• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/e1000e/
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32 */
33
34#include "e1000.h"
35
36#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
37#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
38#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
39#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
40
41#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
42#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
43#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
44
45#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
47#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
48
49#define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
50#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
51
52#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
54
55#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
56#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
57
58/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
60#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
61#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
62#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
63#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
64
65/* PHY Specific Control Register 2 (Page 0, Register 26) */
66#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
67						/* 1=Reverse Auto-Negotiation */
68
69/* MAC Specific Control Register (Page 2, Register 21) */
70/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71#define GG82563_MSCR_TX_CLK_MASK		 0x0007
72#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
73#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
74#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
75
76#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
77
78/* DSP Distance Register (Page 5, Register 26) */
79#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
80							   1 = 50-80M
81							   2 = 80-110M
82							   3 = 110-140M
83							   4 = >140M */
84
85/* Kumeran Mode Control Register (Page 193, Register 16) */
86#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
87
88/* Max number of times Kumeran read/write should be validated */
89#define GG82563_MAX_KMRN_RETRY  0x5
90
91/* Power Management Control Register (Page 193, Register 20) */
92#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
93					   /* 1=Enable SERDES Electrical Idle */
94
95/* In-Band Control Register (Page 194, Register 18) */
96#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
97
98/*
99 * A table for the GG82563 cable length where the range is defined
100 * with a lower bound at "index" and the upper bound at
101 * "index + 5".
102 */
103static const u16 e1000_gg82563_cable_length_table[] =
104	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105#define GG82563_CABLE_LENGTH_TABLE_SIZE \
106		ARRAY_SIZE(e1000_gg82563_cable_length_table)
107
108static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                            u16 *data);
118static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                             u16 data);
120static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121
122/**
123 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124 *  @hw: pointer to the HW structure
125 **/
126static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127{
128	struct e1000_phy_info *phy = &hw->phy;
129	s32 ret_val;
130
131	if (hw->phy.media_type != e1000_media_type_copper) {
132		phy->type	= e1000_phy_none;
133		return 0;
134	} else {
135		phy->ops.power_up = e1000_power_up_phy_copper;
136		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137	}
138
139	phy->addr		= 1;
140	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
141	phy->reset_delay_us      = 100;
142	phy->type		= e1000_phy_gg82563;
143
144	/* This can only be done after all function pointers are setup. */
145	ret_val = e1000e_get_phy_id(hw);
146
147	/* Verify phy id */
148	if (phy->id != GG82563_E_PHY_ID)
149		return -E1000_ERR_PHY;
150
151	return ret_val;
152}
153
154/**
155 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156 *  @hw: pointer to the HW structure
157 **/
158static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159{
160	struct e1000_nvm_info *nvm = &hw->nvm;
161	u32 eecd = er32(EECD);
162	u16 size;
163
164	nvm->opcode_bits	= 8;
165	nvm->delay_usec	 = 1;
166	switch (nvm->override) {
167	case e1000_nvm_override_spi_large:
168		nvm->page_size    = 32;
169		nvm->address_bits = 16;
170		break;
171	case e1000_nvm_override_spi_small:
172		nvm->page_size    = 8;
173		nvm->address_bits = 8;
174		break;
175	default:
176		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178		break;
179	}
180
181	nvm->type = e1000_nvm_eeprom_spi;
182
183	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184			  E1000_EECD_SIZE_EX_SHIFT);
185
186	/*
187	 * Added to a constant, "size" becomes the left-shift value
188	 * for setting word_size.
