• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/
1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 *  converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 *         	ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 *  This program is free software; you can distribute it and/or modify it
21 *  under the terms of the GNU General Public License (Version 2) as
22 *  published by the Free Software Foundation.
23 *
24 *  This program is distributed in the hope it will be useful, but WITHOUT
25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27 *  for more details.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
37#include <linux/capability.h>
38#include <linux/dma-mapping.h>
39#include <linux/module.h>
40#include <linux/kernel.h>
41#include <linux/string.h>
42#include <linux/timer.h>
43#include <linux/errno.h>
44#include <linux/in.h>
45#include <linux/ioport.h>
46#include <linux/bitops.h>
47#include <linux/slab.h>
48#include <linux/interrupt.h>
49#include <linux/init.h>
50#include <linux/netdevice.h>
51#include <linux/etherdevice.h>
52#include <linux/ethtool.h>
53#include <linux/mii.h>
54#include <linux/skbuff.h>
55#include <linux/delay.h>
56#include <linux/crc32.h>
57#include <linux/phy.h>
58#include <linux/platform_device.h>
59
60#include <asm/cpu.h>
61#include <asm/mipsregs.h>
62#include <asm/irq.h>
63#include <asm/io.h>
64#include <asm/processor.h>
65
66#include <au1000.h>
67#include <au1xxx_eth.h>
68#include <prom.h>
69
70#include "au1000_eth.h"
71
72#ifdef AU1000_ETH_DEBUG
73static int au1000_debug = 5;
74#else
75static int au1000_debug = 3;
76#endif
77
78#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
79				NETIF_MSG_PROBE	| \
80				NETIF_MSG_LINK)
81
82#define DRV_NAME	"au1000_eth"
83#define DRV_VERSION	"1.7"
84#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
85#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
86
87MODULE_AUTHOR(DRV_AUTHOR);
88MODULE_DESCRIPTION(DRV_DESC);
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_VERSION);
91
92/*
93 * Theory of operation
94 *
95 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
96 * There are four receive and four transmit descriptors.  These
97 * descriptors are not in memory; rather, they are just a set of
98 * hardware registers.
99 *
100 * Since the Au1000 has a coherent data cache, the receive and
101 * transmit buffers are allocated from the KSEG0 segment. The
102 * hardware registers, however, are still mapped at KSEG1 to
103 * make sure there's no out-of-order writes, and that all writes
104 * complete immediately.
105 */
106
107struct au1000_private *au_macs[NUM_ETH_INTERFACES];
108
109/*
110 * board-specific configurations
111 *
112 * PHY detection algorithm
113 *
114 * If phy_static_config is undefined, the PHY setup is
115 * autodetected:
116 *
117 * mii_probe() first searches the current MAC's MII bus for a PHY,
118 * selecting the first (or last, if phy_search_highest_addr is
119 * defined) PHY address not already claimed by another netdev.
120 *
121 * If nothing was found that way when searching for the 2nd ethernet
122 * controller's PHY and phy1_search_mac0 is defined, then
123 * the first MII bus is searched as well for an unclaimed PHY; this is
124 * needed in case of a dual-PHY accessible only through the MAC0's MII
125 * bus.
126 *
127 * Finally, if no PHY is found, then the corresponding ethernet
128 * controller is not registered to the network subsystem.
129 */
130
131/* autodetection defaults: phy1_search_mac0 */
132
133/* static PHY setup
134 *
135 * most boards PHY setup should be detectable properly with the
136 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
137 * you have a switch attached, or want to use the PHY's interrupt
138 * notification capabilities) you can provide a static PHY
139 * configuration here
140 *
141 * IRQs may only be set, if a PHY address was configured
142 * If a PHY address is given, also a bus id is required to be set
143 *
144 * ps: make sure the used irqs are configured properly in the board
145 * specific irq-map
146 */
147
148static void au1000_enable_mac(struct net_device *dev, int force_reset)
149{
150	unsigned long flags;
151	struct au1000_private *aup = netdev_priv(dev);
152
153	spin_lock_irqsave(&aup->lock, flags);
154
155	if(force_reset || (!aup->mac_enabled)) {
156		*aup->enable = MAC_EN_CLOCK_ENABLE;
157		au_sync_delay(2);
158		*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
159				| MAC_EN_CLOCK_ENABLE);
160		au_sync_delay(2);
161
162		aup->mac_enabled = 1;
163	}
164
165	spin_unlock_irqrestore(&aup->lock, flags);
166}
167
168/*
169 * MII operations
170 */
