• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/igb/
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2009 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_nvm.h"
33
34/**
35 *  igb_raise_eec_clk - Raise EEPROM clock
36 *  @hw: pointer to the HW structure
37 *  @eecd: pointer to the EEPROM
38 *
39 *  Enable/Raise the EEPROM clock bit.
40 **/
41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42{
43	*eecd = *eecd | E1000_EECD_SK;
44	wr32(E1000_EECD, *eecd);
45	wrfl();
46	udelay(hw->nvm.delay_usec);
47}
48
49/**
50 *  igb_lower_eec_clk - Lower EEPROM clock
51 *  @hw: pointer to the HW structure
52 *  @eecd: pointer to the EEPROM
53 *
54 *  Clear/Lower the EEPROM clock bit.
55 **/
56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57{
58	*eecd = *eecd & ~E1000_EECD_SK;
59	wr32(E1000_EECD, *eecd);
60	wrfl();
61	udelay(hw->nvm.delay_usec);
62}
63
64/**
65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 *  @hw: pointer to the HW structure
67 *  @data: data to send to the EEPROM
68 *  @count: number of bits to shift out
69 *
70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
72 *  In order to do this, "data" must be broken down into bits.
73 **/
74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75{
76	struct e1000_nvm_info *nvm = &hw->nvm;
77	u32 eecd = rd32(E1000_EECD);
78	u32 mask;
79
80	mask = 0x01 << (count - 1);
81	if (nvm->type == e1000_nvm_eeprom_spi)
82		eecd |= E1000_EECD_DO;
83
84	do {
85		eecd &= ~E1000_EECD_DI;
86
87		if (data & mask)
88			eecd |= E1000_EECD_DI;
89
90		wr32(E1000_EECD, eecd);
91		wrfl();
92
93		udelay(nvm->delay_usec);
94
95		igb_raise_eec_clk(hw, &eecd);
96		igb_lower_eec_clk(hw, &eecd);
97
98		mask >>= 1;
99	} while (mask);
100
101	eecd &= ~E1000_EECD_DI;
102	wr32(E1000_EECD, eecd);
103}
104
105/**
106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 *  @hw: pointer to the HW structure
108 *  @count: number of bits to shift in
109 *
110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
114 *  always be clear.
115 **/
116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117{
118	u32 eecd;
119	u32 i;
120	u16 data;
121
122	eecd = rd32(E1000_EECD);
123
124	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125	data = 0;
126
127	for (i = 0; i < count; i++) {
128		data <<= 1;
129		igb_raise_eec_clk(hw, &eecd);
130
131		eecd = rd32(E1000_EECD);
132
133		eecd &= ~E1000_EECD_DI;
134		if (eecd & E1000_EECD_DO)
135			data |= 1;
136
137		igb_lower_eec_clk(hw, &eecd);
138	}
139
140	return data;
141}
142
143/**
144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 *  @hw: pointer to the HW structure
146 *  @ee_reg: EEPROM flag for polling
147 *
148 *  Polls the EEPROM status bit for either read or write completion based
149 *  upon the value of 'ee_reg'.
150 **/
151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152{
153	u32 attempts = 100000;
154	u32 i, reg = 0;
155	s32 ret_val = -E1000_ERR_NVM;
156
157	for (i = 0; i < attempts; i++) {
158		if (ee_reg == E1000_NVM_POLL_READ)
159			reg = rd32(E1000_EERD);
160		else
161			reg = rd32(E1000_EEWR);
162
163		if (reg & E1000_NVM_RW_REG_DONE) {
164			ret_val = 0;
165			break;
166		}
167
168		udelay(5);
169	}
170
171	return ret_val;
172}
173
174/**
175 *  igb_acquire_nvm - Generic request for access to EEPROM
176 *  @hw: pointer to the HW structure
177 *
178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 *  Return successful if access grant bit set, else clear the request for
180 *  EEPROM access and return -E1000_ERR_NVM (-1).
181 **/
182s32 igb_acquire_nvm(struct e1000_hw *hw)
183{
184	u32 eecd = rd32(E1000_EECD);
185	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
186	s32 ret_val = 0;
187
188
189	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190	eecd = rd32(E1000_EECD);
191
192	while (timeout) {
193		if (eecd & E1000_EECD_GNT)
194			break;
195		udelay(5);
196		eecd = rd32(E1000_EECD);
197		timeout--;
198	}
199
200	if (!timeout) {
201		eecd &= ~E1000_EECD_REQ;
202		wr32(E1000_EECD, eecd);
203		hw_dbg("Could not acquire NVM grant\n");
204		ret_val = -E1000_ERR_NVM;
205	}
206
207	return ret_val;
208}
209
210/**
211 *  igb_standby_nvm - Return EEPROM to standby state
212 *  @hw: pointer to the HW structure
213 *
214 *  Return the EEPROM to a standby state.
