• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/atl1c/
1/*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
20 */
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/mii.h>
24#include <linux/crc32.h>
25
26#include "atl1c.h"
27
28/*
29 * check_eeprom_exist
30 * return 1 if eeprom exist
31 */
32int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
33{
34	u32 data;
35
36	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
37	if (data & TWSI_DEBUG_DEV_EXIST)
38		return 1;
39
40	AT_READ_REG(hw, REG_MASTER_CTRL, &data);
41	if (data & MASTER_CTRL_OTP_SEL)
42		return 1;
43	return 0;
44}
45
46void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
47{
48	u32 value;
49	/*
50	 * 00-0B-6A-F6-00-DC
51	 * 0:  6AF600DC 1: 000B
52	 * low dword
53	 */
54	value = (((u32)hw->mac_addr[2]) << 24) |
55		(((u32)hw->mac_addr[3]) << 16) |
56		(((u32)hw->mac_addr[4]) << 8)  |
57		(((u32)hw->mac_addr[5])) ;
58	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
59	/* hight dword */
60	value = (((u32)hw->mac_addr[0]) << 8) |
61		(((u32)hw->mac_addr[1])) ;
62	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
63}
64
65/*
66 * atl1c_get_permanent_address
67 * return 0 if get valid mac address,
68 */
69static int atl1c_get_permanent_address(struct atl1c_hw *hw)
70{
71	u32 addr[2];
72	u32 i;
73	u32 otp_ctrl_data;
74	u32 twsi_ctrl_data;
75	u32 ltssm_ctrl_data;
76	u32 wol_data;
77	u8  eth_addr[ETH_ALEN];
78	u16 phy_data;
79	bool raise_vol = false;
80
81	/* init */
82	addr[0] = addr[1] = 0;
83	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
84	if (atl1c_check_eeprom_exist(hw)) {
85		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c_b) {
86			/* Enable OTP CLK */
87			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
88				otp_ctrl_data |= OTP_CTRL_CLK_EN;
89				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
90				AT_WRITE_FLUSH(hw);
91				msleep(1);
92			}
93		}
94
95		if (hw->nic_type == athr_l2c_b ||
96		    hw->nic_type == athr_l2c_b2 ||
97		    hw->nic_type == athr_l1d) {
98			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
99			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
100				goto out;
101			phy_data &= 0xFF7F;
102			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
103
104			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
105			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
106				goto out;
107			phy_data |= 0x8;
108			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
109			udelay(20);
110			raise_vol = true;
111		}
112		/* close open bit of ReadOnly*/
113		AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &ltssm_ctrl_data);
114		ltssm_ctrl_data &= ~LTSSM_ID_EN_WRO;
115		AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, ltssm_ctrl_data);
116
117		/* clear any WOL settings */
118		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
119		AT_READ_REG(hw, REG_WOL_CTRL, &wol_data);
120
121
122		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
123		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
124		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
125		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
126			msleep(10);
127			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
128			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
129				break;
130		}
131		if (i >= AT_TWSI_EEPROM_TIMEOUT)
132			return -1;
133	}
134	/* Disable OTP_CLK */
135	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
136		otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
137		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
138		msleep(1);
139	}
140	if (raise_vol) {
141		if (hw->nic_type == athr_l2c_b ||
142		    hw->nic_type == athr_l2c_b2 ||
143		    hw->nic_type == athr_l1d ||
144		    hw->nic_type == athr_l1d_2) {
145			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
146			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
147				goto out;
148			phy_data |= 0x80;
149			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
150
151			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
152			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
153				goto out;
154			phy_data &= 0xFFF7;
155			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
156			udelay(20);
157		}
158	}
159
160	/* maybe MAC-address is from BIOS */
161	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
162	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
163	*(u32 *) &eth_addr[2] = swab32(addr[0]);
164	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
165
166	if (is_valid_ether_addr(eth_addr)) {
167		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
168		return 0;
169	}
170
171out:
172	return -1;
173}
174
175bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
176{
177	int i;
178	int ret = false;
179	u32 otp_ctrl_data;
180	u32 control;
181	u32 data;
182
183	if (offset & 3)
184		return ret; /* address do not align */
185
186	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
187	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
188		AT_WRITE_REG(hw, REG_OTP_CTRL,
189				(otp_ctrl_data | OTP_CTRL_CLK_EN));
190
191	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
192	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
193	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
194
195	for (i = 0; i < 10; i++) {
196		udelay(100);
197		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
198		if (control & EEPROM_CTRL_RW)
199			break;
200	}
201	if (control & EEPROM_CTRL_RW) {
202		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
203		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
