555
556	mutex_lock(&ks->lock);
557
558	status = ks8851_rdreg16(ks, KS_ISR);
559
560	netif_dbg(ks, intr, ks->netdev,
561		  "%s: status 0x%04x\n", __func__, status);
562
563	if (status & IRQ_LCI) {
564		/* should do something about checking link status */
565		handled |= IRQ_LCI;
566	}
567
568	if (status & IRQ_LDI) {
569		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
570		pmecr &= ~PMECR_WKEVT_MASK;
571		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
572
573		handled |= IRQ_LDI;
574	}
575
576	if (status & IRQ_RXPSI)
577		handled |= IRQ_RXPSI;
578
579	if (status & IRQ_TXI) {
580		handled |= IRQ_TXI;
581
582		/* no lock here, tx queue should have been stopped */
583
584		/* update our idea of how much tx space is available to the
585		 * system */
586		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
587
588		netif_dbg(ks, intr, ks->netdev,
589			  "%s: txspace %d\n", __func__, ks->tx_space);
590	}
591
592	if (status & IRQ_RXI)
593		handled |= IRQ_RXI;
594
595	if (status & IRQ_SPIBEI) {
596		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
597		handled |= IRQ_SPIBEI;
598	}
599
600	ks8851_wrreg16(ks, KS_ISR, handled);
601
602	if (status & IRQ_RXI) {
603		/* the datasheet says to disable the rx interrupt during
604		 * packet read-out, however we're masking the interrupt
605		 * from the device so do not bother masking just the RX
606		 * from the device. */
607
608		ks8851_rx_pkts(ks);
609	}
610
611	/* if something stopped the rx process, probably due to wanting
612	 * to change the rx settings, then do something about restarting
613	 * it. */
614	if (status & IRQ_RXPSI) {
615		struct ks8851_rxctrl *rxc = &ks->rxctrl;
616
617		/* update the multicast hash table */
618		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
619		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
620		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
621		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
622
623		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
624		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
625	}
626
627	mutex_unlock(&ks->lock);
628
629	if (status & IRQ_TXI)
630		netif_wake_queue(ks->netdev);
631
632	enable_irq(ks->netdev->irq);
633}
634
635/**
636 * calc_txlen - calculate size of message to send packet
637 * @len: Lenght of data
638 *
639 * Returns the size of the TXFIFO message needed to send
640 * this packet.
641 */
642static inline unsigned calc_txlen(unsigned len)
643{
644	return ALIGN(len + 4, 4);
645}
646
647/**
648 * ks8851_wrpkt - write packet to TX FIFO
649 * @ks: The device state.
650 * @txp: The sk_buff to transmit.
651 * @irq: IRQ on completion of the packet.
652 *
653 * Send the @txp to the chip. This means creating the relevant packet header
654 * specifying the length of the packet and the other information the chip
655 * needs, such as IRQ on completion. Send the header and the packet data to
656 * the device.
657 */
658static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
659{
660	struct spi_transfer *xfer = ks->spi_xfer2;
661	struct spi_message *msg = &ks->spi_msg2;
662	unsigned fid = 0;
663	int ret;
664
665	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
666		  __func__, txp, txp->len, txp->data, irq);
667
668	fid = ks->fid++;
669	fid &= TXFR_TXFID_MASK;
670
671	if (irq)
672		fid |= TXFR_TXIC;	/* irq on completion */
673
674	/* start header at txb[1] to align txw entries */
675	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
676	ks->txh.txw[1] = cpu_to_le16(fid);
677	ks->txh.txw[2] = cpu_to_le16(txp->len);
678
679	xfer->tx_buf = &ks->txh.txb[1];
680	xfer->rx_buf = NULL;
681	xfer->len = 5;
682
683	xfer++;
684	xfer->tx_buf = txp->data;
685	xfer->rx_buf = NULL;
686	xfer->len = ALIGN(txp->len, 4);
687
688	ret = spi_sync(ks->spidev, msg);
689	if (ret < 0)
690		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
691}
692
693/**
694 * ks8851_done_tx - update and then free skbuff after transmitting
695 * @ks: The device state
696 * @txb: The buffer transmitted
697 */
698static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
699{
700	struct net_device *dev = ks->netdev;
701
702	dev->stats.tx_bytes += txb->len;
703	dev->stats.tx_packets++;
704
705	dev_kfree_skb(txb);
706}
707
708/**
709 * ks8851_tx_work - process tx packet(s)
710 * @work: The work strucutre what was scheduled.
