• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/mtd/ubi/
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (���������������� ����������)
20 */
21
22/*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
34 *
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
38 *
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
42 *
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
50 *
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
56 * damaged.
57 */
58
59#include <linux/crc32.h>
60#include <linux/err.h>
61#include <linux/slab.h>
62#include <asm/div64.h>
63#include "ubi.h"
64
65#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
66static void paranoid_vtbl_check(const struct ubi_device *ubi);
67#else
68#define paranoid_vtbl_check(ubi)
69#endif
70
71/* Empty volume table record */
72static struct ubi_vtbl_record empty_vtbl_record;
73
74/**
75 * ubi_change_vtbl_record - change volume table record.
76 * @ubi: UBI device description object
77 * @idx: table index to change
78 * @vtbl_rec: new volume table record
79 *
80 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
81 * volume table record is written. The caller does not have to calculate CRC of
82 * the record as it is done by this function. Returns zero in case of success
83 * and a negative error code in case of failure.
84 */
85int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
86			   struct ubi_vtbl_record *vtbl_rec)
87{
88	int i, err;
89	uint32_t crc;
90	struct ubi_volume *layout_vol;
91
92	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
93	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
94
95	if (!vtbl_rec)
96		vtbl_rec = &empty_vtbl_record;
97	else {
98		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
99		vtbl_rec->crc = cpu_to_be32(crc);
100	}
101
102	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
103	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
104		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
105		if (err)
106			return err;
107
108		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
109					ubi->vtbl_size, UBI_LONGTERM);
110		if (err)
111			return err;
112	}
113
114	paranoid_vtbl_check(ubi);
115	return 0;
116}
117
118/**
119 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
120 * @ubi: UBI device description object
121 * @rename_list: list of &struct ubi_rename_entry objects
122 *
123 * This function re-names multiple volumes specified in @req in the volume
124 * table. Returns zero in case of success and a negative error code in case of
125 * failure.
126 */
127int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
128			    struct list_head *rename_list)
129{
130	int i, err;
131	struct ubi_rename_entry *re;
132	struct ubi_volume *layout_vol;
133
134	list_for_each_entry(re, rename_list, list) {
135		uint32_t crc;
136		struct ubi_volume *vol = re->desc->vol;
137		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
138
139		if (re->remove) {
140			memcpy(vtbl_rec, &empty_vtbl_record,
141			       sizeof(struct ubi_vtbl_record));
142			continue;
143		}
144
145		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
146		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
147		memset(vtbl_rec->name + re->new_name_len, 0,
148		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
149		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
150			    UBI_VTBL_RECORD_SIZE_CRC);
151		vtbl_rec->crc = cpu_to_be32(crc);
152	}
153
154	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
155	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
156		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
157		if (err)
158			return err;
159
160		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
161					ubi->vtbl_size, UBI_LONGTERM);
162		if (err)
163			return err;
164	}
165
166	return 0;
167}
168
169/**
170 * vtbl_check - check if volume table is not corrupted and sensible.
171 * @ubi: UBI device description object
172 * @vtbl: volume table
173 *
174 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
175 * and %-EINVAL if it contains inconsistent data.