204		data = data & 0xFFFF;
205		*p_value = swab32((data << 16) | (*p_value >> 16));
206		ret = true;
207	}
208	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
209		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
210
211	return ret;
212}
213/*
214 * Reads the adapter's MAC address from the EEPROM
215 *
216 * hw - Struct containing variables accessed by shared code
217 */
218int atl1c_read_mac_addr(struct atl1c_hw *hw)
219{
220	int err = 0;
221
222	err = atl1c_get_permanent_address(hw);
223	if (err)
224		random_ether_addr(hw->perm_mac_addr);
225
226	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
227	return 0;
228}
229
230/*
231 * atl1c_hash_mc_addr
232 *  purpose
233 *      set hash value for a multicast address
234 *      hash calcu processing :
235 *          1. calcu 32bit CRC for multicast address
236 *          2. reverse crc with MSB to LSB
237 */
238u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
239{
240	u32 crc32;
241	u32 value = 0;
242	int i;
243
244	crc32 = ether_crc_le(6, mc_addr);
245	for (i = 0; i < 32; i++)
246		value |= (((crc32 >> i) & 1) << (31 - i));
247
248	return value;
249}
250
251/*
252 * Sets the bit in the multicast table corresponding to the hash value.
253 * hw - Struct containing variables accessed by shared code
254 * hash_value - Multicast address hash value
255 */
256void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
257{
258	u32 hash_bit, hash_reg;
259	u32 mta;
260
261	/*
262	 * The HASH Table  is a register array of 2 32-bit registers.
263	 * It is treated like an array of 64 bits.  We want to set
264	 * bit BitArray[hash_value]. So we figure out what register
265	 * the bit is in, read it, OR in the new bit, then write
266	 * back the new value.  The register is determined by the
267	 * upper bit of the hash value and the bit within that
268	 * register are determined by the lower 5 bits of the value.
269	 */
270	hash_reg = (hash_value >> 31) & 0x1;
271	hash_bit = (hash_value >> 26) & 0x1F;
272
273	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
274
275	mta |= (1 << hash_bit);
276
277	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
278}
279
280/*
281 * Reads the value from a PHY register
282 * hw - Struct containing variables accessed by shared code
283 * reg_addr - address of the PHY register to read
284 */
285int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
286{
287	u32 val;
288	int i;
289
290	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
291		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
292		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
293
294	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
295
296	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
297		udelay(2);
298		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
299		if (!(val & (MDIO_START | MDIO_BUSY)))
300			break;
301	}
302	if (!(val & (MDIO_START | MDIO_BUSY))) {
303		*phy_data = (u16)val;
304		return 0;
305	}
306
307	return -1;
308}
309
310/*
311 * Writes a value to a PHY register
312 * hw - Struct containing variables accessed by shared code
313 * reg_addr - address of the PHY register to write
314 * data - data to write to the PHY
315 */
316int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
317{
318	int i;
319	u32 val;
320
321	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT   |
322	       (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
323	       MDIO_SUP_PREAMBLE | MDIO_START |
324	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
325
326	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
327
328	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
329		udelay(2);
330		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
331		if (!(val & (MDIO_START | MDIO_BUSY)))
332			break;
333	}
334
335	if (!(val & (MDIO_START | MDIO_BUSY)))
336		return 0;
337
338	return -1;
339}
340
341/*
342 * Configures PHY autoneg and flow control advertisement settings
343 *
344 * hw - Struct containing variables accessed by shared code
345 */
346static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
347{
348	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK;
349	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
350				~GIGA_CR_1000T_SPEED_MASK;
351
352	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
353		mii_adv_data |= ADVERTISE_10HALF;
354	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
355		mii_adv_data |= ADVERTISE_10FULL;
356	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
357		mii_adv_data |= ADVERTISE_100HALF;
358	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
359		mii_adv_data |= ADVERTISE_100FULL;
360
361	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
362		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
363				ADVERTISE_100HALF | ADVERTISE_100FULL;
364
365	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
366		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
367			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
368		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
369			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
370		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
371			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
372					ADVERTISE_1000FULL;
373	}
374
375	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
376	    atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0)
377		return -1;
378	return 0;
379}
380
381void atl1c_phy_disable(struct atl1c_hw *hw)
382{
383	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
384			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
385}
386