215 **/
216static void igb_standby_nvm(struct e1000_hw *hw)
217{
218	struct e1000_nvm_info *nvm = &hw->nvm;
219	u32 eecd = rd32(E1000_EECD);
220
221	if (nvm->type == e1000_nvm_eeprom_spi) {
222		/* Toggle CS to flush commands */
223		eecd |= E1000_EECD_CS;
224		wr32(E1000_EECD, eecd);
225		wrfl();
226		udelay(nvm->delay_usec);
227		eecd &= ~E1000_EECD_CS;
228		wr32(E1000_EECD, eecd);
229		wrfl();
230		udelay(nvm->delay_usec);
231	}
232}
233
234/**
235 *  e1000_stop_nvm - Terminate EEPROM command
236 *  @hw: pointer to the HW structure
237 *
238 *  Terminates the current command by inverting the EEPROM's chip select pin.
239 **/
240static void e1000_stop_nvm(struct e1000_hw *hw)
241{
242	u32 eecd;
243
244	eecd = rd32(E1000_EECD);
245	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246		/* Pull CS high */
247		eecd |= E1000_EECD_CS;
248		igb_lower_eec_clk(hw, &eecd);
249	}
250}
251
252/**
253 *  igb_release_nvm - Release exclusive access to EEPROM
254 *  @hw: pointer to the HW structure
255 *
256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
257 **/
258void igb_release_nvm(struct e1000_hw *hw)
259{
260	u32 eecd;
261
262	e1000_stop_nvm(hw);
263
264	eecd = rd32(E1000_EECD);
265	eecd &= ~E1000_EECD_REQ;
266	wr32(E1000_EECD, eecd);
267}
268
269/**
270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 *  @hw: pointer to the HW structure
272 *
273 *  Setups the EEPROM for reading and writing.
274 **/
275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276{
277	struct e1000_nvm_info *nvm = &hw->nvm;
278	u32 eecd = rd32(E1000_EECD);
279	s32 ret_val = 0;
280	u16 timeout = 0;
281	u8 spi_stat_reg;
282
283
284	if (nvm->type == e1000_nvm_eeprom_spi) {
285		/* Clear SK and CS */
286		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287		wr32(E1000_EECD, eecd);
288		udelay(1);
289		timeout = NVM_MAX_RETRY_SPI;
290
291		/*
292		 * Read "Status Register" repeatedly until the LSB is cleared.
293		 * The EEPROM will signal that the command has been completed
294		 * by clearing bit 0 of the internal status register.  If it's
295		 * not cleared within 'timeout', then error out.
296		 */
297		while (timeout) {
298			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
299						 hw->nvm.opcode_bits);
300			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
301			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
302				break;
303
304			udelay(5);
305			igb_standby_nvm(hw);
306			timeout--;
307		}
308
309		if (!timeout) {
310			hw_dbg("SPI NVM Status error\n");
311			ret_val = -E1000_ERR_NVM;
312			goto out;
313		}
314	}
315
316out:
317	return ret_val;
318}
319
320/**
321 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
322 *  @hw: pointer to the HW structure
323 *  @offset: offset of word in the EEPROM to read
324 *  @words: number of words to read
325 *  @data: word read from the EEPROM
326 *
327 *  Reads a 16 bit word from the EEPROM using the EERD register.
328 **/
329s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
330{
331	struct e1000_nvm_info *nvm = &hw->nvm;
332	u32 i, eerd = 0;
333	s32 ret_val = 0;
334
335	/*
336	 * A check for invalid values:  offset too large, too many words,
337	 * and not enough words.
338	 */
339	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
340	    (words == 0)) {
341		hw_dbg("nvm parameter(s) out of bounds\n");
342		ret_val = -E1000_ERR_NVM;
343		goto out;
344	}
345
346	for (i = 0; i < words; i++) {
347		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
348		       E1000_NVM_RW_REG_START;
349
350		wr32(E1000_EERD, eerd);
351		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
352		if (ret_val)
353			break;
354
355		data[i] = (rd32(E1000_EERD) >>
356			   E1000_NVM_RW_REG_DATA);
357	}
358
359out:
360	return ret_val;
361}
362
363/**
364 *  igb_write_nvm_spi - Write to EEPROM using SPI
365 *  @hw: pointer to the HW structure
366 *  @offset: offset within the EEPROM to be written to
367 *  @words: number of words to write
368 *  @data: 16 bit word(s) to be written to the EEPROM
369 *
370 *  Writes data to EEPROM at offset using SPI interface.
371 *
372 *  If e1000_update_nvm_checksum is not called after this function , the
373 *  EEPROM will most likley contain an invalid checksum.