171static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
172{
173	struct au1000_private *aup = netdev_priv(dev);
174	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
175	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
176	u32 timedout = 20;
177	u32 mii_control;
178
179	while (*mii_control_reg & MAC_MII_BUSY) {
180		mdelay(1);
181		if (--timedout == 0) {
182			netdev_err(dev, "read_MII busy timeout!!\n");
183			return -1;
184		}
185	}
186
187	mii_control = MAC_SET_MII_SELECT_REG(reg) |
188		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
189
190	*mii_control_reg = mii_control;
191
192	timedout = 20;
193	while (*mii_control_reg & MAC_MII_BUSY) {
194		mdelay(1);
195		if (--timedout == 0) {
196			netdev_err(dev, "mdio_read busy timeout!!\n");
197			return -1;
198		}
199	}
200	return (int)*mii_data_reg;
201}
202
203static void au1000_mdio_write(struct net_device *dev, int phy_addr,
204			      int reg, u16 value)
205{
206	struct au1000_private *aup = netdev_priv(dev);
207	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
208	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
209	u32 timedout = 20;
210	u32 mii_control;
211
212	while (*mii_control_reg & MAC_MII_BUSY) {
213		mdelay(1);
214		if (--timedout == 0) {
215			netdev_err(dev, "mdio_write busy timeout!!\n");
216			return;
217		}
218	}
219
220	mii_control = MAC_SET_MII_SELECT_REG(reg) |
221		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
222
223	*mii_data_reg = value;
224	*mii_control_reg = mii_control;
225}
226
227static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
228{
229	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
230	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
231	struct net_device *const dev = bus->priv;
232
233	au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
234			     * mii_bus is enabled */
235	return au1000_mdio_read(dev, phy_addr, regnum);
236}
237
238static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
239				u16 value)
240{
241	struct net_device *const dev = bus->priv;
242
243	au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
244			     * mii_bus is enabled */
245	au1000_mdio_write(dev, phy_addr, regnum, value);
246	return 0;
247}
248
249static int au1000_mdiobus_reset(struct mii_bus *bus)
250{
251	struct net_device *const dev = bus->priv;
252
253	au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
254			     * mii_bus is enabled */
255	return 0;
256}
257
258static void au1000_hard_stop(struct net_device *dev)
259{
260	struct au1000_private *aup = netdev_priv(dev);
261
262	netif_dbg(aup, drv, dev, "hard stop\n");
263
264	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
265	au_sync_delay(10);
266}
267
268static void au1000_enable_rx_tx(struct net_device *dev)
269{
270	struct au1000_private *aup = netdev_priv(dev);
271
272	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
273
274	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
275	au_sync_delay(10);
276}
277
278static void
279au1000_adjust_link(struct net_device *dev)
280{
281	struct au1000_private *aup = netdev_priv(dev);
282	struct phy_device *phydev = aup->phy_dev;
283	unsigned long flags;
284
285	int status_change = 0;
286
287	BUG_ON(!aup->phy_dev);
288
289	spin_lock_irqsave(&aup->lock, flags);
290
291	if (phydev->link && (aup->old_speed != phydev->speed)) {
292		/* speed changed */
293
294		switch (phydev->speed) {
295		case SPEED_10:
296		case SPEED_100:
297			break;
298		default:
299			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
300							phydev->speed);
301			break;
302		}
303
304		aup->old_speed = phydev->speed;
305
306		status_change = 1;
307	}
308
309	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
310		/* duplex mode changed */
311
312		/* switching duplex mode requires to disable rx and tx! */
313		au1000_hard_stop(dev);
314
315		if (DUPLEX_FULL == phydev->duplex)
316			aup->mac->control = ((aup->mac->control
317					     | MAC_FULL_DUPLEX)
318					     & ~MAC_DISABLE_RX_OWN);
319		else
320			aup->mac->control = ((aup->mac->control
321					      & ~MAC_FULL_DUPLEX)
322					     | MAC_DISABLE_RX_OWN);
323		au_sync_delay(1);
324
325		au1000_enable_rx_tx(dev);
326		aup->old_duplex = phydev->duplex;
327
328		status_change = 1;
329	}
330
331	if (phydev->link != aup->old_link) {
332		/* link state changed */
333
334		if (!phydev->link) {
335			/* link went down */
336			aup->old_speed = 0;
337			aup->old_duplex = -1;
338		}
339
340		aup->old_link = phydev->link;
341		status_change = 1;
342	}
343
344	spin_unlock_irqrestore(&aup->lock, flags);
345
346	if (status_change) {
347		if (phydev->link)
348			netdev_info(dev, "link up (%d/%s)\n",