189	 */
190	size += NVM_WORD_SIZE_BASE_SHIFT;
191
192	/* EEPROM access above 16k is unsupported */
193	if (size > 14)
194		size = 14;
195	nvm->word_size	= 1 << size;
196
197	return 0;
198}
199
200/**
201 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202 *  @hw: pointer to the HW structure
203 **/
204static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
205{
206	struct e1000_hw *hw = &adapter->hw;
207	struct e1000_mac_info *mac = &hw->mac;
208	struct e1000_mac_operations *func = &mac->ops;
209
210	/* Set media type */
211	switch (adapter->pdev->device) {
212	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
213		hw->phy.media_type = e1000_media_type_internal_serdes;
214		break;
215	default:
216		hw->phy.media_type = e1000_media_type_copper;
217		break;
218	}
219
220	/* Set mta register count */
221	mac->mta_reg_count = 128;
222	/* Set rar entry count */
223	mac->rar_entry_count = E1000_RAR_ENTRIES;
224	/* FWSM register */
225	mac->has_fwsm = true;
226	/* ARC supported; valid only if manageability features are enabled. */
227	mac->arc_subsystem_valid =
228	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
229	                ? true : false;
230	/* Adaptive IFS not supported */
231	mac->adaptive_ifs = false;
232
233	/* check for link */
234	switch (hw->phy.media_type) {
235	case e1000_media_type_copper:
236		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
237		func->check_for_link = e1000e_check_for_copper_link;
238		break;
239	case e1000_media_type_fiber:
240		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
241		func->check_for_link = e1000e_check_for_fiber_link;
242		break;
243	case e1000_media_type_internal_serdes:
244		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
245		func->check_for_link = e1000e_check_for_serdes_link;
246		break;
247	default:
248		return -E1000_ERR_CONFIG;
249		break;
250	}
251
252	/* set lan id for port to determine which phy lock to use */
253	hw->mac.ops.set_lan_id(hw);
254
255	return 0;
256}
257
258static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
259{
260	struct e1000_hw *hw = &adapter->hw;
261	s32 rc;
262
263	rc = e1000_init_mac_params_80003es2lan(adapter);
264	if (rc)
265		return rc;
266
267	rc = e1000_init_nvm_params_80003es2lan(hw);
268	if (rc)
269		return rc;
270
271	rc = e1000_init_phy_params_80003es2lan(hw);
272	if (rc)
273		return rc;
274
275	return 0;
276}
277
278/**
279 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
280 *  @hw: pointer to the HW structure
281 *
282 *  A wrapper to acquire access rights to the correct PHY.
283 **/
284static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
285{
286	u16 mask;
287
288	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
289	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
290}
291
292/**
293 *  e1000_release_phy_80003es2lan - Release rights to access PHY
294 *  @hw: pointer to the HW structure
295 *
296 *  A wrapper to release access rights to the correct PHY.
297 **/
298static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
299{
300	u16 mask;
301
302	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
303	e1000_release_swfw_sync_80003es2lan(hw, mask);
304}
305
306/**
307 *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
308 *  @hw: pointer to the HW structure
309 *
310 *  Acquire the semaphore to access the Kumeran interface.
311 *
312 **/
313static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
314{
315	u16 mask;
316
317	mask = E1000_SWFW_CSR_SM;
318
319	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
320}
321
322/**
323 *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
324 *  @hw: pointer to the HW structure
325 *
326 *  Release the semaphore used to access the Kumeran interface
327 **/
328static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
329{
330	u16 mask;
331
332	mask = E1000_SWFW_CSR_SM;
333
334	e1000_release_swfw_sync_80003es2lan(hw, mask);
335}
336
337/**
338 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
339 *  @hw: pointer to the HW structure
340 *
341 *  Acquire the semaphore to access the EEPROM.
342 **/
343static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
344{
345	s32 ret_val;
346
347	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
348	if (ret_val)
349		return ret_val;
350
351	ret_val = e1000e_acquire_nvm(hw);
352
353	if (ret_val)
354		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
355
356	return ret_val;
357}
358
359/**
360 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
361 *  @hw: pointer to the HW structure
362 *
363 *  Release the semaphore used to access the EEPROM.
364 **/
365static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
366{
367	e1000e_release_nvm(hw);
368	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
369}
370
371/**
372 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
373 *  @hw: pointer to the HW structure
374 *  @mask: specifies which semaphore to acquire
375 *
376 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
377 *  will also specify which port we're acquiring the lock for.
378 **/
379static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
380{
381	u32 swfw_sync;
382	u32 swmask = mask;
383	u32 fwmask = mask << 16;
384	s32 i = 0;
385	s32 timeout = 50;
386
387	while (i < timeout) {
388		if (e1000e_get_hw_semaphore(hw))
389			return -E1000_ERR_SWFW_SYNC;
390
391		swfw_sync = er32(SW_FW_SYNC);
392		if (!(swfw_sync & (fwmask | swmask)))
393			break;
394
395		/*
396		 * Firmware currently using resource (fwmask)
397		 * or other software thread using resource (swmask)
398		 */
399		e1000e_put_hw_semaphore(hw);
400		mdelay(5);
401		i++;
402	}
403
404	if (i == timeout) {
405		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
406		return -E1000_ERR_SWFW_SYNC;
407	}
408
409	swfw_sync |= swmask;
410	ew32(SW_FW_SYNC, swfw_sync);
411
412	e1000e_put_hw_semaphore(hw);
413
414	return 0;
415}
416
417/**
418 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
419 *  @hw: pointer to the HW structure
420 *  @mask: specifies which semaphore to acquire
421 *
422 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
423 *  will also specify which port we're releasing the lock for.
