• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers.  I allocate memory
6 * pages and then divide them into 2K frame buffers.  This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/string.h>
25#include <linux/ptrace.h>
26#include <linux/errno.h>
27#include <linux/ioport.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/workqueue.h>
38#include <linux/bitops.h>
39#include <linux/io.h>
40#include <linux/irq.h>
41#include <linux/clk.h>
42#include <linux/platform_device.h>
43#include <linux/phy.h>
44#include <linux/fec.h>
45
46#include <asm/cacheflush.h>
47
48#ifndef CONFIG_ARCH_MXC
49#include <asm/coldfire.h>
50#include <asm/mcfsim.h>
51#endif
52
53#include "fec.h"
54
55#ifdef CONFIG_ARCH_MXC
56#include <mach/hardware.h>
57#define FEC_ALIGNMENT	0xf
58#else
59#define FEC_ALIGNMENT	0x3
60#endif
61
62/*
63 * Define the fixed address of the FEC hardware.
64 */
65#if defined(CONFIG_M5272)
66
67static unsigned char	fec_mac_default[] = {
68	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
69};
70
71/*
72 * Some hardware gets it MAC address out of local flash memory.
73 * if this is non-zero then assume it is the address to get MAC from.
74 */
75#if defined(CONFIG_NETtel)
76#define	FEC_FLASHMAC	0xf0006006
77#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
78#define	FEC_FLASHMAC	0xf0006000
79#elif defined(CONFIG_CANCam)
80#define	FEC_FLASHMAC	0xf0020000
81#elif defined(CONFIG_M5272C3)
82#define	FEC_FLASHMAC	(0xffe04000 + 4)
83#elif defined(CONFIG_MOD5272)
84#define FEC_FLASHMAC 	0xffc0406b
85#else
86#define	FEC_FLASHMAC	0
87#endif
88#endif /* CONFIG_M5272 */
89
90/* The number of Tx and Rx buffers.  These are allocated from the page
91 * pool.  The code may assume these are power of two, so it it best
92 * to keep them that size.
93 * We don't need to allocate pages for the transmitter.  We just use
94 * the skbuffer directly.
95 */
96#define FEC_ENET_RX_PAGES	8
97#define FEC_ENET_RX_FRSIZE	2048
98#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
99#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
100#define FEC_ENET_TX_FRSIZE	2048
101#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
102#define TX_RING_SIZE		16	/* Must be power of two */
103#define TX_RING_MOD_MASK	15	/*   for this to work */
104
105#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
106#error "FEC: descriptor ring size constants too large"
107#endif
108
109/* Interrupt events/masks. */
110#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
111#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
112#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
113#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
114#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
115#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
116#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
117#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
118#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
119#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
120
121#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
122
123/* The FEC stores dest/src/type, data, and checksum for receive packets.
124 */
125#define PKT_MAXBUF_SIZE		1518
126#define PKT_MINBUF_SIZE		64
127#define PKT_MAXBLR_SIZE		1520
128
129
130/*
131 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
132 * size bits. Other FEC hardware does not, so we need to take that into
133 * account when setting it.
134 */
135#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
136	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
137#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
138#else
139#define	OPT_FRAME_SIZE	0
140#endif
141
142/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
143 * tx_bd_base always point to the base of the buffer descriptors.  The
144 * cur_rx and cur_tx point to the currently available buffer.
145 * The dirty_tx tracks the current buffer that is being sent by the
146 * controller.  The cur_tx and dirty_tx are equal under both completely
147 * empty and completely full conditions.  The empty/ready indicator in
148 * the buffer descriptor determines the actual condition.
149 */
150struct fec_enet_private {
151	/* Hardware registers of the FEC device */
152	void __iomem *hwp;
153
154	struct net_device *netdev;
155
156	struct clk *clk;
157
158	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
159	unsigned char *tx_bounce[TX_RING_SIZE];
160	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
161	struct	sk_buff* rx_skbuff[RX_RING_SIZE];
162	ushort	skb_cur;
163	ushort	skb_dirty;
164
165	/* CPM dual port RAM relative addresses */
166	dma_addr_t	bd_dma;
167	/* Address of Rx and Tx buffers */
168	struct bufdesc	*rx_bd_base;
169	struct bufdesc	*tx_bd_base;
170	/* The next free ring entry */
171	struct bufdesc	*cur_rx, *cur_tx;
172	/* The ring entries to be free()ed */
173	struct bufdesc	*dirty_tx;
174
175	uint	tx_full;
176	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
177	spinlock_t hw_lock;
178
179	struct  platform_device *pdev;
180
181	int	opened;
182
183	/* Phylib and MDIO interface */
184	struct  mii_bus *mii_bus;
185	struct  phy_device *phy_dev;
186	int     mii_timeout;
187	uint    phy_speed;
188	phy_interface_t	phy_interface;
189	int	index;
190	int	link;
191	int	full_duplex;
192	struct	completion mdio_done;
193};
194
195static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
196static void fec_enet_tx(struct net_device *dev);
197static void fec_enet_rx(struct net_device *dev);
198static int fec_enet_close(struct net_device *dev);
199static void fec_restart(struct net_device *dev, int duplex);
200static void fec_stop(struct net_device *dev);
201
202/* FEC MII MMFR bits definition */
203#define FEC_MMFR_ST		(1 << 30)
204#define FEC_MMFR_OP_READ	(2 << 28)
205#define FEC_MMFR_OP_WRITE	(1 << 28)
206#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
207#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
208#define FEC_MMFR_TA		(2 << 16)
209#define FEC_MMFR_DATA(v)	(v & 0xffff)
210
211#define FEC_MII_TIMEOUT		1000 /* us */
212
213/* Transmitter timeout */
214#define TX_TIMEOUT (2 * HZ)
215
216static netdev_tx_t
217fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
218{
219	struct fec_enet_private *fep = netdev_priv(dev);
220	struct bufdesc *bdp;
221	void *bufaddr;
222	unsigned short	status;
223	unsigned long flags;
224
225	if (!fep->link) {
226		/* Link is down or autonegotiation is in progress. */
227		return NETDEV_TX_BUSY;
228	}
229
230	spin_lock_irqsave(&fep->hw_lock, flags);
231	/* Fill in a Tx ring entry */
232	bdp = fep->cur_tx;
233
234	status = bdp->cbd_sc;
235
236	if (status & BD_ENET_TX_READY) {
237		/* Ooops.  All transmit buffers are full.  Bail out.