711 *
712 * This is called when a number of packets have been scheduled for
713 * transmission and need to be sent to the device.
714 */
715static void ks8851_tx_work(struct work_struct *work)
716{
717	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
718	struct sk_buff *txb;
719	bool last = skb_queue_empty(&ks->txq);
720
721	mutex_lock(&ks->lock);
722
723	while (!last) {
724		txb = skb_dequeue(&ks->txq);
725		last = skb_queue_empty(&ks->txq);
726
727		if (txb != NULL) {
728			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
729			ks8851_wrpkt(ks, txb, last);
730			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
731			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
732
733			ks8851_done_tx(ks, txb);
734		}
735	}
736
737	mutex_unlock(&ks->lock);
738}
739
740/**
741 * ks8851_set_powermode - set power mode of the device
742 * @ks: The device state
743 * @pwrmode: The power mode value to write to KS_PMECR.
744 *
745 * Change the power mode of the chip.
746 */
747static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
748{
749	unsigned pmecr;
750
751	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
752
753	pmecr = ks8851_rdreg16(ks, KS_PMECR);
754	pmecr &= ~PMECR_PM_MASK;
755	pmecr |= pwrmode;
756
757	ks8851_wrreg16(ks, KS_PMECR, pmecr);
758}
759
760/**
761 * ks8851_net_open - open network device
762 * @dev: The network device being opened.
763 *
764 * Called when the network device is marked active, such as a user executing
765 * 'ifconfig up' on the device.
766 */
767static int ks8851_net_open(struct net_device *dev)
768{
769	struct ks8851_net *ks = netdev_priv(dev);
770
771	/* lock the card, even if we may not actually be doing anything
772	 * else at the moment */
773	mutex_lock(&ks->lock);
774
775	netif_dbg(ks, ifup, ks->netdev, "opening\n");
776
777	/* bring chip out of any power saving mode it was in */
778	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
779
780	/* issue a soft reset to the RX/TX QMU to put it into a known
781	 * state. */
782	ks8851_soft_reset(ks, GRR_QMU);
783
784	/* setup transmission parameters */
785
786	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
787				     TXCR_TXPE | /* pad to min length */
788				     TXCR_TXCRC | /* add CRC */
789				     TXCR_TXFCE)); /* enable flow control */
790
791	/* auto-increment tx data, reset tx pointer */
792	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
793
794	/* setup receiver control */
795
796	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
797				      RXCR1_RXFCE | /* enable flow control */
798				      RXCR1_RXBE | /* broadcast enable */
799				      RXCR1_RXUE | /* unicast enable */
800				      RXCR1_RXE)); /* enable rx block */
801
802	/* transfer entire frames out in one go */
803	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
804
805	/* set receive counter timeouts */
806	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
807	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
808	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
809
810	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
811			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
812			RXQCR_RXDTTE);  /* IRQ on time exceeded */
813
814	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
815
816	/* clear then enable interrupts */
817
818#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
819		 IRQ_TXI |	/* TX done */		\
820		 IRQ_RXI |	/* RX done */		\
821		 IRQ_SPIBEI |	/* SPI bus error */	\
822		 IRQ_TXPSI |	/* TX process stop */	\
823		 IRQ_RXPSI)	/* RX process stop */
824
825	ks->rc_ier = STD_IRQ;
826	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
827	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
828
829	netif_start_queue(ks->netdev);
830
831	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
832
833	mutex_unlock(&ks->lock);
834	return 0;
835}
836
837/**
838 * ks8851_net_stop - close network device
839 * @dev: The device being closed.
840 *
841 * Called to close down a network device which has been active. Cancell any
842 * work, shutdown the RX and TX process and then place the chip into a low
843 * power state whilst it is not being used.