176 */
177static int vtbl_check(const struct ubi_device *ubi,
178		      const struct ubi_vtbl_record *vtbl)
179{
180	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
181	int upd_marker, err;
182	uint32_t crc;
183	const char *name;
184
185	for (i = 0; i < ubi->vtbl_slots; i++) {
186		cond_resched();
187
188		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
189		alignment = be32_to_cpu(vtbl[i].alignment);
190		data_pad = be32_to_cpu(vtbl[i].data_pad);
191		upd_marker = vtbl[i].upd_marker;
192		vol_type = vtbl[i].vol_type;
193		name_len = be16_to_cpu(vtbl[i].name_len);
194		name = &vtbl[i].name[0];
195
196		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
197		if (be32_to_cpu(vtbl[i].crc) != crc) {
198			ubi_err("bad CRC at record %u: %#08x, not %#08x",
199				 i, crc, be32_to_cpu(vtbl[i].crc));
200			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
201			return 1;
202		}
203
204		if (reserved_pebs == 0) {
205			if (memcmp(&vtbl[i], &empty_vtbl_record,
206						UBI_VTBL_RECORD_SIZE)) {
207				err = 2;
208				goto bad;
209			}
210			continue;
211		}
212
213		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
214		    name_len < 0) {
215			err = 3;
216			goto bad;
217		}
218
219		if (alignment > ubi->leb_size || alignment == 0) {
220			err = 4;
221			goto bad;
222		}
223
224		n = alignment & (ubi->min_io_size - 1);
225		if (alignment != 1 && n) {
226			err = 5;
227			goto bad;
228		}
229
230		n = ubi->leb_size % alignment;
231		if (data_pad != n) {
232			dbg_err("bad data_pad, has to be %d", n);
233			err = 6;
234			goto bad;
235		}
236
237		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
238			err = 7;
239			goto bad;
240		}
241
242		if (upd_marker != 0 && upd_marker != 1) {
243			err = 8;
244			goto bad;
245		}
246
247		if (reserved_pebs > ubi->good_peb_count) {
248			dbg_err("too large reserved_pebs %d, good PEBs %d",
249				reserved_pebs, ubi->good_peb_count);
250			err = 9;
251			goto bad;
252		}
253
254		if (name_len > UBI_VOL_NAME_MAX) {
255			err = 10;
256			goto bad;
257		}
258
259		if (name[0] == '\0') {
260			err = 11;
261			goto bad;
262		}
263
264		if (name_len != strnlen(name, name_len + 1)) {
265			err = 12;
266			goto bad;
267		}
268	}
269
270	/* Checks that all names are unique */
271	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
272		for (n = i + 1; n < ubi->vtbl_slots; n++) {
273			int len1 = be16_to_cpu(vtbl[i].name_len);
274			int len2 = be16_to_cpu(vtbl[n].name_len);
275
276			if (len1 > 0 && len1 == len2 &&
277			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
278				ubi_err("volumes %d and %d have the same name"
279					" \"%s\"", i, n, vtbl[i].name);
280				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
281				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
282				return -EINVAL;
283			}
284		}
285	}
286
287	return 0;
288
289bad:
290	ubi_err("volume table check failed: record %d, error %d", i, err);
291	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
292	return -EINVAL;
293}
294
295/**
296 * create_vtbl - create a copy of volume table.
297 * @ubi: UBI device description object
298 * @si: scanning information
299 * @copy: number of the volume table copy
300 * @vtbl: contents of the volume table
301 *
302 * This function returns zero in case of success and a negative error code in
303 * case of failure.
304 */
305static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
306		       int copy, void *vtbl)
307{
308	int err, tries = 0;
309	static struct ubi_vid_hdr *vid_hdr;
310	struct ubi_scan_volume *sv;
311	struct ubi_scan_leb *new_seb, *old_seb = NULL;
312
313	ubi_msg("create volume table (copy #%d)", copy + 1);
314
315	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
316	if (!vid_hdr)
317		return -ENOMEM;
318
319	/*
320	 * Check if there is a logical eraseblock which would have to contain
321	 * this volume table copy was found during scanning. It has to be wiped
322	 * out.