238		 * This should not happen, since dev->tbusy should be set.
239		 */
240		printk("%s: tx queue full!.\n", dev->name);
241		spin_unlock_irqrestore(&fep->hw_lock, flags);
242		return NETDEV_TX_BUSY;
243	}
244
245	/* Clear all of the status flags */
246	status &= ~BD_ENET_TX_STATS;
247
248	/* Set buffer length and buffer pointer */
249	bufaddr = skb->data;
250	bdp->cbd_datlen = skb->len;
251
252	/*
253	 * On some FEC implementations data must be aligned on
254	 * 4-byte boundaries. Use bounce buffers to copy data
255	 * and get it aligned. Ugh.
256	 */
257	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
258		unsigned int index;
259		index = bdp - fep->tx_bd_base;
260		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
261		bufaddr = fep->tx_bounce[index];
262	}
263
264	/* Save skb pointer */
265	fep->tx_skbuff[fep->skb_cur] = skb;
266
267	dev->stats.tx_bytes += skb->len;
268	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
269
270	/* Push the data cache so the CPM does not get stale memory
271	 * data.
272	 */
273	bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
274			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
275
276	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
277	 * it's the last BD of the frame, and to put the CRC on the end.
278	 */
279	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
280			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
281	bdp->cbd_sc = status;
282
283	/* Trigger transmission start */
284	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
285
286	/* If this was the last BD in the ring, start at the beginning again. */
287	if (status & BD_ENET_TX_WRAP)
288		bdp = fep->tx_bd_base;
289	else
290		bdp++;
291
292	if (bdp == fep->dirty_tx) {
293		fep->tx_full = 1;
294		netif_stop_queue(dev);
295	}
296
297	fep->cur_tx = bdp;
298
299	spin_unlock_irqrestore(&fep->hw_lock, flags);
300
301	return NETDEV_TX_OK;
302}
303
304static void
305fec_timeout(struct net_device *dev)
306{
307	struct fec_enet_private *fep = netdev_priv(dev);
308
309	dev->stats.tx_errors++;
310
311	fec_restart(dev, fep->full_duplex);
312	netif_wake_queue(dev);
313}
314
315static irqreturn_t
316fec_enet_interrupt(int irq, void * dev_id)
317{
318	struct	net_device *dev = dev_id;
319	struct fec_enet_private *fep = netdev_priv(dev);
320	uint	int_events;
321	irqreturn_t ret = IRQ_NONE;
322
323	do {
324		int_events = readl(fep->hwp + FEC_IEVENT);
325		writel(int_events, fep->hwp + FEC_IEVENT);
326
327		if (int_events & FEC_ENET_RXF) {
328			ret = IRQ_HANDLED;
329			fec_enet_rx(dev);
330		}
331
332		/* Transmit OK, or non-fatal error. Update the buffer
333		 * descriptors. FEC handles all errors, we just discover
334		 * them as part of the transmit process.
335		 */
336		if (int_events & FEC_ENET_TXF) {
337			ret = IRQ_HANDLED;
338			fec_enet_tx(dev);
339		}
340
341		if (int_events & FEC_ENET_MII) {
342			ret = IRQ_HANDLED;
343			complete(&fep->mdio_done);
344		}
345	} while (int_events);
346
347	return ret;
348}
349
350
351static void
352fec_enet_tx(struct net_device *dev)
353{
354	struct	fec_enet_private *fep;
355	struct bufdesc *bdp;
356	unsigned short status;
357	struct	sk_buff	*skb;
358
359	fep = netdev_priv(dev);
360	spin_lock(&fep->hw_lock);
361	bdp = fep->dirty_tx;
362
363	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
364		if (bdp == fep->cur_tx && fep->tx_full == 0)
365			break;
366
367		dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
368		bdp->cbd_bufaddr = 0;
369
370		skb = fep->tx_skbuff[fep->skb_dirty];
371		/* Check for errors. */
372		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
373				   BD_ENET_TX_RL | BD_ENET_TX_UN |
374				   BD_ENET_TX_CSL)) {
375			dev->stats.tx_errors++;
376			if (status & BD_ENET_TX_HB)  /* No heartbeat */
377				dev->stats.tx_heartbeat_errors++;
378			if (status & BD_ENET_TX_LC)  /* Late collision */
379				dev->stats.tx_window_errors++;
380			if (status & BD_ENET_TX_RL)  /* Retrans limit */
381				dev->stats.tx_aborted_errors++;
382			if (status & BD_ENET_TX_UN)  /* Underrun */
383				dev->stats.tx_fifo_errors++;
384			if (status & BD_ENET_TX_CSL) /* Carrier lost */
385				dev->stats.tx_carrier_errors++;
386		} else {
387			dev->stats.tx_packets++;
388		}
389
390		if (status & BD_ENET_TX_READY)
391			printk("HEY! Enet xmit interrupt and TX_READY.\n");
392
393		/* Deferred means some collisions occurred during transmit,
394		 * but we eventually sent the packet OK.