844 */
845static int ks8851_net_stop(struct net_device *dev)
846{
847	struct ks8851_net *ks = netdev_priv(dev);
848
849	netif_info(ks, ifdown, dev, "shutting down\n");
850
851	netif_stop_queue(dev);
852
853	mutex_lock(&ks->lock);
854
855	/* stop any outstanding work */
856	flush_work(&ks->irq_work);
857	flush_work(&ks->tx_work);
858	flush_work(&ks->rxctrl_work);
859
860	/* turn off the IRQs and ack any outstanding */
861	ks8851_wrreg16(ks, KS_IER, 0x0000);
862	ks8851_wrreg16(ks, KS_ISR, 0xffff);
863
864	/* shutdown RX process */
865	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
866
867	/* shutdown TX process */
868	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
869
870	/* set powermode to soft power down to save power */
871	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
872
873	/* ensure any queued tx buffers are dumped */
874	while (!skb_queue_empty(&ks->txq)) {
875		struct sk_buff *txb = skb_dequeue(&ks->txq);
876
877		netif_dbg(ks, ifdown, ks->netdev,
878			  "%s: freeing txb %p\n", __func__, txb);
879
880		dev_kfree_skb(txb);
881	}
882
883	mutex_unlock(&ks->lock);
884	return 0;
885}
886
887/**
888 * ks8851_start_xmit - transmit packet
889 * @skb: The buffer to transmit
890 * @dev: The device used to transmit the packet.
891 *
892 * Called by the network layer to transmit the @skb. Queue the packet for
893 * the device and schedule the necessary work to transmit the packet when
894 * it is free.
895 *
896 * We do this to firstly avoid sleeping with the network device locked,
897 * and secondly so we can round up more than one packet to transmit which
898 * means we can try and avoid generating too many transmit done interrupts.
899 */
900static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
901				     struct net_device *dev)
902{
903	struct ks8851_net *ks = netdev_priv(dev);
904	unsigned needed = calc_txlen(skb->len);
905	netdev_tx_t ret = NETDEV_TX_OK;
906
907	netif_dbg(ks, tx_queued, ks->netdev,
908		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
909
910	spin_lock(&ks->statelock);
911
912	if (needed > ks->tx_space) {
913		netif_stop_queue(dev);
914		ret = NETDEV_TX_BUSY;
915	} else {
916		ks->tx_space -= needed;
917		skb_queue_tail(&ks->txq, skb);
918	}
919
920	spin_unlock(&ks->statelock);
921	schedule_work(&ks->tx_work);
922
923	return ret;
924}
925
926/**
927 * ks8851_rxctrl_work - work handler to change rx mode
928 * @work: The work structure this belongs to.
929 *
930 * Lock the device and issue the necessary changes to the receive mode from
931 * the network device layer. This is done so that we can do this without
932 * having to sleep whilst holding the network device lock.
933 *
934 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
935 * receive parameters are programmed, we issue a write to disable the RXQ and
936 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
937 * complete. The interrupt handler then writes the new values into the chip.
938 */
939static void ks8851_rxctrl_work(struct work_struct *work)
940{
941	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
942
943	mutex_lock(&ks->lock);
944
945	/* need to shutdown RXQ before modifying filter parameters */
946	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
947
948	mutex_unlock(&ks->lock);
949}
950
951static void ks8851_set_rx_mode(struct net_device *dev)
952{
953	struct ks8851_net *ks = netdev_priv(dev);
954	struct ks8851_rxctrl rxctrl;
955
956	memset(&rxctrl, 0, sizeof(rxctrl));
957
958	if (dev->flags & IFF_PROMISC) {
959		/* interface to receive everything */
960
961		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
962	} else if (dev->flags & IFF_ALLMULTI) {
963		/* accept all multicast packets */
964
965		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
966				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
967	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
968		struct netdev_hw_addr *ha;
969		u32 crc;
970
971		/* accept some multicast */
972
973		netdev_for_each_mc_addr(ha, dev) {
974			crc = ether_crc(ETH_ALEN, ha->addr);
975			crc >>= (32 - 6);  /* get top six bits */
976
977			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
978		}
979
980		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
981	} else {
982		/* just accept broadcast / unicast */
983		rxctrl.rxcr1 = RXCR1_RXPAFMA;
984	}
985
986	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
987			 RXCR1_RXBE | /* broadcast enable */
988			 RXCR1_RXE | /* RX process enable */
989			 RXCR1_RXFCE); /* enable flow control */
990
991	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
992
993	/* schedule work to do the actual set of the data if needed */
994
995	spin_lock(&ks->statelock);
996
997	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
998		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
999		schedule_work(&ks->rxctrl_work);
1000	}
1001
1002	spin_unlock(&ks->statelock);
1003}
1004
1005static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1006{
1007	struct sockaddr *sa = addr;
1008
1009	if (netif_running(dev))
1010		return -EBUSY;
1011
1012	if (!is_valid_ether_addr(sa->sa_data))
1013		return -EADDRNOTAVAIL;
1014
1015	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1016	return ks8851_write_mac_addr(dev);
1017}
1018
1019static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1020{
1021	struct ks8851_net *ks = netdev_priv(dev);
1022
1023	if (!netif_running(dev))
1024		return -EINVAL;
1025
1026	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1027}
1028
1029static const struct net_device_ops ks8851_netdev_ops = {
1030	.ndo_open		= ks8851_net_open,
1031	.ndo_stop		= ks8851_net_stop,
1032	.ndo_do_ioctl		= ks8851_net_ioctl,
1033	.ndo_start_xmit		= ks8851_start_xmit,
1034	.ndo_set_mac_address	= ks8851_set_mac_address,
1035	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1036	.ndo_change_mtu		= eth_change_mtu,
1037	.ndo_validate_addr	= eth_validate_addr,
1038};
1039
1040/* Companion eeprom access */
1041
1042enum {	/* EEPROM programming states */
1043	EEPROM_CONTROL,
1044	EEPROM_ADDRESS,
1045	EEPROM_DATA,
1046	EEPROM_COMPLETE
1047};
1048
1049/**
1050 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1051 * @dev: The network device the PHY is on.