424 **/
425static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
426{
427	u32 swfw_sync;
428
429	while (e1000e_get_hw_semaphore(hw) != 0);
430	/* Empty */
431
432	swfw_sync = er32(SW_FW_SYNC);
433	swfw_sync &= ~mask;
434	ew32(SW_FW_SYNC, swfw_sync);
435
436	e1000e_put_hw_semaphore(hw);
437}
438
439/**
440 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
441 *  @hw: pointer to the HW structure
442 *  @offset: offset of the register to read
443 *  @data: pointer to the data returned from the operation
444 *
445 *  Read the GG82563 PHY register.
446 **/
447static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
448						  u32 offset, u16 *data)
449{
450	s32 ret_val;
451	u32 page_select;
452	u16 temp;
453
454	ret_val = e1000_acquire_phy_80003es2lan(hw);
455	if (ret_val)
456		return ret_val;
457
458	/* Select Configuration Page */
459	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
460		page_select = GG82563_PHY_PAGE_SELECT;
461	} else {
462		/*
463		 * Use Alternative Page Select register to access
464		 * registers 30 and 31
465		 */
466		page_select = GG82563_PHY_PAGE_SELECT_ALT;
467	}
468
469	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
470	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
471	if (ret_val) {
472		e1000_release_phy_80003es2lan(hw);
473		return ret_val;
474	}
475
476	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
477		/*
478		 * The "ready" bit in the MDIC register may be incorrectly set
479		 * before the device has completed the "Page Select" MDI
480		 * transaction.  So we wait 200us after each MDI command...
481		 */
482		udelay(200);
483
484		/* ...and verify the command was successful. */
485		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
486
487		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
488			ret_val = -E1000_ERR_PHY;
489			e1000_release_phy_80003es2lan(hw);
490			return ret_val;
491		}
492
493		udelay(200);
494
495		ret_val = e1000e_read_phy_reg_mdic(hw,
496		                                  MAX_PHY_REG_ADDRESS & offset,
497		                                  data);
498
499		udelay(200);
500	} else {
501		ret_val = e1000e_read_phy_reg_mdic(hw,
502		                                  MAX_PHY_REG_ADDRESS & offset,
503		                                  data);
504	}
505
506	e1000_release_phy_80003es2lan(hw);
507
508	return ret_val;
509}
510
511/**
512 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
513 *  @hw: pointer to the HW structure
514 *  @offset: offset of the register to read
515 *  @data: value to write to the register
516 *
517 *  Write to the GG82563 PHY register.
518 **/
519static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
520						   u32 offset, u16 data)
521{
522	s32 ret_val;
523	u32 page_select;
524	u16 temp;
525
526	ret_val = e1000_acquire_phy_80003es2lan(hw);
527	if (ret_val)
528		return ret_val;
529
530	/* Select Configuration Page */
531	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
532		page_select = GG82563_PHY_PAGE_SELECT;
533	} else {
534		/*
535		 * Use Alternative Page Select register to access
536		 * registers 30 and 31
537		 */
538		page_select = GG82563_PHY_PAGE_SELECT_ALT;
539	}
540
541	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
542	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
543	if (ret_val) {
544		e1000_release_phy_80003es2lan(hw);
545		return ret_val;
546	}
547
548	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
549		/*
550		 * The "ready" bit in the MDIC register may be incorrectly set
551		 * before the device has completed the "Page Select" MDI
552		 * transaction.  So we wait 200us after each MDI command...
553		 */
554		udelay(200);
555
556		/* ...and verify the command was successful. */
557		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
558
559		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
560			e1000_release_phy_80003es2lan(hw);
561			return -E1000_ERR_PHY;
562		}
563
564		udelay(200);
565
566		ret_val = e1000e_write_phy_reg_mdic(hw,
567		                                  MAX_PHY_REG_ADDRESS & offset,
568		                                  data);
569
570		udelay(200);
571	} else {
572		ret_val = e1000e_write_phy_reg_mdic(hw,
573		                                  MAX_PHY_REG_ADDRESS & offset,
574		                                  data);
575	}
576
577	e1000_release_phy_80003es2lan(hw);
578
579	return ret_val;
580}
581
582/**
583 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
584 *  @hw: pointer to the HW structure
585 *  @offset: offset of the register to read
586 *  @words: number of words to write
587 *  @data: buffer of data to write to the NVM
588 *
589 *  Write "words" of data to the ESB2 NVM.
590 **/
591static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
592				       u16 words, u16 *data)
593{
594	return e1000e_write_nvm_spi(hw, offset, words, data);
595}
596
597/**
598 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
599 *  @hw: pointer to the HW structure
600 *
601 *  Wait a specific amount of time for manageability processes to complete.
602 *  This is a function pointer entry point called by the phy module.