349			       phydev->speed,
350			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
351		else
352			netdev_info(dev, "link down\n");
353	}
354}
355
356static int au1000_mii_probe (struct net_device *dev)
357{
358	struct au1000_private *const aup = netdev_priv(dev);
359	struct phy_device *phydev = NULL;
360
361	if (aup->phy_static_config) {
362		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
363
364		if (aup->phy_addr)
365			phydev = aup->mii_bus->phy_map[aup->phy_addr];
366		else
367			netdev_info(dev, "using PHY-less setup\n");
368		return 0;
369	} else {
370		int phy_addr;
371
372		/* find the first (lowest address) PHY on the current MAC's MII bus */
373		for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
374			if (aup->mii_bus->phy_map[phy_addr]) {
375				phydev = aup->mii_bus->phy_map[phy_addr];
376				if (!aup->phy_search_highest_addr)
377					break; /* break out with first one found */
378			}
379
380		if (aup->phy1_search_mac0) {
381			/* try harder to find a PHY */
382			if (!phydev && (aup->mac_id == 1)) {
383				/* no PHY found, maybe we have a dual PHY? */
384				dev_info(&dev->dev, ": no PHY found on MAC1, "
385					"let's see if it's attached to MAC0...\n");
386
387				/* find the first (lowest address) non-attached PHY on
388				 * the MAC0 MII bus */
389				for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
390					struct phy_device *const tmp_phydev =
391							aup->mii_bus->phy_map[phy_addr];
392
393					if (aup->mac_id == 1)
394						break;
395
396					if (!tmp_phydev)
397						continue; /* no PHY here... */
398
399					if (tmp_phydev->attached_dev)
400						continue; /* already claimed by MAC0 */
401
402					phydev = tmp_phydev;
403					break; /* found it */
404				}
405			}
406		}
407	}
408
409	if (!phydev) {
410		netdev_err(dev, "no PHY found\n");
411		return -1;
412	}
413
414	/* now we are supposed to have a proper phydev, to attach to... */
415	BUG_ON(phydev->attached_dev);
416
417	phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
418			0, PHY_INTERFACE_MODE_MII);
419
420	if (IS_ERR(phydev)) {
421		netdev_err(dev, "Could not attach to PHY\n");
422		return PTR_ERR(phydev);
423	}
424
425	/* mask with MAC supported features */
426	phydev->supported &= (SUPPORTED_10baseT_Half
427			      | SUPPORTED_10baseT_Full
428			      | SUPPORTED_100baseT_Half
429			      | SUPPORTED_100baseT_Full
430			      | SUPPORTED_Autoneg
431			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
432			      | SUPPORTED_MII
433			      | SUPPORTED_TP);
434
435	phydev->advertising = phydev->supported;
436
437	aup->old_link = 0;
438	aup->old_speed = 0;
439	aup->old_duplex = -1;
440	aup->phy_dev = phydev;
441
442	netdev_info(dev, "attached PHY driver [%s] "
443	       "(mii_bus:phy_addr=%s, irq=%d)\n",
444	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
445
446	return 0;
447}
448
449
450/*
451 * Buffer allocation/deallocation routines. The buffer descriptor returned
452 * has the virtual and dma address of a buffer suitable for
453 * both, receive and transmit operations.
454 */
455static db_dest_t *au1000_GetFreeDB(struct au1000_private *aup)
456{
457	db_dest_t *pDB;
458	pDB = aup->pDBfree;
459
460	if (pDB) {
461		aup->pDBfree = pDB->pnext;
462	}
463	return pDB;
464}
465
466void au1000_ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
467{
468	db_dest_t *pDBfree = aup->pDBfree;
469	if (pDBfree)
470		pDBfree->pnext = pDB;
471	aup->pDBfree = pDB;
472}
473
474static void au1000_reset_mac_unlocked(struct net_device *dev)
475{
476	struct au1000_private *const aup = netdev_priv(dev);
477	int i;
478
479	au1000_hard_stop(dev);
480
481	*aup->enable = MAC_EN_CLOCK_ENABLE;
482	au_sync_delay(2);
483	*aup->enable = 0;
484	au_sync_delay(2);
485
486	aup->tx_full = 0;
487	for (i = 0; i < NUM_RX_DMA; i++) {
488		/* reset control bits */
489		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
490	}
491	for (i = 0; i < NUM_TX_DMA; i++) {
492		/* reset control bits */
493		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
494	}
495
496	aup->mac_enabled = 0;
497
498}
499
500static void au1000_reset_mac(struct net_device *dev)
501{
502	struct au1000_private *const aup = netdev_priv(dev);
503	unsigned long flags;
504
505	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
506					(unsigned)aup);
507
508	spin_lock_irqsave(&aup->lock, flags);
509
510	au1000_reset_mac_unlocked (dev);
511
512	spin_unlock_irqrestore(&aup->lock, flags);
513}
514
515/*
516 * Setup the receive and transmit "rings".  These pointers are the addresses
517 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
518 * these are not descriptors sitting in memory.