387static void atl1c_phy_magic_data(struct atl1c_hw *hw)
388{
389	u16 data;
390
391	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
392		((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
393		ANA_INTERVAL_SEL_TIMER_SHIFT);
394
395	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
396	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
397
398	data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
399		ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
400		ANA_SERDES_EN_LCKDT;
401
402	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
403	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
404
405	data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
406		((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
407		ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
408		ANA_BP_SMALL_BW;
409
410	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
411	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
412
413	data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
414		ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
415		ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
416		ANA_IECHO_ADJ_0_SHIFT);
417
418	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
419	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
420
421	data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
422		ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
423		ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;
424
425	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
426	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
427
428	if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
429		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
430		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
431			return;
432		data &= ~ANA_TOP_PS_EN;
433		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
434
435		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
436		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
437			return;
438		data &= ~ANA_PS_HIB_EN;
439		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
440	}
441}
442
443int atl1c_phy_reset(struct atl1c_hw *hw)
444{
445	struct atl1c_adapter *adapter = hw->adapter;
446	struct pci_dev *pdev = adapter->pdev;
447	u16 phy_data;
448	u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
449	u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
450	int err;
451
452	if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
453		phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;
454
455	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
456	AT_WRITE_FLUSH(hw);
457	msleep(40);
458	phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
459	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
460	AT_WRITE_FLUSH(hw);
461	msleep(10);
462
463	if (hw->nic_type == athr_l2c_b) {
464		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x0A);
465		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
466		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xDFFF);
467	}
468
469	if (hw->nic_type == athr_l2c_b ||
470	    hw->nic_type == athr_l2c_b2 ||
471	    hw->nic_type == athr_l1d ||
472	    hw->nic_type == athr_l1d_2) {
473		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
474		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
475		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xFFF7);
476		msleep(20);
477	}
478	if (hw->nic_type == athr_l1d) {
479		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x29);
480		atl1c_write_phy_reg(hw, MII_DBG_DATA, 0x929D);
481	}
482	if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c_b2
483		|| hw->nic_type == athr_l2c || hw->nic_type == athr_l2c) {
484		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x29);
485		atl1c_write_phy_reg(hw, MII_DBG_DATA, 0xB6DD);
486	}
487	err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
488	if (err) {
489		if (netif_msg_hw(adapter))
490			dev_err(&pdev->dev,
491				"Error enable PHY linkChange Interrupt\n");
492		return err;
493	}
494	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
495		atl1c_phy_magic_data(hw);
496	return 0;
497}
498
499int atl1c_phy_init(struct atl1c_hw *hw)
500{
501	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
502	struct pci_dev *pdev = adapter->pdev;
503	int ret_val;
504	u16 mii_bmcr_data = BMCR_RESET;
505
506	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
507		(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
508		dev_err(&pdev->dev, "Error get phy ID\n");
509		return -1;
510	}
511	switch (hw->media_type) {
512	case MEDIA_TYPE_AUTO_SENSOR:
513		ret_val = atl1c_phy_setup_adv(hw);
514		if (ret_val) {
515			if (netif_msg_link(adapter))
516				dev_err(&pdev->dev,
517					"Error Setting up Auto-Negotiation\n");
518			return ret_val;
519		}
520		mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
521		break;
522	case MEDIA_TYPE_100M_FULL:
523		mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX;
524		break;
525	case MEDIA_TYPE_100M_HALF:
526		mii_bmcr_data |= BMCR_SPEED_100;
527		break;
528	case MEDIA_TYPE_10M_FULL:
529		mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX;
530		break;
531	case MEDIA_TYPE_10M_HALF:
532		mii_bmcr_data |= BMCR_SPEED_10;
533		break;
534	default:
535		if (netif_msg_link(adapter))
536			dev_err(&pdev->dev, "Wrong Media type %d\n",
537				hw->media_type);
538		return -1;
539		break;
540	}
541
542	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
543	if (ret_val)
544		return ret_val;
545	hw->phy_configured = true;
546
547	return 0;
548}
549
550/*
551 * Detects the current speed and duplex settings of the hardware.