603 **/
604static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
605{
606	s32 timeout = PHY_CFG_TIMEOUT;
607	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
608
609	if (hw->bus.func == 1)
610		mask = E1000_NVM_CFG_DONE_PORT_1;
611
612	while (timeout) {
613		if (er32(EEMNGCTL) & mask)
614			break;
615		msleep(1);
616		timeout--;
617	}
618	if (!timeout) {
619		e_dbg("MNG configuration cycle has not completed.\n");
620		return -E1000_ERR_RESET;
621	}
622
623	return 0;
624}
625
626/**
627 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
628 *  @hw: pointer to the HW structure
629 *
630 *  Force the speed and duplex settings onto the PHY.  This is a
631 *  function pointer entry point called by the phy module.
632 **/
633static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
634{
635	s32 ret_val;
636	u16 phy_data;
637	bool link;
638
639	/*
640	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
641	 * forced whenever speed and duplex are forced.
642	 */
643	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
644	if (ret_val)
645		return ret_val;
646
647	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
648	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
649	if (ret_val)
650		return ret_val;
651
652	e_dbg("GG82563 PSCR: %X\n", phy_data);
653
654	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
655	if (ret_val)
656		return ret_val;
657
658	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
659
660	/* Reset the phy to commit changes. */
661	phy_data |= MII_CR_RESET;
662
663	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
664	if (ret_val)
665		return ret_val;
666
667	udelay(1);
668
669	if (hw->phy.autoneg_wait_to_complete) {
670		e_dbg("Waiting for forced speed/duplex link "
671			 "on GG82563 phy.\n");
672
673		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
674						     100000, &link);
675		if (ret_val)
676			return ret_val;
677
678		if (!link) {
679			/*
680			 * We didn't get link.
681			 * Reset the DSP and cross our fingers.
682			 */
683			ret_val = e1000e_phy_reset_dsp(hw);
684			if (ret_val)
685				return ret_val;
686		}
687
688		/* Try once more */
689		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
690						     100000, &link);
691		if (ret_val)
692			return ret_val;
693	}
694
695	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
696	if (ret_val)
697		return ret_val;
698
699	/*
700	 * Resetting the phy means we need to verify the TX_CLK corresponds
701	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
702	 */
703	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
704	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
705		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
706	else
707		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
708
709	/*
710	 * In addition, we must re-enable CRS on Tx for both half and full
711	 * duplex.
712	 */
713	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
714	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
715
716	return ret_val;
717}
718
719/**
720 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
721 *  @hw: pointer to the HW structure
722 *
723 *  Find the approximate cable length as measured by the GG82563 PHY.
724 *  This is a function pointer entry point called by the phy module.
725 **/
726static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
727{
728	struct e1000_phy_info *phy = &hw->phy;
729	s32 ret_val = 0;
730	u16 phy_data, index;
731
732	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
733	if (ret_val)
734		goto out;
735
736	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
737
738	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
739		ret_val = -E1000_ERR_PHY;
740		goto out;
741	}
742
743	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
744	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
745
746	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
747
748out:
749	return ret_val;
750}
751
752/**
753 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
754 *  @hw: pointer to the HW structure
755 *  @speed: pointer to speed buffer
756 *  @duplex: pointer to duplex buffer
757 *
758 *  Retrieve the current speed and duplex configuration.
759 **/
760static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
761					      u16 *duplex)
762{
763	s32 ret_val;
764
765	if (hw->phy.media_type == e1000_media_type_copper) {
766		ret_val = e1000e_get_speed_and_duplex_copper(hw,
767								    speed,
768								    duplex);
769		hw->phy.ops.cfg_on_link_up(hw);
770	} else {
771		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
772								  speed,
773								  duplex);
774	}
775
776	return ret_val;
777}
778
779/**
780 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
781 *  @hw: pointer to the HW structure
782 *
783 *  Perform a global reset to the ESB2 controller.
784 **/
785static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
786{
787	u32 ctrl, icr;
788	s32 ret_val;
789
790	/*
791	 * Prevent the PCI-E bus from sticking if there is no TLP connection
792	 * on the last TLP read/write transaction when MAC is reset.