519 */
520static void
521au1000_setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
522{
523	int i;
524
525	for (i = 0; i < NUM_RX_DMA; i++) {
526		aup->rx_dma_ring[i] =
527			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
528	}
529	for (i = 0; i < NUM_TX_DMA; i++) {
530		aup->tx_dma_ring[i] =
531			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
532	}
533}
534
535/*
536 * ethtool operations
537 */
538
539static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
540{
541	struct au1000_private *aup = netdev_priv(dev);
542
543	if (aup->phy_dev)
544		return phy_ethtool_gset(aup->phy_dev, cmd);
545
546	return -EINVAL;
547}
548
549static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
550{
551	struct au1000_private *aup = netdev_priv(dev);
552
553	if (!capable(CAP_NET_ADMIN))
554		return -EPERM;
555
556	if (aup->phy_dev)
557		return phy_ethtool_sset(aup->phy_dev, cmd);
558
559	return -EINVAL;
560}
561
562static void
563au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
564{
565	struct au1000_private *aup = netdev_priv(dev);
566
567	strcpy(info->driver, DRV_NAME);
568	strcpy(info->version, DRV_VERSION);
569	info->fw_version[0] = '\0';
570	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
571	info->regdump_len = 0;
572}
573
574static void au1000_set_msglevel(struct net_device *dev, u32 value)
575{
576	struct au1000_private *aup = netdev_priv(dev);
577	aup->msg_enable = value;
578}
579
580static u32 au1000_get_msglevel(struct net_device *dev)
581{
582	struct au1000_private *aup = netdev_priv(dev);
583	return aup->msg_enable;
584}
585
586static const struct ethtool_ops au1000_ethtool_ops = {
587	.get_settings = au1000_get_settings,
588	.set_settings = au1000_set_settings,
589	.get_drvinfo = au1000_get_drvinfo,
590	.get_link = ethtool_op_get_link,
591	.get_msglevel = au1000_get_msglevel,
592	.set_msglevel = au1000_set_msglevel,
593};
594
595
596/*
597 * Initialize the interface.
598 *
599 * When the device powers up, the clocks are disabled and the
600 * mac is in reset state.  When the interface is closed, we
601 * do the same -- reset the device and disable the clocks to
602 * conserve power. Thus, whenever au1000_init() is called,
603 * the device should already be in reset state.
604 */
605static int au1000_init(struct net_device *dev)
606{
607	struct au1000_private *aup = netdev_priv(dev);
608	unsigned long flags;
609	int i;
610	u32 control;
611
612	netif_dbg(aup, hw, dev, "au1000_init\n");
613
614	/* bring the device out of reset */
615	au1000_enable_mac(dev, 1);
616
617	spin_lock_irqsave(&aup->lock, flags);
618
619	aup->mac->control = 0;
620	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
621	aup->tx_tail = aup->tx_head;
622	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
623
624	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
625	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
626		dev->dev_addr[1]<<8 | dev->dev_addr[0];
627
628	for (i = 0; i < NUM_RX_DMA; i++) {
629		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
630	}
631	au_sync();
632
633	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
634#ifndef CONFIG_CPU_LITTLE_ENDIAN
635	control |= MAC_BIG_ENDIAN;
636#endif
637	if (aup->phy_dev) {
638		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
639			control |= MAC_FULL_DUPLEX;
640		else
641			control |= MAC_DISABLE_RX_OWN;
642	} else { /* PHY-less op, assume full-duplex */
643		control |= MAC_FULL_DUPLEX;
644	}
645
646	aup->mac->control = control;
647	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
648	au_sync();
649
650	spin_unlock_irqrestore(&aup->lock, flags);
651	return 0;
652}
653
654static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
655{
656	struct net_device_stats *ps = &dev->stats;
657
658	ps->rx_packets++;
659	if (status & RX_MCAST_FRAME)
660		ps->multicast++;
661
662	if (status & RX_ERROR) {
663		ps->rx_errors++;
664		if (status & RX_MISSED_FRAME)
665			ps->rx_missed_errors++;
666		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
667			ps->rx_length_errors++;
668		if (status & RX_CRC_ERROR)
669			ps->rx_crc_errors++;
670		if (status & RX_COLL)
671			ps->collisions++;
672	} else
673		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
674
675}
676
677/*
678 * Au1000 receive routine.