1052 * @addr: EEPROM address to read
1053 *
1054 * eeprom_size: used to define the data coding length. Can be changed
1055 * through debug-fs.
1056 *
1057 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1058 * Warning: The READ feature is not supported on ks8851 revision 0.
1059 *
1060 * Rough programming model:
1061 *  - on period start: set clock high and read value on bus
1062 *  - on period / 2: set clock low and program value on bus
1063 *  - start on period / 2
1064 */
1065unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1066{
1067	struct ks8851_net *ks = netdev_priv(dev);
1068	int eepcr;
1069	int ctrl = EEPROM_OP_READ;
1070	int state = EEPROM_CONTROL;
1071	int bit_count = EEPROM_OP_LEN - 1;
1072	unsigned int data = 0;
1073	int dummy;
1074	unsigned int addr_len;
1075
1076	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1077
1078	/* start transaction: chip select high, authorize write */
1079	mutex_lock(&ks->lock);
1080	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1081	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1082	eepcr |= EEPCR_EECS;
1083	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1084	mutex_unlock(&ks->lock);
1085
1086	while (state != EEPROM_COMPLETE) {
1087		/* falling clock period starts... */
1088		/* set EED_IO pin for control and address */
1089		eepcr &= ~EEPCR_EEDO;
1090		switch (state) {
1091		case EEPROM_CONTROL:
1092			eepcr |= ((ctrl >> bit_count) & 1) << 2;
1093			if (bit_count-- <= 0) {
1094				bit_count = addr_len - 1;
1095				state = EEPROM_ADDRESS;
1096			}
1097			break;
1098		case EEPROM_ADDRESS:
1099			eepcr |= ((addr >> bit_count) & 1) << 2;
1100			bit_count--;
1101			break;
1102		case EEPROM_DATA:
1103			/* Change to receive mode */
1104			eepcr &= ~EEPCR_EESRWA;
1105			break;
1106		}
1107
1108		/* lower clock  */
1109		eepcr &= ~EEPCR_EESCK;
1110
1111		mutex_lock(&ks->lock);
1112		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1113		mutex_unlock(&ks->lock);
1114
1115		/* waitread period / 2 */
1116		udelay(EEPROM_SK_PERIOD / 2);
1117
1118		/* rising clock period starts... */
1119
1120		/* raise clock */
1121		mutex_lock(&ks->lock);
1122		eepcr |= EEPCR_EESCK;
1123		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1124		mutex_unlock(&ks->lock);
1125
1126		/* Manage read */
1127		switch (state) {
1128		case EEPROM_ADDRESS:
1129			if (bit_count < 0) {
1130				bit_count = EEPROM_DATA_LEN - 1;
1131				state = EEPROM_DATA;
1132			}
1133			break;
1134		case EEPROM_DATA:
1135			mutex_lock(&ks->lock);
1136			dummy = ks8851_rdreg16(ks, KS_EEPCR);
1137			mutex_unlock(&ks->lock);
1138			data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1139			if (bit_count-- <= 0)
1140				state = EEPROM_COMPLETE;
1141			break;
1142		}
1143
1144		/* wait period / 2 */
1145		udelay(EEPROM_SK_PERIOD / 2);
1146	}
1147
1148	/* close transaction */
1149	mutex_lock(&ks->lock);
1150	eepcr &= ~EEPCR_EECS;
1151	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1152	eepcr = 0;
1153	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1154	mutex_unlock(&ks->lock);
1155
1156	return data;
1157}
1158
1159/**
1160 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1161 * @dev: The network device the PHY is on.