793	 */
794	ret_val = e1000e_disable_pcie_master(hw);
795	if (ret_val)
796		e_dbg("PCI-E Master disable polling has failed.\n");
797
798	e_dbg("Masking off all interrupts\n");
799	ew32(IMC, 0xffffffff);
800
801	ew32(RCTL, 0);
802	ew32(TCTL, E1000_TCTL_PSP);
803	e1e_flush();
804
805	msleep(10);
806
807	ctrl = er32(CTRL);
808
809	ret_val = e1000_acquire_phy_80003es2lan(hw);
810	e_dbg("Issuing a global reset to MAC\n");
811	ew32(CTRL, ctrl | E1000_CTRL_RST);
812	e1000_release_phy_80003es2lan(hw);
813
814	ret_val = e1000e_get_auto_rd_done(hw);
815	if (ret_val)
816		/* We don't want to continue accessing MAC registers. */
817		return ret_val;
818
819	/* Clear any pending interrupt events. */
820	ew32(IMC, 0xffffffff);
821	icr = er32(ICR);
822
823	ret_val = e1000_check_alt_mac_addr_generic(hw);
824
825	return ret_val;
826}
827
828/**
829 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
830 *  @hw: pointer to the HW structure
831 *
832 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
833 **/
834static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
835{
836	struct e1000_mac_info *mac = &hw->mac;
837	u32 reg_data;
838	s32 ret_val;
839	u16 i;
840
841	e1000_initialize_hw_bits_80003es2lan(hw);
842
843	/* Initialize identification LED */
844	ret_val = e1000e_id_led_init(hw);
845	if (ret_val)
846		e_dbg("Error initializing identification LED\n");
847		/* This is not fatal and we should not stop init due to this */
848
849	/* Disabling VLAN filtering */
850	e_dbg("Initializing the IEEE VLAN\n");
851	mac->ops.clear_vfta(hw);
852
853	/* Setup the receive address. */
854	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
855
856	/* Zero out the Multicast HASH table */
857	e_dbg("Zeroing the MTA\n");
858	for (i = 0; i < mac->mta_reg_count; i++)
859		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
860
861	/* Setup link and flow control */
862	ret_val = e1000e_setup_link(hw);
863
864	/* Set the transmit descriptor write-back policy */
865	reg_data = er32(TXDCTL(0));
866	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
867		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
868	ew32(TXDCTL(0), reg_data);
869
870	/* ...for both queues. */
871	reg_data = er32(TXDCTL(1));
872	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
873		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
874	ew32(TXDCTL(1), reg_data);
875
876	/* Enable retransmit on late collisions */
877	reg_data = er32(TCTL);
878	reg_data |= E1000_TCTL_RTLC;
879	ew32(TCTL, reg_data);
880
881	/* Configure Gigabit Carry Extend Padding */
882	reg_data = er32(TCTL_EXT);
883	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
884	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
885	ew32(TCTL_EXT, reg_data);
886
887	/* Configure Transmit Inter-Packet Gap */
888	reg_data = er32(TIPG);
889	reg_data &= ~E1000_TIPG_IPGT_MASK;
890	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
891	ew32(TIPG, reg_data);
892
893	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
894	reg_data &= ~0x00100000;
895	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
896
897	/* default to true to enable the MDIC W/A */
898	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
899
900	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
901	                              E1000_KMRNCTRLSTA_OFFSET >>
902	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
903	                              &i);
904	if (!ret_val) {
905		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
906		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
907			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
908	}
909
910	/*
911	 * Clear all of the statistics registers (clear on read).  It is
912	 * important that we do this after we have tried to establish link
913	 * because the symbol error count will increment wildly if there
914	 * is no link.
915	 */
916	e1000_clear_hw_cntrs_80003es2lan(hw);
917
918	return ret_val;
919}
920
921/**
922 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
923 *  @hw: pointer to the HW structure
924 *
925 *  Initializes required hardware-dependent bits needed for normal operation.
926 **/
927static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
928{
929	u32 reg;
930
931	/* Transmit Descriptor Control 0 */
932	reg = er32(TXDCTL(0));
933	reg |= (1 << 22);
934	ew32(TXDCTL(0), reg);
935
936	/* Transmit Descriptor Control 1 */
937	reg = er32(TXDCTL(1));
938	reg |= (1 << 22);
939	ew32(TXDCTL(1), reg);
940
941	/* Transmit Arbitration Control 0 */
942	reg = er32(TARC(0));
943	reg &= ~(0xF << 27); /* 30:27 */
944	if (hw->phy.media_type != e1000_media_type_copper)
945		reg &= ~(1 << 20);
946	ew32(TARC(0), reg);
947
948	/* Transmit Arbitration Control 1 */
949	reg = er32(TARC(1));
950	if (er32(TCTL) & E1000_TCTL_MULR)
951		reg &= ~(1 << 28);
952	else
953		reg |= (1 << 28);
954	ew32(TARC(1), reg);
955}
956
957/**
958 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
959 *  @hw: pointer to the HW structure
960 *
961 *  Setup some GG82563 PHY registers for obtaining link
962 **/
963static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
964{
965	struct e1000_phy_info *phy = &hw->phy;
966	s32 ret_val;
967	u32 ctrl_ext;
968	u16 data;
969
970	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
971	if (ret_val)
972		return ret_val;
973
974	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
975	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
976	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
977
978	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
979	if (ret_val)
980		return ret_val;
981
982	/*
983	 * Options:
984	 *   MDI/MDI-X = 0 (default)
985	 *   0 - Auto for all speeds
986	 *   1 - MDI mode
987	 *   2 - MDI-X mode
988	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
989	 */
990	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
991	if (ret_val)
992		return ret_val;
993
994	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
995
996	switch (phy->mdix) {
997	case 1:
998		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