395		 */
396		if (status & BD_ENET_TX_DEF)
397			dev->stats.collisions++;
398
399		/* Free the sk buffer associated with this last transmit */
400		dev_kfree_skb_any(skb);
401		fep->tx_skbuff[fep->skb_dirty] = NULL;
402		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
403
404		/* Update pointer to next buffer descriptor to be transmitted */
405		if (status & BD_ENET_TX_WRAP)
406			bdp = fep->tx_bd_base;
407		else
408			bdp++;
409
410		/* Since we have freed up a buffer, the ring is no longer full
411		 */
412		if (fep->tx_full) {
413			fep->tx_full = 0;
414			if (netif_queue_stopped(dev))
415				netif_wake_queue(dev);
416		}
417	}
418	fep->dirty_tx = bdp;
419	spin_unlock(&fep->hw_lock);
420}
421
422
423/* During a receive, the cur_rx points to the current incoming buffer.
424 * When we update through the ring, if the next incoming buffer has
425 * not been given to the system, we just set the empty indicator,
426 * effectively tossing the packet.
427 */
428static void
429fec_enet_rx(struct net_device *dev)
430{
431	struct	fec_enet_private *fep = netdev_priv(dev);
432	struct bufdesc *bdp;
433	unsigned short status;
434	struct	sk_buff	*skb;
435	ushort	pkt_len;
436	__u8 *data;
437
438#ifdef CONFIG_M532x
439	flush_cache_all();
440#endif
441
442	spin_lock(&fep->hw_lock);
443
444	/* First, grab all of the stats for the incoming packet.
445	 * These get messed up if we get called due to a busy condition.
446	 */
447	bdp = fep->cur_rx;
448
449	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
450
451		/* Since we have allocated space to hold a complete frame,
452		 * the last indicator should be set.
453		 */
454		if ((status & BD_ENET_RX_LAST) == 0)
455			printk("FEC ENET: rcv is not +last\n");
456
457		if (!fep->opened)
458			goto rx_processing_done;
459
460		/* Check for errors. */
461		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
462			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
463			dev->stats.rx_errors++;
464			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
465				/* Frame too long or too short. */
466				dev->stats.rx_length_errors++;
467			}
468			if (status & BD_ENET_RX_NO)	/* Frame alignment */
469				dev->stats.rx_frame_errors++;
470			if (status & BD_ENET_RX_CR)	/* CRC Error */
471				dev->stats.rx_crc_errors++;
472			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
473				dev->stats.rx_fifo_errors++;
474		}
475
476		/* Report late collisions as a frame error.
477		 * On this error, the BD is closed, but we don't know what we
478		 * have in the buffer.  So, just drop this frame on the floor.
479		 */
480		if (status & BD_ENET_RX_CL) {
481			dev->stats.rx_errors++;
482			dev->stats.rx_frame_errors++;
483			goto rx_processing_done;
484		}
485
486		/* Process the incoming frame. */
487		dev->stats.rx_packets++;
488		pkt_len = bdp->cbd_datlen;
489		dev->stats.rx_bytes += pkt_len;
490		data = (__u8*)__va(bdp->cbd_bufaddr);
491
492	        dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
493        			DMA_FROM_DEVICE);
494
495		/* This does 16 byte alignment, exactly what we need.
496		 * The packet length includes FCS, but we don't want to
497		 * include that when passing upstream as it messes up
498		 * bridging applications.
499		 */
500		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
501
502		if (unlikely(!skb)) {
503			printk("%s: Memory squeeze, dropping packet.\n",
504					dev->name);
505			dev->stats.rx_dropped++;
506		} else {
507			skb_reserve(skb, NET_IP_ALIGN);
508			skb_put(skb, pkt_len - 4);	/* Make room */
509			skb_copy_to_linear_data(skb, data, pkt_len - 4);
510			skb->protocol = eth_type_trans(skb, dev);
511			netif_rx(skb);
512		}
513
514        	bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
515			DMA_FROM_DEVICE);
516rx_processing_done:
517		/* Clear the status flags for this buffer */
518		status &= ~BD_ENET_RX_STATS;
519
520		/* Mark the buffer empty */
521		status |= BD_ENET_RX_EMPTY;
522		bdp->cbd_sc = status;
523
524		/* Update BD pointer to next entry */
525		if (status & BD_ENET_RX_WRAP)
526			bdp = fep->rx_bd_base;
527		else
528			bdp++;
529		/* Doing this here will keep the FEC running while we process
530		 * incoming frames.  On a heavily loaded network, we should be
531		 * able to keep up at the expense of system resources.