679 */
680static int au1000_rx(struct net_device *dev)
681{
682	struct au1000_private *aup = netdev_priv(dev);
683	struct sk_buff *skb;
684	volatile rx_dma_t *prxd;
685	u32 buff_stat, status;
686	db_dest_t *pDB;
687	u32	frmlen;
688
689	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
690
691	prxd = aup->rx_dma_ring[aup->rx_head];
692	buff_stat = prxd->buff_stat;
693	while (buff_stat & RX_T_DONE)  {
694		status = prxd->status;
695		pDB = aup->rx_db_inuse[aup->rx_head];
696		au1000_update_rx_stats(dev, status);
697		if (!(status & RX_ERROR))  {
698
699			/* good frame */
700			frmlen = (status & RX_FRAME_LEN_MASK);
701			frmlen -= 4; /* Remove FCS */
702			skb = dev_alloc_skb(frmlen + 2);
703			if (skb == NULL) {
704				netdev_err(dev, "Memory squeeze, dropping packet.\n");
705				dev->stats.rx_dropped++;
706				continue;
707			}
708			skb_reserve(skb, 2);	/* 16 byte IP header align */
709			skb_copy_to_linear_data(skb,
710				(unsigned char *)pDB->vaddr, frmlen);
711			skb_put(skb, frmlen);
712			skb->protocol = eth_type_trans(skb, dev);
713			netif_rx(skb);	/* pass the packet to upper layers */
714		} else {
715			if (au1000_debug > 4) {
716				if (status & RX_MISSED_FRAME)
717					printk("rx miss\n");
718				if (status & RX_WDOG_TIMER)
719					printk("rx wdog\n");
720				if (status & RX_RUNT)
721					printk("rx runt\n");
722				if (status & RX_OVERLEN)
723					printk("rx overlen\n");
724				if (status & RX_COLL)
725					printk("rx coll\n");
726				if (status & RX_MII_ERROR)
727					printk("rx mii error\n");
728				if (status & RX_CRC_ERROR)
729					printk("rx crc error\n");
730				if (status & RX_LEN_ERROR)
731					printk("rx len error\n");
732				if (status & RX_U_CNTRL_FRAME)
733					printk("rx u control frame\n");
734			}
735		}
736		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
737		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
738		au_sync();
739
740		/* next descriptor */
741		prxd = aup->rx_dma_ring[aup->rx_head];
742		buff_stat = prxd->buff_stat;
743	}
744	return 0;
745}
746
747static void au1000_update_tx_stats(struct net_device *dev, u32 status)
748{
749	struct au1000_private *aup = netdev_priv(dev);
750	struct net_device_stats *ps = &dev->stats;
751
752	if (status & TX_FRAME_ABORTED) {
753		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
754			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
755				/* any other tx errors are only valid
756				 * in half duplex mode */
757				ps->tx_errors++;
758				ps->tx_aborted_errors++;
759			}
760		} else {
761			ps->tx_errors++;
762			ps->tx_aborted_errors++;
763			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
764				ps->tx_carrier_errors++;
765		}
766	}
767}
768
769/*
770 * Called from the interrupt service routine to acknowledge
771 * the TX DONE bits.  This is a must if the irq is setup as
772 * edge triggered.
773 */
774static void au1000_tx_ack(struct net_device *dev)
775{
776	struct au1000_private *aup = netdev_priv(dev);
777	volatile tx_dma_t *ptxd;
778
779	ptxd = aup->tx_dma_ring[aup->tx_tail];
780
781	while (ptxd->buff_stat & TX_T_DONE) {
782		au1000_update_tx_stats(dev, ptxd->status);
783		ptxd->buff_stat &= ~TX_T_DONE;
784		ptxd->len = 0;
785		au_sync();
786
787		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
788		ptxd = aup->tx_dma_ring[aup->tx_tail];
789
790		if (aup->tx_full) {
791			aup->tx_full = 0;
792			netif_wake_queue(dev);
793		}
794	}
795}
796
797/*
798 * Au1000 interrupt service routine.
799 */
800static irqreturn_t au1000_interrupt(int irq, void *dev_id)
801{
802	struct net_device *dev = dev_id;
803
804	/* Handle RX interrupts first to minimize chance of overrun */
805
806	au1000_rx(dev);
807	au1000_tx_ack(dev);
808	return IRQ_RETVAL(1);
809}
810
811static int au1000_open(struct net_device *dev)
812{
813	int retval;
814	struct au1000_private *aup = netdev_priv(dev);
815
816	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
817
818	retval = request_irq(dev->irq, au1000_interrupt, 0,
819					dev->name, dev);
820	if (retval) {
821		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
822		return retval;
823	}
824
825	retval = au1000_init(dev);
826	if (retval) {
827		netdev_err(dev, "error in au1000_init\n");
828		free_irq(dev->irq, dev);
829		return retval;
830	}
831
832	if (aup->phy_dev) {
833		/* cause the PHY state machine to schedule a link state check */
834		aup->phy_dev->state = PHY_CHANGELINK;
835		phy_start(aup->phy_dev);
836	}
837
838	netif_start_queue(dev);
839
840	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
841
842	return 0;
843}
844
845static int au1000_close(struct net_device *dev)
846{
847	unsigned long flags;
848	struct au1000_private *const aup = netdev_priv(dev);
849
850	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
851
852	if (aup->phy_dev)
853		phy_stop(aup->phy_dev);
854
855	spin_lock_irqsave(&aup->lock, flags);
856
857	au1000_reset_mac_unlocked (dev);
858
859	/* stop the device */
860	netif_stop_queue(dev);
861
862	/* disable the interrupt */
863	free_irq(dev->irq, dev);
864	spin_unlock_irqrestore(&aup->lock, flags);
865
866	return 0;
867}
868
869/*
870 * Au1000 transmit routine.