999		break;
1000	case 2:
1001		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1002		break;
1003	case 0:
1004	default:
1005		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1006		break;
1007	}
1008
1009	/*
1010	 * Options:
1011	 *   disable_polarity_correction = 0 (default)
1012	 *       Automatic Correction for Reversed Cable Polarity
1013	 *   0 - Disabled
1014	 *   1 - Enabled
1015	 */
1016	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1017	if (phy->disable_polarity_correction)
1018		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1019
1020	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1021	if (ret_val)
1022		return ret_val;
1023
1024	/* SW Reset the PHY so all changes take effect */
1025	ret_val = e1000e_commit_phy(hw);
1026	if (ret_val) {
1027		e_dbg("Error Resetting the PHY\n");
1028		return ret_val;
1029	}
1030
1031	/* Bypass Rx and Tx FIFO's */
1032	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1033					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1034					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1035					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1036	if (ret_val)
1037		return ret_val;
1038
1039	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1040				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1041				       &data);
1042	if (ret_val)
1043		return ret_val;
1044	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1045	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1046					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1047					data);
1048	if (ret_val)
1049		return ret_val;
1050
1051	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1052	if (ret_val)
1053		return ret_val;
1054
1055	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1056	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1057	if (ret_val)
1058		return ret_val;
1059
1060	ctrl_ext = er32(CTRL_EXT);
1061	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1062	ew32(CTRL_EXT, ctrl_ext);
1063
1064	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1065	if (ret_val)
1066		return ret_val;
1067
1068	/*
1069	 * Do not init these registers when the HW is in IAMT mode, since the
1070	 * firmware will have already initialized them.  We only initialize
1071	 * them if the HW is not in IAMT mode.
1072	 */
1073	if (!e1000e_check_mng_mode(hw)) {
1074		/* Enable Electrical Idle on the PHY */
1075		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1076		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1077		if (ret_val)
1078			return ret_val;
1079
1080		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1081		if (ret_val)
1082			return ret_val;
1083
1084		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1085		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1086		if (ret_val)
1087			return ret_val;
1088	}
1089
1090	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1091	if (ret_val)
1092		return ret_val;
1093
1094	data |= GG82563_ICR_DIS_PADDING;
1095	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1096	if (ret_val)
1097		return ret_val;
1098
1099	return 0;
1100}
1101
1102/**
1103 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1104 *  @hw: pointer to the HW structure
1105 *
1106 *  Essentially a wrapper for setting up all things "copper" related.
1107 *  This is a function pointer entry point called by the mac module.
1108 **/
1109static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1110{
1111	u32 ctrl;
1112	s32 ret_val;
1113	u16 reg_data;
1114
1115	ctrl = er32(CTRL);
1116	ctrl |= E1000_CTRL_SLU;
1117	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1118	ew32(CTRL, ctrl);
1119
1120	/*
1121	 * Set the mac to wait the maximum time between each
1122	 * iteration and increase the max iterations when
1123	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1124	 */
1125	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1126	                                           0xFFFF);
1127	if (ret_val)
1128		return ret_val;
1129	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1130	                                          &reg_data);
1131	if (ret_val)
1132		return ret_val;
1133	reg_data |= 0x3F;
1134	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1135	                                           reg_data);
1136	if (ret_val)
1137		return ret_val;
1138	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1139				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1140				      &reg_data);
1141	if (ret_val)
1142		return ret_val;
1143	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1144	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1145					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1146					reg_data);
1147	if (ret_val)
1148		return ret_val;
1149
1150	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1151	if (ret_val)
1152		return ret_val;
1153
1154	ret_val = e1000e_setup_copper_link(hw);
1155
1156	return 0;
1157}
1158
1159/**
1160 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1161 *  @hw: pointer to the HW structure
1162 *  @duplex: current duplex setting
1163 *
1164 *  Configure the KMRN interface by applying last minute quirks for
1165 *  10/100 operation.
1166 **/
1167static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1168{
1169	s32 ret_val = 0;
1170	u16 speed;
1171	u16 duplex;
1172
1173	if (hw->phy.media_type == e1000_media_type_copper) {
1174		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1175		                                             &duplex);
1176		if (ret_val)
1177			return ret_val;
1178
1179		if (speed == SPEED_1000)
1180			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1181		else
1182			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1183	}
1184
1185	return ret_val;
1186}
1187
1188/**
1189 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1190 *  @hw: pointer to the HW structure
1191 *  @duplex: current duplex setting
1192 *
1193 *  Configure the KMRN interface by applying last minute quirks for
1194 *  10/100 operation.