532		 */
533		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
534	}
535	fep->cur_rx = bdp;
536
537	spin_unlock(&fep->hw_lock);
538}
539
540/* ------------------------------------------------------------------------- */
541#ifdef CONFIG_M5272
542static void __inline__ fec_get_mac(struct net_device *dev)
543{
544	struct fec_enet_private *fep = netdev_priv(dev);
545	unsigned char *iap, tmpaddr[ETH_ALEN];
546
547	if (FEC_FLASHMAC) {
548		/*
549		 * Get MAC address from FLASH.
550		 * If it is all 1's or 0's, use the default.
551		 */
552		iap = (unsigned char *)FEC_FLASHMAC;
553		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
554		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
555			iap = fec_mac_default;
556		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
557		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
558			iap = fec_mac_default;
559	} else {
560		*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
561		*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
562		iap = &tmpaddr[0];
563	}
564
565	memcpy(dev->dev_addr, iap, ETH_ALEN);
566
567	/* Adjust MAC if using default MAC address */
568	if (iap == fec_mac_default)
569		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
570}
571#endif
572
573/* ------------------------------------------------------------------------- */
574
575/*
576 * Phy section
577 */
578static void fec_enet_adjust_link(struct net_device *dev)
579{
580	struct fec_enet_private *fep = netdev_priv(dev);
581	struct phy_device *phy_dev = fep->phy_dev;
582	unsigned long flags;
583
584	int status_change = 0;
585
586	spin_lock_irqsave(&fep->hw_lock, flags);
587
588	/* Prevent a state halted on mii error */
589	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
590		phy_dev->state = PHY_RESUMING;
591		goto spin_unlock;
592	}
593
594	/* Duplex link change */
595	if (phy_dev->link) {
596		if (fep->full_duplex != phy_dev->duplex) {
597			fec_restart(dev, phy_dev->duplex);
598			status_change = 1;
599		}
600	}
601
602	/* Link on or off change */
603	if (phy_dev->link != fep->link) {
604		fep->link = phy_dev->link;
605		if (phy_dev->link)
606			fec_restart(dev, phy_dev->duplex);
607		else
608			fec_stop(dev);
609		status_change = 1;
610	}
611
612spin_unlock:
613	spin_unlock_irqrestore(&fep->hw_lock, flags);
614
615	if (status_change)
616		phy_print_status(phy_dev);
617}
618
619static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
620{
621	struct fec_enet_private *fep = bus->priv;
622	unsigned long time_left;
623
624	fep->mii_timeout = 0;
625	init_completion(&fep->mdio_done);
626
627	/* start a read op */
628	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
629		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
630		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
631
632	/* wait for end of transfer */
633	time_left = wait_for_completion_timeout(&fep->mdio_done,
634			usecs_to_jiffies(FEC_MII_TIMEOUT));
635	if (time_left == 0) {
636		fep->mii_timeout = 1;
637		printk(KERN_ERR "FEC: MDIO read timeout\n");
638		return -ETIMEDOUT;
639	}
640
641	/* return value */
642	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
643}
644
645static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
646			   u16 value)
647{
648	struct fec_enet_private *fep = bus->priv;
649	unsigned long time_left;
650
651	fep->mii_timeout = 0;
652	init_completion(&fep->mdio_done);
653
654	/* start a write op */
655	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
656		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
657		FEC_MMFR_TA | FEC_MMFR_DATA(value),
658		fep->hwp + FEC_MII_DATA);
659
660	/* wait for end of transfer */
661	time_left = wait_for_completion_timeout(&fep->mdio_done,
662			usecs_to_jiffies(FEC_MII_TIMEOUT));
663	if (time_left == 0) {
664		fep->mii_timeout = 1;
665		printk(KERN_ERR "FEC: MDIO write timeout\n");
666		return -ETIMEDOUT;
667	}
668
669	return 0;
670}
671
672static int fec_enet_mdio_reset(struct mii_bus *bus)
673{
674	return 0;
675}
676
677static int fec_enet_mii_probe(struct net_device *dev)
678{
679	struct fec_enet_private *fep = netdev_priv(dev);
680	struct phy_device *phy_dev = NULL;
681	char mdio_bus_id[MII_BUS_ID_SIZE];
682	char phy_name[MII_BUS_ID_SIZE + 3];
683	int phy_id;
684
685	fep->phy_dev = NULL;
686
687	/* check for attached phy */
688	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
689		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
690			continue;
691		if (fep->mii_bus->phy_map[phy_id] == NULL)
692			continue;
693		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
694			continue;
695		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
696		break;
697	}
698
699	if (phy_id >= PHY_MAX_ADDR) {
700		printk(KERN_INFO "%s: no PHY, assuming direct connection "
701			"to switch\n", dev->name);
702		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
703		phy_id = 0;
704	}
705
706	snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
707	phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
708		PHY_INTERFACE_MODE_MII);
709	if (IS_ERR(phy_dev)) {
710		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
711		return PTR_ERR(phy_dev);
712	}
713
714	/* mask with MAC supported features */
715	phy_dev->supported &= PHY_BASIC_FEATURES;