1162 * @op: operand (can be WRITE, EWEN, EWDS)
1163 * @addr: EEPROM address to write
1164 * @data: data to write
1165 *
1166 * eeprom_size: used to define the data coding length. Can be changed
1167 * through debug-fs.
1168 *
1169 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1170 *
1171 * Note that a write enable is required before writing data.
1172 *
1173 * Rough programming model:
1174 *  - on period start: set clock high
1175 *  - on period / 2: set clock low and program value on bus
1176 *  - start on period / 2
1177 */
1178void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1179					unsigned int addr, unsigned int data)
1180{
1181	struct ks8851_net *ks = netdev_priv(dev);
1182	int eepcr;
1183	int state = EEPROM_CONTROL;
1184	int bit_count = EEPROM_OP_LEN - 1;
1185	unsigned int addr_len;
1186
1187	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1188
1189	switch (op) {
1190	case EEPROM_OP_EWEN:
1191		addr = 0x30;
1192	break;
1193	case EEPROM_OP_EWDS:
1194		addr = 0;
1195		break;
1196	}
1197
1198	/* start transaction: chip select high, authorize write */
1199	mutex_lock(&ks->lock);
1200	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1201	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1202	eepcr |= EEPCR_EECS;
1203	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1204	mutex_unlock(&ks->lock);
1205
1206	while (state != EEPROM_COMPLETE) {
1207		/* falling clock period starts... */
1208		/* set EED_IO pin for control and address */
1209		eepcr &= ~EEPCR_EEDO;
1210		switch (state) {
1211		case EEPROM_CONTROL:
1212			eepcr |= ((op >> bit_count) & 1) << 2;
1213			if (bit_count-- <= 0) {
1214				bit_count = addr_len - 1;
1215				state = EEPROM_ADDRESS;
1216			}
1217			break;
1218		case EEPROM_ADDRESS:
1219			eepcr |= ((addr >> bit_count) & 1) << 2;
1220			if (bit_count-- <= 0) {
1221				if (op == EEPROM_OP_WRITE) {
1222					bit_count = EEPROM_DATA_LEN - 1;
1223					state = EEPROM_DATA;
1224				} else {
1225					state = EEPROM_COMPLETE;
1226				}
1227			}
1228			break;
1229		case EEPROM_DATA:
1230			eepcr |= ((data >> bit_count) & 1) << 2;
1231			if (bit_count-- <= 0)
1232				state = EEPROM_COMPLETE;
1233			break;
1234		}
1235
1236		/* lower clock  */
1237		eepcr &= ~EEPCR_EESCK;
1238
1239		mutex_lock(&ks->lock);
1240		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1241		mutex_unlock(&ks->lock);
1242
1243		/* wait period / 2 */
1244		udelay(EEPROM_SK_PERIOD / 2);
1245
1246		/* rising clock period starts... */
1247
1248		/* raise clock */
1249		eepcr |= EEPCR_EESCK;
1250		mutex_lock(&ks->lock);
1251		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1252		mutex_unlock(&ks->lock);
1253
1254		/* wait period / 2 */
1255		udelay(EEPROM_SK_PERIOD / 2);
1256	}
1257
1258	/* close transaction */
1259	mutex_lock(&ks->lock);
1260	eepcr &= ~EEPCR_EECS;
1261	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1262	eepcr = 0;
1263	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1264	mutex_unlock(&ks->lock);
1265
1266}
1267
1268/* ethtool support */
1269
1270static void ks8851_get_drvinfo(struct net_device *dev,
1271			       struct ethtool_drvinfo *di)
1272{
1273	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1274	strlcpy(di->version, "1.00", sizeof(di->version));
1275	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1276}
1277
1278static u32 ks8851_get_msglevel(struct net_device *dev)
1279{
1280	struct ks8851_net *ks = netdev_priv(dev);
1281	return ks->msg_enable;
1282}
1283
1284static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1285{
1286	struct ks8851_net *ks = netdev_priv(dev);
1287	ks->msg_enable = to;
1288}
1289
1290static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1291{
1292	struct ks8851_net *ks = netdev_priv(dev);
1293	return mii_ethtool_gset(&ks->mii, cmd);
1294}
1295
1296static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1297{
1298	struct ks8851_net *ks = netdev_priv(dev);
1299	return mii_ethtool_sset(&ks->mii, cmd);
1300}
1301
1302static u32 ks8851_get_link(struct net_device *dev)
1303{
1304	struct ks8851_net *ks = netdev_priv(dev);