552 *
553 * hw - Struct containing variables accessed by shared code
554 * speed - Speed of the connection
555 * duplex - Duplex setting of the connection
556 */
557int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
558{
559	int err;
560	u16 phy_data;
561
562	/* Read   PHY Specific Status Register (17) */
563	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
564	if (err)
565		return err;
566
567	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
568		return -1;
569
570	switch (phy_data & GIGA_PSSR_SPEED) {
571	case GIGA_PSSR_1000MBS:
572		*speed = SPEED_1000;
573		break;
574	case GIGA_PSSR_100MBS:
575		*speed = SPEED_100;
576		break;
577	case  GIGA_PSSR_10MBS:
578		*speed = SPEED_10;
579		break;
580	default:
581		return -1;
582		break;
583	}
584
585	if (phy_data & GIGA_PSSR_DPLX)
586		*duplex = FULL_DUPLEX;
587	else
588		*duplex = HALF_DUPLEX;
589
590	return 0;
591}
592
593int atl1c_phy_power_saving(struct atl1c_hw *hw)
594{
595	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
596	struct pci_dev *pdev = adapter->pdev;
597	int ret = 0;
598	u16 autoneg_advertised = ADVERTISED_10baseT_Half;
599	u16 save_autoneg_advertised;
600	u16 phy_data;
601	u16 mii_lpa_data;
602	u16 speed = SPEED_0;
603	u16 duplex = FULL_DUPLEX;
604	int i;
605
606	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
607	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
608	if (phy_data & BMSR_LSTATUS) {
609		atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
610		if (mii_lpa_data & LPA_10FULL)
611			autoneg_advertised = ADVERTISED_10baseT_Full;
612		else if (mii_lpa_data & LPA_10HALF)
613			autoneg_advertised = ADVERTISED_10baseT_Half;
614		else if (mii_lpa_data & LPA_100HALF)
615			autoneg_advertised = ADVERTISED_100baseT_Half;
616		else if (mii_lpa_data & LPA_100FULL)
617			autoneg_advertised = ADVERTISED_100baseT_Full;
618
619		save_autoneg_advertised = hw->autoneg_advertised;
620		hw->phy_configured = false;
621		hw->autoneg_advertised = autoneg_advertised;
622		if (atl1c_restart_autoneg(hw) != 0) {
623			dev_dbg(&pdev->dev, "phy autoneg failed\n");
624			ret = -1;
625		}
626		hw->autoneg_advertised = save_autoneg_advertised;
627
628		if (mii_lpa_data) {
629			for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
630				mdelay(100);
631				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
632				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
633				if (phy_data & BMSR_LSTATUS) {
634					if (atl1c_get_speed_and_duplex(hw, &speed,
635									&duplex) != 0)
636						dev_dbg(&pdev->dev,
637							"get speed and duplex failed\n");
638					break;
639				}
640			}
641		}
642	} else {
643		speed = SPEED_10;
644		duplex = HALF_DUPLEX;
645	}
646	adapter->link_speed = speed;
647	adapter->link_duplex = duplex;
648
649	return ret;
650}
651
652int atl1c_restart_autoneg(struct atl1c_hw *hw)
653{
654	int err = 0;
655	u16 mii_bmcr_data = BMCR_RESET;
656
657	err = atl1c_phy_setup_adv(hw);
658	if (err)
659		return err;
660	mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
661
662	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
663}
664