716	phy_dev->advertising = phy_dev->supported;
717
718	fep->phy_dev = phy_dev;
719	fep->link = 0;
720	fep->full_duplex = 0;
721
722	printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
723		"(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
724		fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
725		fep->phy_dev->irq);
726
727	return 0;
728}
729
730static int fec_enet_mii_init(struct platform_device *pdev)
731{
732	struct net_device *dev = platform_get_drvdata(pdev);
733	struct fec_enet_private *fep = netdev_priv(dev);
734	int err = -ENXIO, i;
735
736	fep->mii_timeout = 0;
737
738	/*
739	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
740	 */
741	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
742	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
743
744	fep->mii_bus = mdiobus_alloc();
745	if (fep->mii_bus == NULL) {
746		err = -ENOMEM;
747		goto err_out;
748	}
749
750	fep->mii_bus->name = "fec_enet_mii_bus";
751	fep->mii_bus->read = fec_enet_mdio_read;
752	fep->mii_bus->write = fec_enet_mdio_write;
753	fep->mii_bus->reset = fec_enet_mdio_reset;
754	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
755	fep->mii_bus->priv = fep;
756	fep->mii_bus->parent = &pdev->dev;
757
758	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
759	if (!fep->mii_bus->irq) {
760		err = -ENOMEM;
761		goto err_out_free_mdiobus;
762	}
763
764	for (i = 0; i < PHY_MAX_ADDR; i++)
765		fep->mii_bus->irq[i] = PHY_POLL;
766
767	platform_set_drvdata(dev, fep->mii_bus);
768
769	if (mdiobus_register(fep->mii_bus))
770		goto err_out_free_mdio_irq;
771
772	return 0;
773
774err_out_free_mdio_irq:
775	kfree(fep->mii_bus->irq);
776err_out_free_mdiobus:
777	mdiobus_free(fep->mii_bus);
778err_out:
779	return err;
780}
781
782static void fec_enet_mii_remove(struct fec_enet_private *fep)
783{
784	if (fep->phy_dev)
785		phy_disconnect(fep->phy_dev);
786	mdiobus_unregister(fep->mii_bus);
787	kfree(fep->mii_bus->irq);
788	mdiobus_free(fep->mii_bus);
789}
790
791static int fec_enet_get_settings(struct net_device *dev,
792				  struct ethtool_cmd *cmd)
793{
794	struct fec_enet_private *fep = netdev_priv(dev);
795	struct phy_device *phydev = fep->phy_dev;
796
797	if (!phydev)
798		return -ENODEV;
799
800	return phy_ethtool_gset(phydev, cmd);
801}
802
803static int fec_enet_set_settings(struct net_device *dev,
804				 struct ethtool_cmd *cmd)
805{
806	struct fec_enet_private *fep = netdev_priv(dev);
807	struct phy_device *phydev = fep->phy_dev;
808
809	if (!phydev)
810		return -ENODEV;
811
812	return phy_ethtool_sset(phydev, cmd);
813}
814
815static void fec_enet_get_drvinfo(struct net_device *dev,
816				 struct ethtool_drvinfo *info)
817{
818	struct fec_enet_private *fep = netdev_priv(dev);
819
820	strcpy(info->driver, fep->pdev->dev.driver->name);
821	strcpy(info->version, "Revision: 1.0");
822	strcpy(info->bus_info, dev_name(&dev->dev));
823}
824
825static struct ethtool_ops fec_enet_ethtool_ops = {
826	.get_settings		= fec_enet_get_settings,
827	.set_settings		= fec_enet_set_settings,
828	.get_drvinfo		= fec_enet_get_drvinfo,
829	.get_link		= ethtool_op_get_link,
830};
831
832static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
833{
834	struct fec_enet_private *fep = netdev_priv(dev);
835	struct phy_device *phydev = fep->phy_dev;
836
837	if (!netif_running(dev))
838		return -EINVAL;
839
840	if (!phydev)
841		return -ENODEV;
842
843	return phy_mii_ioctl(phydev, rq, cmd);
844}
845
846static void fec_enet_free_buffers(struct net_device *dev)
847{
848	struct fec_enet_private *fep = netdev_priv(dev);
849	int i;
850	struct sk_buff *skb;
851	struct bufdesc	*bdp;
852
853	bdp = fep->rx_bd_base;
854	for (i = 0; i < RX_RING_SIZE; i++) {
855		skb = fep->rx_skbuff[i];
856
857		if (bdp->cbd_bufaddr)
858			dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
859					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
860		if (skb)
861			dev_kfree_skb(skb);
862		bdp++;
863	}
864
865	bdp = fep->tx_bd_base;
866	for (i = 0; i < TX_RING_SIZE; i++)
867		kfree(fep->tx_bounce[i]);
868}
869
870static int fec_enet_alloc_buffers(struct net_device *dev)
871{
872	struct fec_enet_private *fep = netdev_priv(dev);
873	int i;
874	struct sk_buff *skb;
875	struct bufdesc	*bdp;
876
877	bdp = fep->rx_bd_base;
878	for (i = 0; i < RX_RING_SIZE; i++) {
879		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
880		if (!skb) {
881			fec_enet_free_buffers(dev);
882			return -ENOMEM;
883		}
884		fep->rx_skbuff[i] = skb;
885
886		bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
887				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
888		bdp->cbd_sc = BD_ENET_RX_EMPTY;
889		bdp++;
890	}
891
892	/* Set the last buffer to wrap. */
893	bdp--;
894	bdp->cbd_sc |= BD_SC_WRAP;
895
896	bdp = fep->tx_bd_base;
897	for (i = 0; i < TX_RING_SIZE; i++) {
898		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
899
900		bdp->cbd_sc = 0;
901		bdp->cbd_bufaddr = 0;
902		bdp++;
903	}
904
905	/* Set the last buffer to wrap. */
906	bdp--;
907	bdp->cbd_sc |= BD_SC_WRAP;
908
909	return 0;
910}
911
912static int
913fec_enet_open(struct net_device *dev)
914{
915	struct fec_enet_private *fep = netdev_priv(dev);
916	int ret;
917
918	/* I should reset the ring buffers here, but I don't yet know
919	 * a simple way to do that.