1305	return mii_link_ok(&ks->mii);
1306}
1307
1308static int ks8851_nway_reset(struct net_device *dev)
1309{
1310	struct ks8851_net *ks = netdev_priv(dev);
1311	return mii_nway_restart(&ks->mii);
1312}
1313
1314static int ks8851_get_eeprom_len(struct net_device *dev)
1315{
1316	struct ks8851_net *ks = netdev_priv(dev);
1317	return ks->eeprom_size;
1318}
1319
1320static int ks8851_get_eeprom(struct net_device *dev,
1321			    struct ethtool_eeprom *eeprom, u8 *bytes)
1322{
1323	struct ks8851_net *ks = netdev_priv(dev);
1324	u16 *eeprom_buff;
1325	int first_word;
1326	int last_word;
1327	int ret_val = 0;
1328	u16 i;
1329
1330	if (eeprom->len == 0)
1331		return -EINVAL;
1332
1333	if (eeprom->len > ks->eeprom_size)
1334		return -EINVAL;
1335
1336	eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1337
1338	first_word = eeprom->offset >> 1;
1339	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1340
1341	eeprom_buff = kmalloc(sizeof(u16) *
1342			(last_word - first_word + 1), GFP_KERNEL);
1343	if (!eeprom_buff)
1344		return -ENOMEM;
1345
1346	for (i = 0; i < last_word - first_word + 1; i++)
1347		eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1348
1349	/* Device's eeprom is little-endian, word addressable */
1350	for (i = 0; i < last_word - first_word + 1; i++)
1351		le16_to_cpus(&eeprom_buff[i]);
1352
1353	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1354	kfree(eeprom_buff);
1355
1356	return ret_val;
1357}
1358
1359static int ks8851_set_eeprom(struct net_device *dev,
1360			    struct ethtool_eeprom *eeprom, u8 *bytes)
1361{
1362	struct ks8851_net *ks = netdev_priv(dev);
1363	u16 *eeprom_buff;
1364	void *ptr;
1365	int max_len;
1366	int first_word;
1367	int last_word;
1368	int ret_val = 0;
1369	u16 i;
1370
1371	if (eeprom->len == 0)
1372		return -EOPNOTSUPP;
1373
1374	if (eeprom->len > ks->eeprom_size)
1375		return -EINVAL;
1376
1377	if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1378		return -EFAULT;
1379
1380	first_word = eeprom->offset >> 1;
1381	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1382	max_len = (last_word - first_word + 1) * 2;
1383	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1384	if (!eeprom_buff)
1385		return -ENOMEM;
1386
1387	ptr = (void *)eeprom_buff;
1388
1389	if (eeprom->offset & 1) {
1390		/* need read/modify/write of first changed EEPROM word */
1391		/* only the second byte of the word is being modified */
1392		eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1393		ptr++;
1394	}
1395	if ((eeprom->offset + eeprom->len) & 1)
1396		/* need read/modify/write of last changed EEPROM word */
1397		/* only the first byte of the word is being modified */
1398		eeprom_buff[last_word - first_word] =
1399					ks8851_eeprom_read(dev, last_word);
1400
1401
1402	/* Device's eeprom is little-endian, word addressable */
1403	le16_to_cpus(&eeprom_buff[0]);
1404	le16_to_cpus(&eeprom_buff[last_word - first_word]);
1405
1406	memcpy(ptr, bytes, eeprom->len);
1407
1408	for (i = 0; i < last_word - first_word + 1; i++)
1409		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1410
1411	ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1412
1413	for (i = 0; i < last_word - first_word + 1; i++) {
1414		ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1415							eeprom_buff[i]);
1416		mdelay(EEPROM_WRITE_TIME);
1417	}
1418
1419	ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1420
1421	kfree(eeprom_buff);
1422	return ret_val;
1423}
1424
1425static const struct ethtool_ops ks8851_ethtool_ops = {
1426	.get_drvinfo	= ks8851_get_drvinfo,
1427	.get_msglevel	= ks8851_get_msglevel,
1428	.set_msglevel	= ks8851_set_msglevel,
1429	.get_settings	= ks8851_get_settings,
1430	.set_settings	= ks8851_set_settings,
1431	.get_link	= ks8851_get_link,
1432	.nway_reset	= ks8851_nway_reset,
1433	.get_eeprom_len	= ks8851_get_eeprom_len,
1434	.get_eeprom	= ks8851_get_eeprom,
1435	.set_eeprom	= ks8851_set_eeprom,
1436};
1437
1438/* MII interface controls */
1439
1440/**
1441 * ks8851_phy_reg - convert MII register into a KS8851 register
1442 * @reg: MII register number.