871 */
872static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
873{
874	struct au1000_private *aup = netdev_priv(dev);
875	struct net_device_stats *ps = &dev->stats;
876	volatile tx_dma_t *ptxd;
877	u32 buff_stat;
878	db_dest_t *pDB;
879	int i;
880
881	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
882				(unsigned)aup, skb->len,
883				skb->data, aup->tx_head);
884
885	ptxd = aup->tx_dma_ring[aup->tx_head];
886	buff_stat = ptxd->buff_stat;
887	if (buff_stat & TX_DMA_ENABLE) {
888		/* We've wrapped around and the transmitter is still busy */
889		netif_stop_queue(dev);
890		aup->tx_full = 1;
891		return NETDEV_TX_BUSY;
892	} else if (buff_stat & TX_T_DONE) {
893		au1000_update_tx_stats(dev, ptxd->status);
894		ptxd->len = 0;
895	}
896
897	if (aup->tx_full) {
898		aup->tx_full = 0;
899		netif_wake_queue(dev);
900	}
901
902	pDB = aup->tx_db_inuse[aup->tx_head];
903	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
904	if (skb->len < ETH_ZLEN) {
905		for (i = skb->len; i < ETH_ZLEN; i++) {
906			((char *)pDB->vaddr)[i] = 0;
907		}
908		ptxd->len = ETH_ZLEN;
909	} else
910		ptxd->len = skb->len;
911
912	ps->tx_packets++;
913	ps->tx_bytes += ptxd->len;
914
915	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
916	au_sync();
917	dev_kfree_skb(skb);
918	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
919	return NETDEV_TX_OK;
920}
921
922/*
923 * The Tx ring has been full longer than the watchdog timeout
924 * value. The transmitter must be hung?
925 */
926static void au1000_tx_timeout(struct net_device *dev)
927{
928	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
929	au1000_reset_mac(dev);
930	au1000_init(dev);
931	dev->trans_start = jiffies; /* prevent tx timeout */
932	netif_wake_queue(dev);
933}
934
935static void au1000_multicast_list(struct net_device *dev)
936{
937	struct au1000_private *aup = netdev_priv(dev);
938
939	netif_dbg(aup, drv, dev, "au1000_multicast_list: flags=%x\n", dev->flags);
940
941	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
942		aup->mac->control |= MAC_PROMISCUOUS;
943	} else if ((dev->flags & IFF_ALLMULTI)  ||
944			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
945		aup->mac->control |= MAC_PASS_ALL_MULTI;
946		aup->mac->control &= ~MAC_PROMISCUOUS;
947		netdev_info(dev, "Pass all multicast\n");
948	} else {
949		struct netdev_hw_addr *ha;
950		u32 mc_filter[2];	/* Multicast hash filter */
951
952		mc_filter[1] = mc_filter[0] = 0;
953		netdev_for_each_mc_addr(ha, dev)
954			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
955					(long *)mc_filter);
956		aup->mac->multi_hash_high = mc_filter[1];
957		aup->mac->multi_hash_low = mc_filter[0];
958		aup->mac->control &= ~MAC_PROMISCUOUS;
959		aup->mac->control |= MAC_HASH_MODE;
960	}
961}
962
963static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
964{
965	struct au1000_private *aup = netdev_priv(dev);
966
967	if (!netif_running(dev))
968		return -EINVAL;
969
970	if (!aup->phy_dev)
971		return -EINVAL; /* PHY not controllable */
972
973	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
974}
975
976static const struct net_device_ops au1000_netdev_ops = {
977	.ndo_open		= au1000_open,
978	.ndo_stop		= au1000_close,
979	.ndo_start_xmit		= au1000_tx,
980	.ndo_set_multicast_list	= au1000_multicast_list,
981	.ndo_do_ioctl		= au1000_ioctl,
982	.ndo_tx_timeout		= au1000_tx_timeout,
983	.ndo_set_mac_address	= eth_mac_addr,
984	.ndo_validate_addr	= eth_validate_addr,
985	.ndo_change_mtu		= eth_change_mtu,
986};
987
988static int __devinit au1000_probe(struct platform_device *pdev)
989{
990	static unsigned version_printed;
991	struct au1000_private *aup = NULL;
992	struct au1000_eth_platform_data *pd;
993	struct net_device *dev = NULL;
994	db_dest_t *pDB, *pDBfree;
995	int irq, i, err = 0;
996	struct resource *base, *macen;
997
998	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
999	if (!base) {
1000		dev_err(&pdev->dev, "failed to retrieve base register\n");
1001		err = -ENODEV;
1002		goto out;
1003	}
1004
1005	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1006	if (!macen) {
1007		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1008		err = -ENODEV;
1009		goto out;
1010	}
1011
1012	irq = platform_get_irq(pdev, 0);
1013	if (irq < 0) {
1014		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1015		err = -ENODEV;
1016		goto out;
1017	}
1018
1019	if (!request_mem_region(base->start, resource_size(base), pdev->name)) {
1020		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1021		err = -ENXIO;
1022		goto out;
1023	}
1024
1025	if (!request_mem_region(macen->start, resource_size(macen), pdev->name)) {
1026		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1027		err = -ENXIO;
1028		goto err_request;
1029	}
1030
1031	dev = alloc_etherdev(sizeof(struct au1000_private));
1032	if (!dev) {