920	 */
921
922	ret = fec_enet_alloc_buffers(dev);
923	if (ret)
924		return ret;
925
926	/* Probe and connect to PHY when open the interface */
927	ret = fec_enet_mii_probe(dev);
928	if (ret) {
929		fec_enet_free_buffers(dev);
930		return ret;
931	}
932	phy_start(fep->phy_dev);
933	netif_start_queue(dev);
934	fep->opened = 1;
935	return 0;
936}
937
938static int
939fec_enet_close(struct net_device *dev)
940{
941	struct fec_enet_private *fep = netdev_priv(dev);
942
943	/* Don't know what to do yet. */
944	fep->opened = 0;
945	netif_stop_queue(dev);
946	fec_stop(dev);
947
948	if (fep->phy_dev)
949		phy_disconnect(fep->phy_dev);
950
951        fec_enet_free_buffers(dev);
952
953	return 0;
954}
955
956/* Set or clear the multicast filter for this adaptor.
957 * Skeleton taken from sunlance driver.
958 * The CPM Ethernet implementation allows Multicast as well as individual
959 * MAC address filtering.  Some of the drivers check to make sure it is
960 * a group multicast address, and discard those that are not.  I guess I
961 * will do the same for now, but just remove the test if you want
962 * individual filtering as well (do the upper net layers want or support
963 * this kind of feature?).
964 */
965
966#define HASH_BITS	6		/* #bits in hash */
967#define CRC32_POLY	0xEDB88320
968
969static void set_multicast_list(struct net_device *dev)
970{
971	struct fec_enet_private *fep = netdev_priv(dev);
972	struct netdev_hw_addr *ha;
973	unsigned int i, bit, data, crc, tmp;
974	unsigned char hash;
975
976	if (dev->flags & IFF_PROMISC) {
977		tmp = readl(fep->hwp + FEC_R_CNTRL);
978		tmp |= 0x8;
979		writel(tmp, fep->hwp + FEC_R_CNTRL);
980		return;
981	}
982
983	tmp = readl(fep->hwp + FEC_R_CNTRL);
984	tmp &= ~0x8;
985	writel(tmp, fep->hwp + FEC_R_CNTRL);
986
987	if (dev->flags & IFF_ALLMULTI) {
988		/* Catch all multicast addresses, so set the
989		 * filter to all 1's
990		 */
991		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
992		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
993
994		return;
995	}
996
997	/* Clear filter and add the addresses in hash register
998	 */
999	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1000	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1001
1002	netdev_for_each_mc_addr(ha, dev) {
1003		/* Only support group multicast for now */
1004		if (!(ha->addr[0] & 1))
1005			continue;
1006
1007		/* calculate crc32 value of mac address */
1008		crc = 0xffffffff;
1009
1010		for (i = 0; i < dev->addr_len; i++) {
1011			data = ha->addr[i];
1012			for (bit = 0; bit < 8; bit++, data >>= 1) {
1013				crc = (crc >> 1) ^
1014				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1015			}
1016		}
1017
1018		/* only upper 6 bits (HASH_BITS) are used
1019		 * which point to specific bit in he hash registers
1020		 */
1021		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1022
1023		if (hash > 31) {
1024			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1025			tmp |= 1 << (hash - 32);
1026			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1027		} else {
1028			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1029			tmp |= 1 << hash;
1030			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1031		}
1032	}
1033}
1034
1035/* Set a MAC change in hardware. */
1036static int
1037fec_set_mac_address(struct net_device *dev, void *p)
1038{
1039	struct fec_enet_private *fep = netdev_priv(dev);
1040	struct sockaddr *addr = p;
1041
1042	if (!is_valid_ether_addr(addr->sa_data))
1043		return -EADDRNOTAVAIL;
1044
1045	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1046
1047	writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1048		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1049		fep->hwp + FEC_ADDR_LOW);
1050	writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1051		fep->hwp + FEC_ADDR_HIGH);
1052	return 0;
1053}
1054
1055static const struct net_device_ops fec_netdev_ops = {
1056	.ndo_open		= fec_enet_open,
1057	.ndo_stop		= fec_enet_close,
1058	.ndo_start_xmit		= fec_enet_start_xmit,
1059	.ndo_set_multicast_list = set_multicast_list,
1060	.ndo_change_mtu		= eth_change_mtu,
1061	.ndo_validate_addr	= eth_validate_addr,
1062	.ndo_tx_timeout		= fec_timeout,
1063	.ndo_set_mac_address	= fec_set_mac_address,
1064	.ndo_do_ioctl           = fec_enet_ioctl,
1065};
1066
1067static int fec_enet_init(struct net_device *dev, int index)
1068{
1069	struct fec_enet_private *fep = netdev_priv(dev);
1070	struct bufdesc *cbd_base;
1071	struct bufdesc *bdp;
1072	int i;
1073
1074	/* Allocate memory for buffer descriptors. */
1075	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1076			GFP_KERNEL);
1077	if (!cbd_base) {
1078		printk("FEC: allocate descriptor memory failed?\n");
1079		return -ENOMEM;
1080	}
1081
1082	spin_lock_init(&fep->hw_lock);
1083
1084	fep->index = index;