1195 **/
1196static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1197{
1198	s32 ret_val;
1199	u32 tipg;
1200	u32 i = 0;
1201	u16 reg_data, reg_data2;
1202
1203	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1204	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1205	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1206	                               reg_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	/* Configure Transmit Inter-Packet Gap */
1211	tipg = er32(TIPG);
1212	tipg &= ~E1000_TIPG_IPGT_MASK;
1213	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1214	ew32(TIPG, tipg);
1215
1216	do {
1217		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1218		if (ret_val)
1219			return ret_val;
1220
1221		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1222		if (ret_val)
1223			return ret_val;
1224		i++;
1225	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1226
1227	if (duplex == HALF_DUPLEX)
1228		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1229	else
1230		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1231
1232	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1233
1234	return 0;
1235}
1236
1237/**
1238 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1239 *  @hw: pointer to the HW structure
1240 *
1241 *  Configure the KMRN interface by applying last minute quirks for
1242 *  gigabit operation.
1243 **/
1244static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1245{
1246	s32 ret_val;
1247	u16 reg_data, reg_data2;
1248	u32 tipg;
1249	u32 i = 0;
1250
1251	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1252	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1253	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1254	                               reg_data);
1255	if (ret_val)
1256		return ret_val;
1257
1258	/* Configure Transmit Inter-Packet Gap */
1259	tipg = er32(TIPG);
1260	tipg &= ~E1000_TIPG_IPGT_MASK;
1261	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1262	ew32(TIPG, tipg);
1263
1264	do {
1265		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1266		if (ret_val)
1267			return ret_val;
1268
1269		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1270		if (ret_val)
1271			return ret_val;
1272		i++;
1273	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1274
1275	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1276	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1277
1278	return ret_val;
1279}
1280
1281/**
1282 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1283 *  @hw: pointer to the HW structure
1284 *  @offset: register offset to be read
1285 *  @data: pointer to the read data
1286 *
1287 *  Acquire semaphore, then read the PHY register at offset
1288 *  using the kumeran interface.  The information retrieved is stored in data.
1289 *  Release the semaphore before exiting.
1290 **/
1291static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1292					   u16 *data)
1293{
1294	u32 kmrnctrlsta;
1295	s32 ret_val = 0;
1296
1297	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1298	if (ret_val)
1299		return ret_val;
1300
1301	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1302	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1303	ew32(KMRNCTRLSTA, kmrnctrlsta);
1304
1305	udelay(2);
1306
1307	kmrnctrlsta = er32(KMRNCTRLSTA);
1308	*data = (u16)kmrnctrlsta;
1309
1310	e1000_release_mac_csr_80003es2lan(hw);
1311
1312	return ret_val;
1313}
1314
1315/**
1316 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1317 *  @hw: pointer to the HW structure
1318 *  @offset: register offset to write to
1319 *  @data: data to write at register offset
1320 *
1321 *  Acquire semaphore, then write the data to PHY register
1322 *  at the offset using the kumeran interface.  Release semaphore
1323 *  before exiting.
1324 **/
1325static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1326					    u16 data)
1327{
1328	u32 kmrnctrlsta;
1329	s32 ret_val = 0;
1330
1331	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1332	if (ret_val)
1333		return ret_val;
1334
1335	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1336	               E1000_KMRNCTRLSTA_OFFSET) | data;
1337	ew32(KMRNCTRLSTA, kmrnctrlsta);
1338
1339	udelay(2);
1340
1341	e1000_release_mac_csr_80003es2lan(hw);
1342
1343	return ret_val;
1344}
1345
1346/**
1347 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1348 *  @hw: pointer to the HW structure
1349 **/
1350static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1351{
1352	s32 ret_val = 0;
1353
1354	/*
1355	 * If there's an alternate MAC address place it in RAR0
1356	 * so that it will override the Si installed default perm
1357	 * address.
1358	 */
1359	ret_val = e1000_check_alt_mac_addr_generic(hw);
1360	if (ret_val)
1361		goto out;
1362
1363	ret_val = e1000_read_mac_addr_generic(hw);
1364
1365out:
1366	return ret_val;
1367}
1368
1369/**
1370 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1371 * @hw: pointer to the HW structure
1372 *
1373 * In the case of a PHY power down to save power, or to turn off link during a
1374 * driver unload, or wake on lan is not enabled, remove the link.