374 **/
375s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
376{
377	struct e1000_nvm_info *nvm = &hw->nvm;
378	s32 ret_val;
379	u16 widx = 0;
380
381	/*
382	 * A check for invalid values:  offset too large, too many words,
383	 * and not enough words.
384	 */
385	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
386	    (words == 0)) {
387		hw_dbg("nvm parameter(s) out of bounds\n");
388		ret_val = -E1000_ERR_NVM;
389		goto out;
390	}
391
392	ret_val = hw->nvm.ops.acquire(hw);
393	if (ret_val)
394		goto out;
395
396	msleep(10);
397
398	while (widx < words) {
399		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
400
401		ret_val = igb_ready_nvm_eeprom(hw);
402		if (ret_val)
403			goto release;
404
405		igb_standby_nvm(hw);
406
407		/* Send the WRITE ENABLE command (8 bit opcode) */
408		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
409					 nvm->opcode_bits);
410
411		igb_standby_nvm(hw);
412
413		/*
414		 * Some SPI eeproms use the 8th address bit embedded in the
415		 * opcode
416		 */
417		if ((nvm->address_bits == 8) && (offset >= 128))
418			write_opcode |= NVM_A8_OPCODE_SPI;
419
420		/* Send the Write command (8-bit opcode + addr) */
421		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
422		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
423					 nvm->address_bits);
424
425		/* Loop to allow for up to whole page write of eeprom */
426		while (widx < words) {
427			u16 word_out = data[widx];
428			word_out = (word_out >> 8) | (word_out << 8);
429			igb_shift_out_eec_bits(hw, word_out, 16);
430			widx++;
431
432			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
433				igb_standby_nvm(hw);
434				break;
435			}
436		}
437	}
438
439	msleep(10);
440release:
441	hw->nvm.ops.release(hw);
442
443out:
444	return ret_val;
445}
446
447/**
448 *  igb_read_part_num - Read device part number
449 *  @hw: pointer to the HW structure
450 *  @part_num: pointer to device part number
451 *
452 *  Reads the product board assembly (PBA) number from the EEPROM and stores
453 *  the value in part_num.
454 **/
455s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num)
456{
457	s32  ret_val;
458	u16 nvm_data;
459
460	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
461	if (ret_val) {
462		hw_dbg("NVM Read Error\n");
463		goto out;
464	}
465	*part_num = (u32)(nvm_data << 16);
466
467	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
468	if (ret_val) {
469		hw_dbg("NVM Read Error\n");
470		goto out;
471	}
472	*part_num |= nvm_data;
473
474out:
475	return ret_val;
476}
477
478/**
479 *  igb_read_mac_addr - Read device MAC address
480 *  @hw: pointer to the HW structure
481 *
482 *  Reads the device MAC address from the EEPROM and stores the value.
483 *  Since devices with two ports use the same EEPROM, we increment the
484 *  last bit in the MAC address for the second port.
485 **/
486s32 igb_read_mac_addr(struct e1000_hw *hw)
487{
488	u32 rar_high;
489	u32 rar_low;
490	u16 i;
491
492	rar_high = rd32(E1000_RAH(0));
493	rar_low = rd32(E1000_RAL(0));
494
495	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
496		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
497
498	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
499		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
500
501	for (i = 0; i < ETH_ALEN; i++)
502		hw->mac.addr[i] = hw->mac.perm_addr[i];
503
504	return 0;
505}
506
507/**
508 *  igb_validate_nvm_checksum - Validate EEPROM checksum
509 *  @hw: pointer to the HW structure
510 *
511 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
512 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
513 **/
514s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
515{
516	s32 ret_val = 0;
517	u16 checksum = 0;
518	u16 i, nvm_data;
519
520	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
521		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
522		if (ret_val) {
523			hw_dbg("NVM Read Error\n");
524			goto out;
525		}
526		checksum += nvm_data;
527	}
528
529	if (checksum != (u16) NVM_SUM) {
530		hw_dbg("NVM Checksum Invalid\n");
531		ret_val = -E1000_ERR_NVM;
532		goto out;
533	}
534
535out:
536	return ret_val;
537}
538
539/**
540 *  igb_update_nvm_checksum - Update EEPROM checksum
541 *  @hw: pointer to the HW structure
542 *
543 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
544 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
545 *  value to the EEPROM.
546 **/
547s32 igb_update_nvm_checksum(struct e1000_hw *hw)
548{
549	s32  ret_val;
550	u16 checksum = 0;
551	u16 i, nvm_data;
552
553	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
554		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
555		if (ret_val) {
556			hw_dbg("NVM Read Error while updating checksum.\n");
557			goto out;
558		}
559		checksum += nvm_data;
560	}
561	checksum = (u16) NVM_SUM - checksum;
562	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
563	if (ret_val)
564		hw_dbg("NVM Write Error while updating checksum.\n");
565
566out:
567	return ret_val;
568}
569