1033		dev_err(&pdev->dev, "alloc_etherdev failed\n");
1034		err = -ENOMEM;
1035		goto err_alloc;
1036	}
1037
1038	SET_NETDEV_DEV(dev, &pdev->dev);
1039	platform_set_drvdata(pdev, dev);
1040	aup = netdev_priv(dev);
1041
1042	spin_lock_init(&aup->lock);
1043	aup->msg_enable = (au1000_debug < 4 ? AU1000_DEF_MSG_ENABLE : au1000_debug);
1044
1045	/* Allocate the data buffers */
1046	/* Snooping works fine with eth on all au1xxx */
1047	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1048						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1049						&aup->dma_addr,	0);
1050	if (!aup->vaddr) {
1051		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1052		err = -ENOMEM;
1053		goto err_vaddr;
1054	}
1055
1056	/* aup->mac is the base address of the MAC's registers */
1057	aup->mac = (volatile mac_reg_t *)ioremap_nocache(base->start, resource_size(base));
1058	if (!aup->mac) {
1059		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1060		err = -ENXIO;
1061		goto err_remap1;
1062	}
1063
1064        /* Setup some variables for quick register address access */
1065	aup->enable = (volatile u32 *)ioremap_nocache(macen->start, resource_size(macen));
1066	if (!aup->enable) {
1067		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1068		err = -ENXIO;
1069		goto err_remap2;
1070	}
1071	aup->mac_id = pdev->id;
1072
1073	if (pdev->id == 0)
1074		au1000_setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
1075	else if (pdev->id == 1)
1076		au1000_setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1077
1078	/* set a random MAC now in case platform_data doesn't provide one */
1079	random_ether_addr(dev->dev_addr);
1080
1081	*aup->enable = 0;
1082	aup->mac_enabled = 0;
1083
1084	pd = pdev->dev.platform_data;
1085	if (!pd) {
1086		dev_info(&pdev->dev, "no platform_data passed, PHY search on MAC0\n");
1087		aup->phy1_search_mac0 = 1;
1088	} else {
1089		if (is_valid_ether_addr(pd->mac))
1090			memcpy(dev->dev_addr, pd->mac, 6);
1091
1092		aup->phy_static_config = pd->phy_static_config;
1093		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1094		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1095		aup->phy_addr = pd->phy_addr;
1096		aup->phy_busid = pd->phy_busid;
1097		aup->phy_irq = pd->phy_irq;
1098	}
1099
1100	if (aup->phy_busid && aup->phy_busid > 0) {
1101		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII"
1102				"bus not supported yet\n");
1103		err = -ENODEV;
1104		goto err_mdiobus_alloc;
1105	}
1106
1107	aup->mii_bus = mdiobus_alloc();
1108	if (aup->mii_bus == NULL) {
1109		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1110		err = -ENOMEM;
1111		goto err_mdiobus_alloc;
1112	}
1113
1114	aup->mii_bus->priv = dev;
1115	aup->mii_bus->read = au1000_mdiobus_read;
1116	aup->mii_bus->write = au1000_mdiobus_write;
1117	aup->mii_bus->reset = au1000_mdiobus_reset;
1118	aup->mii_bus->name = "au1000_eth_mii";
1119	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
1120	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1121	if (aup->mii_bus->irq == NULL)
1122		goto err_out;
1123
1124	for (i = 0; i < PHY_MAX_ADDR; ++i)
1125		aup->mii_bus->irq[i] = PHY_POLL;
1126	/* if known, set corresponding PHY IRQs */
1127	if (aup->phy_static_config)
1128		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1129			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1130
1131	err = mdiobus_register(aup->mii_bus);
1132	if (err) {
1133		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1134		goto err_mdiobus_reg;
1135	}
1136
1137	if (au1000_mii_probe(dev) != 0)
1138		goto err_out;
1139
1140	pDBfree = NULL;
1141	/* setup the data buffer descriptors and attach a buffer to each one */
1142	pDB = aup->db;
1143	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1144		pDB->pnext = pDBfree;
1145		pDBfree = pDB;
1146		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1147		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1148		pDB++;
1149	}
1150	aup->pDBfree = pDBfree;
1151
1152	for (i = 0; i < NUM_RX_DMA; i++) {
1153		pDB = au1000_GetFreeDB(aup);
1154		if (!pDB) {
1155			goto err_out;
1156		}
1157		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1158		aup->rx_db_inuse[i] = pDB;
1159	}
1160	for (i = 0; i < NUM_TX_DMA; i++) {
1161		pDB = au1000_GetFreeDB(aup);
1162		if (!pDB) {
1163			goto err_out;
1164		}
1165		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1166		aup->tx_dma_ring[i]->len = 0;
1167		aup->tx_db_inuse[i] = pDB;
1168	}
1169
1170	dev->base_addr = base->start;
1171	dev->irq = irq;
1172	dev->netdev_ops = &au1000_netdev_ops;
1173	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1174	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1175
1176	/*
1177	 * The boot code uses the ethernet controller, so reset it to start
1178	 * fresh.  au1000_init() expects that the device is in reset state.