1443 *
1444 * Return the KS8851 register number for the corresponding MII PHY register
1445 * if possible. Return zero if the MII register has no direct mapping to the
1446 * KS8851 register set.
1447 */
1448static int ks8851_phy_reg(int reg)
1449{
1450	switch (reg) {
1451	case MII_BMCR:
1452		return KS_P1MBCR;
1453	case MII_BMSR:
1454		return KS_P1MBSR;
1455	case MII_PHYSID1:
1456		return KS_PHY1ILR;
1457	case MII_PHYSID2:
1458		return KS_PHY1IHR;
1459	case MII_ADVERTISE:
1460		return KS_P1ANAR;
1461	case MII_LPA:
1462		return KS_P1ANLPR;
1463	}
1464
1465	return 0x0;
1466}
1467
1468/**
1469 * ks8851_phy_read - MII interface PHY register read.
1470 * @dev: The network device the PHY is on.
1471 * @phy_addr: Address of PHY (ignored as we only have one)
1472 * @reg: The register to read.
1473 *
1474 * This call reads data from the PHY register specified in @reg. Since the
1475 * device does not support all the MII registers, the non-existant values
1476 * are always returned as zero.
1477 *
1478 * We return zero for unsupported registers as the MII code does not check
1479 * the value returned for any error status, and simply returns it to the
1480 * caller. The mii-tool that the driver was tested with takes any -ve error
1481 * as real PHY capabilities, thus displaying incorrect data to the user.
1482 */
1483static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1484{
1485	struct ks8851_net *ks = netdev_priv(dev);
1486	int ksreg;
1487	int result;
1488
1489	ksreg = ks8851_phy_reg(reg);
1490	if (!ksreg)
1491		return 0x0;	/* no error return allowed, so use zero */
1492
1493	mutex_lock(&ks->lock);
1494	result = ks8851_rdreg16(ks, ksreg);
1495	mutex_unlock(&ks->lock);
1496
1497	return result;
1498}
1499
1500static void ks8851_phy_write(struct net_device *dev,
1501			     int phy, int reg, int value)
1502{
1503	struct ks8851_net *ks = netdev_priv(dev);
1504	int ksreg;
1505
1506	ksreg = ks8851_phy_reg(reg);
1507	if (ksreg) {
1508		mutex_lock(&ks->lock);
1509		ks8851_wrreg16(ks, ksreg, value);
1510		mutex_unlock(&ks->lock);
1511	}
1512}
1513
1514/**
1515 * ks8851_read_selftest - read the selftest memory info.
1516 * @ks: The device state
1517 *
1518 * Read and check the TX/RX memory selftest information.