1085	fep->hwp = (void __iomem *)dev->base_addr;
1086	fep->netdev = dev;
1087
1088	/* Set the Ethernet address */
1089#ifdef CONFIG_M5272
1090	fec_get_mac(dev);
1091#else
1092	{
1093		unsigned long l;
1094		l = readl(fep->hwp + FEC_ADDR_LOW);
1095		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1096		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1097		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1098		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1099		l = readl(fep->hwp + FEC_ADDR_HIGH);
1100		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1101		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1102	}
1103#endif
1104
1105	/* Set receive and transmit descriptor base. */
1106	fep->rx_bd_base = cbd_base;
1107	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1108
1109	/* The FEC Ethernet specific entries in the device structure */
1110	dev->watchdog_timeo = TX_TIMEOUT;
1111	dev->netdev_ops = &fec_netdev_ops;
1112	dev->ethtool_ops = &fec_enet_ethtool_ops;
1113
1114	/* Initialize the receive buffer descriptors. */
1115	bdp = fep->rx_bd_base;
1116	for (i = 0; i < RX_RING_SIZE; i++) {
1117
1118		/* Initialize the BD for every fragment in the page. */
1119		bdp->cbd_sc = 0;
1120		bdp++;
1121	}
1122
1123	/* Set the last buffer to wrap */
1124	bdp--;
1125	bdp->cbd_sc |= BD_SC_WRAP;
1126
1127	/* ...and the same for transmit */
1128	bdp = fep->tx_bd_base;
1129	for (i = 0; i < TX_RING_SIZE; i++) {
1130
1131		/* Initialize the BD for every fragment in the page. */
1132		bdp->cbd_sc = 0;
1133		bdp->cbd_bufaddr = 0;
1134		bdp++;
1135	}
1136
1137	/* Set the last buffer to wrap */
1138	bdp--;
1139	bdp->cbd_sc |= BD_SC_WRAP;
1140
1141	fec_restart(dev, 0);
1142
1143	return 0;
1144}
1145
1146/* This function is called to start or restart the FEC during a link
1147 * change.  This only happens when switching between half and full
1148 * duplex.
1149 */
1150static void
1151fec_restart(struct net_device *dev, int duplex)
1152{
1153	struct fec_enet_private *fep = netdev_priv(dev);
1154	int i;
1155
1156	/* Whack a reset.  We should wait for this. */
1157	writel(1, fep->hwp + FEC_ECNTRL);
1158	udelay(10);
1159
1160	/* Clear any outstanding interrupt. */
1161	writel(0xffc00000, fep->hwp + FEC_IEVENT);
1162
1163	/* Reset all multicast.	*/
1164	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1165	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1166#ifndef CONFIG_M5272
1167	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1168	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1169#endif
1170
1171	/* Set maximum receive buffer size. */
1172	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1173
1174	/* Set receive and transmit descriptor base. */
1175	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1176	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1177			fep->hwp + FEC_X_DES_START);
1178
1179	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1180	fep->cur_rx = fep->rx_bd_base;
1181
1182	/* Reset SKB transmit buffers. */
1183	fep->skb_cur = fep->skb_dirty = 0;
1184	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1185		if (fep->tx_skbuff[i]) {
1186			dev_kfree_skb_any(fep->tx_skbuff[i]);
1187			fep->tx_skbuff[i] = NULL;
1188		}
1189	}
1190
1191	/* Enable MII mode */
1192	if (duplex) {
1193		/* MII enable / FD enable */
1194		writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1195		writel(0x04, fep->hwp + FEC_X_CNTRL);
1196	} else {
1197		/* MII enable / No Rcv on Xmit */
1198		writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1199		writel(0x0, fep->hwp + FEC_X_CNTRL);
1200	}
1201	fep->full_duplex = duplex;
1202
1203	/* Set MII speed */
1204	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1205
1206#ifdef FEC_MIIGSK_ENR
1207	if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1208		/* disable the gasket and wait */
1209		writel(0, fep->hwp + FEC_MIIGSK_ENR);
1210		while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1211			udelay(1);
1212
1213		/* configure the gasket: RMII, 50 MHz, no loopback, no echo */
1214		writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1215
1216		/* re-enable the gasket */
1217		writel(2, fep->hwp + FEC_MIIGSK_ENR);
1218	}
1219#endif
1220
1221	/* And last, enable the transmit and receive processing */
1222	writel(2, fep->hwp + FEC_ECNTRL);
1223	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1224
1225	/* Enable interrupts we wish to service */
1226	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1227}
1228
1229static void
1230fec_stop(struct net_device *dev)
1231{
1232	struct fec_enet_private *fep = netdev_priv(dev);
1233
1234	/* We cannot expect a graceful transmit stop without link !!! */
1235	if (fep->link) {
1236		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1237		udelay(10);