1179	 */
1180	au1000_reset_mac(dev);
1181
1182	err = register_netdev(dev);
1183	if (err) {
1184		netdev_err(dev, "Cannot register net device, aborting.\n");
1185		goto err_out;
1186	}
1187
1188	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1189			(unsigned long)base->start, irq);
1190	if (version_printed++ == 0)
1191		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1192
1193	return 0;
1194
1195err_out:
1196	if (aup->mii_bus != NULL)
1197		mdiobus_unregister(aup->mii_bus);
1198
1199	/* here we should have a valid dev plus aup-> register addresses
1200	 * so we can reset the mac properly.*/
1201	au1000_reset_mac(dev);
1202
1203	for (i = 0; i < NUM_RX_DMA; i++) {
1204		if (aup->rx_db_inuse[i])
1205			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1206	}
1207	for (i = 0; i < NUM_TX_DMA; i++) {
1208		if (aup->tx_db_inuse[i])
1209			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1210	}
1211err_mdiobus_reg:
1212	mdiobus_free(aup->mii_bus);
1213err_mdiobus_alloc:
1214	iounmap(aup->enable);
1215err_remap2:
1216	iounmap(aup->mac);
1217err_remap1:
1218	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1219			     (void *)aup->vaddr, aup->dma_addr);
1220err_vaddr:
1221	free_netdev(dev);
1222err_alloc:
1223	release_mem_region(macen->start, resource_size(macen));
1224err_request:
1225	release_mem_region(base->start, resource_size(base));
1226out:
1227	return err;
1228}
1229
1230static int __devexit au1000_remove(struct platform_device *pdev)
1231{
1232	struct net_device *dev = platform_get_drvdata(pdev);
1233	struct au1000_private *aup = netdev_priv(dev);
1234	int i;
1235	struct resource *base, *macen;
1236
1237	platform_set_drvdata(pdev, NULL);
1238
1239	unregister_netdev(dev);
1240	mdiobus_unregister(aup->mii_bus);
1241	mdiobus_free(aup->mii_bus);
1242
1243	for (i = 0; i < NUM_RX_DMA; i++)
1244		if (aup->rx_db_inuse[i])
1245			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1246
1247	for (i = 0; i < NUM_TX_DMA; i++)
1248		if (aup->tx_db_inuse[i])
1249			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1250
1251	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1252			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1253			(void *)aup->vaddr, aup->dma_addr);
1254
1255	iounmap(aup->mac);
1256	iounmap(aup->enable);
1257
1258	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1259	release_mem_region(base->start, resource_size(base));
1260
1261	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1262	release_mem_region(macen->start, resource_size(macen));
1263
1264	free_netdev(dev);
1265
1266	return 0;
1267}
1268
1269static struct platform_driver au1000_eth_driver = {
1270	.probe  = au1000_probe,
1271	.remove = __devexit_p(au1000_remove),
1272	.driver = {
1273		.name   = "au1000-eth",
1274		.owner  = THIS_MODULE,
1275	},
1276};
1277MODULE_ALIAS("platform:au1000-eth");
1278
1279
1280static int __init au1000_init_module(void)
1281{
1282	return platform_driver_register(&au1000_eth_driver);
1283}
1284
1285static void __exit au1000_exit_module(void)
1286{
1287	platform_driver_unregister(&au1000_eth_driver);
1288}
1289
1290module_init(au1000_init_module);
1291module_exit(au1000_exit_module);
1292