1519 */
1520static int ks8851_read_selftest(struct ks8851_net *ks)
1521{
1522	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1523	int ret = 0;
1524	unsigned rd;
1525
1526	rd = ks8851_rdreg16(ks, KS_MBIR);
1527
1528	if ((rd & both_done) != both_done) {
1529		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1530		return 0;
1531	}
1532
1533	if (rd & MBIR_TXMBFA) {
1534		netdev_err(ks->netdev, "TX memory selftest fail\n");
1535		ret |= 1;
1536	}
1537
1538	if (rd & MBIR_RXMBFA) {
1539		netdev_err(ks->netdev, "RX memory selftest fail\n");
1540		ret |= 2;
1541	}
1542
1543	return 0;
1544}
1545
1546/* driver bus management functions */
1547
1548static int __devinit ks8851_probe(struct spi_device *spi)
1549{
1550	struct net_device *ndev;
1551	struct ks8851_net *ks;
1552	int ret;
1553
1554	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1555	if (!ndev) {
1556		dev_err(&spi->dev, "failed to alloc ethernet device\n");
1557		return -ENOMEM;
1558	}
1559
1560	spi->bits_per_word = 8;
1561
1562	ks = netdev_priv(ndev);
1563
1564	ks->netdev = ndev;
1565	ks->spidev = spi;
1566	ks->tx_space = 6144;
1567
1568	mutex_init(&ks->lock);
1569	spin_lock_init(&ks->statelock);
1570
1571	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1572	INIT_WORK(&ks->irq_work, ks8851_irq_work);
1573	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1574
1575	/* initialise pre-made spi transfer messages */
1576
1577	spi_message_init(&ks->spi_msg1);
1578	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1579
1580	spi_message_init(&ks->spi_msg2);
1581	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1582	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1583
1584	/* setup mii state */
1585	ks->mii.dev		= ndev;
1586	ks->mii.phy_id		= 1,
1587	ks->mii.phy_id_mask	= 1;
1588	ks->mii.reg_num_mask	= 0xf;
1589	ks->mii.mdio_read	= ks8851_phy_read;
1590	ks->mii.mdio_write	= ks8851_phy_write;
1591
1592	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1593
1594	/* set the default message enable */
1595	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1596						     NETIF_MSG_PROBE |
1597						     NETIF_MSG_LINK));
1598
1599	skb_queue_head_init(&ks->txq);
1600
1601	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1602	SET_NETDEV_DEV(ndev, &spi->dev);
1603
1604	dev_set_drvdata(&spi->dev, ks);
1605
1606	ndev->if_port = IF_PORT_100BASET;
1607	ndev->netdev_ops = &ks8851_netdev_ops;
1608	ndev->irq = spi->irq;
1609
1610	/* issue a global soft reset to reset the device. */
1611	ks8851_soft_reset(ks, GRR_GSR);
1612
1613	/* simple check for a valid chip being connected to the bus */
1614
1615	if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1616		dev_err(&spi->dev, "failed to read device ID\n");
1617		ret = -ENODEV;
1618		goto err_id;
1619	}
1620
1621	/* cache the contents of the CCR register for EEPROM, etc. */
1622	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1623
1624	if (ks->rc_ccr & CCR_EEPROM)
1625		ks->eeprom_size = 128;
1626	else
1627		ks->eeprom_size = 0;
1628
1629	ks8851_read_selftest(ks);
1630	ks8851_init_mac(ks);
1631
1632	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1633			  ndev->name, ks);
1634	if (ret < 0) {
1635		dev_err(&spi->dev, "failed to get irq\n");
1636		goto err_irq;
1637	}
1638
1639	ret = register_netdev(ndev);
1640	if (ret) {
1641		dev_err(&spi->dev, "failed to register network device\n");
1642		goto err_netdev;
1643	}
1644
1645	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1646		    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1647		    ndev->dev_addr, ndev->irq);
1648
1649	return 0;
1650
1651
1652err_netdev:
1653	free_irq(ndev->irq, ndev);
1654
1655err_id:
1656err_irq:
1657	free_netdev(ndev);
1658	return ret;
1659}
1660
1661static int __devexit ks8851_remove(struct spi_device *spi)
1662{
1663	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1664
1665	if (netif_msg_drv(priv))
1666		dev_info(&spi->dev, "remove\n");
1667
1668	unregister_netdev(priv->netdev);
1669	free_irq(spi->irq, priv);
1670	free_netdev(priv->netdev);
1671
1672	return 0;
1673}
1674
1675static struct spi_driver ks8851_driver = {
1676	.driver = {
1677		.name = "ks8851",
1678		.owner = THIS_MODULE,
1679	},
1680	.probe = ks8851_probe,
1681	.remove = __devexit_p(ks8851_remove),
1682};
1683
1684static int __init ks8851_init(void)
1685{
1686	return spi_register_driver(&ks8851_driver);
1687}
1688
1689static void __exit ks8851_exit(void)
1690{
1691	spi_unregister_driver(&ks8851_driver);
1692}
1693
1694module_init(ks8851_init);
1695module_exit(ks8851_exit);
1696
1697MODULE_DESCRIPTION("KS8851 Network driver");
1698MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1699MODULE_LICENSE("GPL");
1700
1701module_param_named(message, msg_enable, int, 0);
1702MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1703MODULE_ALIAS("spi:ks8851");
1704