1238		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1239			printk("fec_stop : Graceful transmit stop did not complete !\n");
1240	}
1241
1242	/* Whack a reset.  We should wait for this. */
1243	writel(1, fep->hwp + FEC_ECNTRL);
1244	udelay(10);
1245	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1246	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1247}
1248
1249static int __devinit
1250fec_probe(struct platform_device *pdev)
1251{
1252	struct fec_enet_private *fep;
1253	struct fec_platform_data *pdata;
1254	struct net_device *ndev;
1255	int i, irq, ret = 0;
1256	struct resource *r;
1257
1258	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1259	if (!r)
1260		return -ENXIO;
1261
1262	r = request_mem_region(r->start, resource_size(r), pdev->name);
1263	if (!r)
1264		return -EBUSY;
1265
1266	/* Init network device */
1267	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1268	if (!ndev)
1269		return -ENOMEM;
1270
1271	SET_NETDEV_DEV(ndev, &pdev->dev);
1272
1273	/* setup board info structure */
1274	fep = netdev_priv(ndev);
1275	memset(fep, 0, sizeof(*fep));
1276
1277	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1278	fep->pdev = pdev;
1279
1280	if (!ndev->base_addr) {
1281		ret = -ENOMEM;
1282		goto failed_ioremap;
1283	}
1284
1285	platform_set_drvdata(pdev, ndev);
1286
1287	pdata = pdev->dev.platform_data;
1288	if (pdata)
1289		fep->phy_interface = pdata->phy;
1290
1291	/* This device has up to three irqs on some platforms */
1292	for (i = 0; i < 3; i++) {
1293		irq = platform_get_irq(pdev, i);
1294		if (i && irq < 0)
1295			break;
1296		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1297		if (ret) {
1298			while (i >= 0) {
1299				irq = platform_get_irq(pdev, i);
1300				free_irq(irq, ndev);
1301				i--;
1302			}
1303			goto failed_irq;
1304		}
1305	}
1306
1307	fep->clk = clk_get(&pdev->dev, "fec_clk");
1308	if (IS_ERR(fep->clk)) {
1309		ret = PTR_ERR(fep->clk);
1310		goto failed_clk;
1311	}
1312	clk_enable(fep->clk);
1313
1314	ret = fec_enet_init(ndev, 0);
1315	if (ret)
1316		goto failed_init;
1317
1318	ret = fec_enet_mii_init(pdev);
1319	if (ret)
1320		goto failed_mii_init;
1321
1322	/* Carrier starts down, phylib will bring it up */
1323	netif_carrier_off(ndev);
1324
1325	ret = register_netdev(ndev);
1326	if (ret)
1327		goto failed_register;
1328
1329	return 0;
1330
1331failed_register:
1332	fec_enet_mii_remove(fep);
1333failed_mii_init:
1334failed_init:
1335	clk_disable(fep->clk);
1336	clk_put(fep->clk);
1337failed_clk:
1338	for (i = 0; i < 3; i++) {
1339		irq = platform_get_irq(pdev, i);
1340		if (irq > 0)
1341			free_irq(irq, ndev);
1342	}
1343failed_irq:
1344	iounmap((void __iomem *)ndev->base_addr);
1345failed_ioremap:
1346	free_netdev(ndev);
1347
1348	return ret;
1349}
1350
1351static int __devexit
1352fec_drv_remove(struct platform_device *pdev)
1353{
1354	struct net_device *ndev = platform_get_drvdata(pdev);
1355	struct fec_enet_private *fep = netdev_priv(ndev);
1356
1357	platform_set_drvdata(pdev, NULL);
1358
1359	fec_stop(ndev);
1360	fec_enet_mii_remove(fep);
1361	clk_disable(fep->clk);
1362	clk_put(fep->clk);
1363	iounmap((void __iomem *)ndev->base_addr);
1364	unregister_netdev(ndev);
1365	free_netdev(ndev);
1366	return 0;
1367}
1368
1369#ifdef CONFIG_PM
1370static int
1371fec_suspend(struct device *dev)
1372{
1373	struct net_device *ndev = dev_get_drvdata(dev);
1374	struct fec_enet_private *fep;
1375
1376	if (ndev) {
1377		fep = netdev_priv(ndev);
1378		if (netif_running(ndev))
1379			fec_enet_close(ndev);
1380		clk_disable(fep->clk);
1381	}
1382	return 0;
1383}
1384
1385static int
1386fec_resume(struct device *dev)
1387{
1388	struct net_device *ndev = dev_get_drvdata(dev);
1389	struct fec_enet_private *fep;
1390
1391	if (ndev) {
1392		fep = netdev_priv(ndev);
1393		clk_enable(fep->clk);
1394		if (netif_running(ndev))
1395			fec_enet_open(ndev);
1396	}
1397	return 0;
1398}
1399
1400static const struct dev_pm_ops fec_pm_ops = {
1401	.suspend	= fec_suspend,
1402	.resume		= fec_resume,
1403	.freeze		= fec_suspend,
1404	.thaw		= fec_resume,
1405	.poweroff	= fec_suspend,
1406	.restore	= fec_resume,
1407};
1408#endif
1409
1410static struct platform_driver fec_driver = {
1411	.driver	= {
1412		.name	= "fec",
1413		.owner	= THIS_MODULE,
1414#ifdef CONFIG_PM
1415		.pm	= &fec_pm_ops,
1416#endif
1417	},
1418	.probe	= fec_probe,
1419	.remove	= __devexit_p(fec_drv_remove),
1420};
1421
1422static int __init
1423fec_enet_module_init(void)
1424{
1425	printk(KERN_INFO "FEC Ethernet Driver\n");
1426
1427	return platform_driver_register(&fec_driver);
1428}
1429
1430static void __exit
1431fec_enet_cleanup(void)
1432{
1433	platform_driver_unregister(&fec_driver);
1434}
1435
1436module_exit(fec_enet_cleanup);
1437module_init(fec_enet_module_init);
1438
1439MODULE_LICENSE("GPL");
1440