1375 **/
1376static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1377{
1378	/* If the management interface is not enabled, then power down */
1379	if (!(hw->mac.ops.check_mng_mode(hw) ||
1380	      hw->phy.ops.check_reset_block(hw)))
1381		e1000_power_down_phy_copper(hw);
1382}
1383
1384/**
1385 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1386 *  @hw: pointer to the HW structure
1387 *
1388 *  Clears the hardware counters by reading the counter registers.
1389 **/
1390static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1391{
1392	e1000e_clear_hw_cntrs_base(hw);
1393
1394	er32(PRC64);
1395	er32(PRC127);
1396	er32(PRC255);
1397	er32(PRC511);
1398	er32(PRC1023);
1399	er32(PRC1522);
1400	er32(PTC64);
1401	er32(PTC127);
1402	er32(PTC255);
1403	er32(PTC511);
1404	er32(PTC1023);
1405	er32(PTC1522);
1406
1407	er32(ALGNERRC);
1408	er32(RXERRC);
1409	er32(TNCRS);
1410	er32(CEXTERR);
1411	er32(TSCTC);
1412	er32(TSCTFC);
1413
1414	er32(MGTPRC);
1415	er32(MGTPDC);
1416	er32(MGTPTC);
1417
1418	er32(IAC);
1419	er32(ICRXOC);
1420
1421	er32(ICRXPTC);
1422	er32(ICRXATC);
1423	er32(ICTXPTC);
1424	er32(ICTXATC);
1425	er32(ICTXQEC);
1426	er32(ICTXQMTC);
1427	er32(ICRXDMTC);
1428}
1429
1430static struct e1000_mac_operations es2_mac_ops = {
1431	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1432	.id_led_init		= e1000e_id_led_init,
1433	.check_mng_mode		= e1000e_check_mng_mode_generic,
1434	/* check_for_link dependent on media type */
1435	.cleanup_led		= e1000e_cleanup_led_generic,
1436	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1437	.get_bus_info		= e1000e_get_bus_info_pcie,
1438	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1439	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1440	.led_on			= e1000e_led_on_generic,
1441	.led_off		= e1000e_led_off_generic,
1442	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1443	.write_vfta		= e1000_write_vfta_generic,
1444	.clear_vfta		= e1000_clear_vfta_generic,
1445	.reset_hw		= e1000_reset_hw_80003es2lan,
1446	.init_hw		= e1000_init_hw_80003es2lan,
1447	.setup_link		= e1000e_setup_link,
1448	/* setup_physical_interface dependent on media type */
1449	.setup_led		= e1000e_setup_led_generic,
1450};
1451
1452static struct e1000_phy_operations es2_phy_ops = {
1453	.acquire		= e1000_acquire_phy_80003es2lan,
1454	.check_polarity		= e1000_check_polarity_m88,
1455	.check_reset_block	= e1000e_check_reset_block_generic,
1456	.commit		 	= e1000e_phy_sw_reset,
1457	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
1458	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
1459	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
1460	.get_info       	= e1000e_get_phy_info_m88,
1461	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
1462	.release		= e1000_release_phy_80003es2lan,
1463	.reset		  	= e1000e_phy_hw_reset_generic,
1464	.set_d0_lplu_state  	= NULL,
1465	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
1466	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
1467	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
1468};
1469
1470static struct e1000_nvm_operations es2_nvm_ops = {
1471	.acquire		= e1000_acquire_nvm_80003es2lan,
1472	.read			= e1000e_read_nvm_eerd,
1473	.release		= e1000_release_nvm_80003es2lan,
1474	.update			= e1000e_update_nvm_checksum_generic,
1475	.valid_led_default	= e1000e_valid_led_default,
1476	.validate		= e1000e_validate_nvm_checksum_generic,
1477	.write			= e1000_write_nvm_80003es2lan,
1478};
1479
1480struct e1000_info e1000_es2_info = {
1481	.mac			= e1000_80003es2lan,
1482	.flags			= FLAG_HAS_HW_VLAN_FILTER
1483				  | FLAG_HAS_JUMBO_FRAMES
1484				  | FLAG_HAS_WOL
1485				  | FLAG_APME_IN_CTRL3
1486				  | FLAG_RX_CSUM_ENABLED
1487				  | FLAG_HAS_CTRLEXT_ON_LOAD
1488				  | FLAG_RX_NEEDS_RESTART /* errata */
1489				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1490				  | FLAG_APME_CHECK_PORT_B
1491				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1492				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1493	.pba			= 38,
1494	.max_hw_frame_size	= DEFAULT_JUMBO,
1495	.get_variants		= e1000_get_variants_80003es2lan,
1496	.mac_ops		= &es2_mac_ops,
1497	.phy_ops		= &es2_phy_ops,
1498	.nvm_ops		= &es2_nvm_ops,
1499};
1500