323	 */
324	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
325	if (sv)
326		old_seb = ubi_scan_find_seb(sv, copy);
327
328retry:
329	new_seb = ubi_scan_get_free_peb(ubi, si);
330	if (IS_ERR(new_seb)) {
331		err = PTR_ERR(new_seb);
332		goto out_free;
333	}
334
335	vid_hdr->vol_type = UBI_VID_DYNAMIC;
336	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
337	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
338	vid_hdr->data_size = vid_hdr->used_ebs =
339			     vid_hdr->data_pad = cpu_to_be32(0);
340	vid_hdr->lnum = cpu_to_be32(copy);
341	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
342
343	/* The EC header is already there, write the VID header */
344	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
345	if (err)
346		goto write_error;
347
348	/* Write the layout volume contents */
349	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
350	if (err)
351		goto write_error;
352
353	/*
354	 * And add it to the scanning information. Don't delete the old
355	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
356	 */
357	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
358				vid_hdr, 0);
359	kfree(new_seb);
360	ubi_free_vid_hdr(ubi, vid_hdr);
361	return err;
362
363write_error:
364	if (err == -EIO && ++tries <= 5) {
365		/*
366		 * Probably this physical eraseblock went bad, try to pick
367		 * another one.
368		 */
369		list_add_tail(&new_seb->u.list, &si->corr);
370		goto retry;
371	}
372	kfree(new_seb);
373out_free:
374	ubi_free_vid_hdr(ubi, vid_hdr);
375	return err;
376
377}
378
379/**
380 * process_lvol - process the layout volume.
381 * @ubi: UBI device description object
382 * @si: scanning information
383 * @sv: layout volume scanning information
384 *
385 * This function is responsible for reading the layout volume, ensuring it is
386 * not corrupted, and recovering from corruptions if needed. Returns volume
387 * table in case of success and a negative error code in case of failure.
388 */
389static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
390					    struct ubi_scan_info *si,
391					    struct ubi_scan_volume *sv)
392{
393	int err;
394	struct rb_node *rb;
395	struct ubi_scan_leb *seb;
396	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
397	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
398
399	/*
400	 * UBI goes through the following steps when it changes the layout
401	 * volume:
402	 * a. erase LEB 0;
403	 * b. write new data to LEB 0;
404	 * c. erase LEB 1;
405	 * d. write new data to LEB 1.
406	 *
407	 * Before the change, both LEBs contain the same data.
408	 *
409	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
410	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
411	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
412	 * finally, unclean reboots may result in a situation when neither LEB
413	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
414	 * 0 contains more recent information.
415	 *
416	 * So the plan is to first check LEB 0. Then
417	 * a. if LEB 0 is OK, it must be containing the most recent data; then
418	 *    we compare it with LEB 1, and if they are different, we copy LEB
419	 *    0 to LEB 1;
420	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
421	 *    to LEB 0.
422	 */
423
424	dbg_gen("check layout volume");
425
426	/* Read both LEB 0 and LEB 1 into memory */
427	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
428		leb[seb->lnum] = vmalloc(ubi->vtbl_size);
429		if (!leb[seb->lnum]) {
430			err = -ENOMEM;
431			goto out_free;
432		}
433		memset(leb[seb->lnum], 0, ubi->vtbl_size);
434
435		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
436				       ubi->vtbl_size);
437		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
438			/*
439			 * Scrub the PEB later. Note, -EBADMSG indicates an
440			 * uncorrectable ECC error, but we have our own CRC and
441			 * the data will be checked later. If the data is OK,
442			 * the PEB will be scrubbed (because we set
443			 * seb->scrub). If the data is not OK, the contents of
444			 * the PEB will be recovered from the second copy, and
445			 * seb->scrub will be cleared in
446			 * 'ubi_scan_add_used()'.
447			 */
448			seb->scrub = 1;
449		else if (err)
450			goto out_free;
451	}
452
453	err = -EINVAL;
454	if (leb[0]) {
455		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
456		if (leb_corrupted[0] < 0)
457			goto out_free;
458	}
459
460	if (!leb_corrupted[0]) {
461		/* LEB 0 is OK */
462		if (leb[1])
463			leb_corrupted[1] = memcmp(leb[0], leb[1],
464						  ubi->vtbl_size);
465		if (leb_corrupted[1]) {
466			ubi_warn("volume table copy #2 is corrupted");
467			err = create_vtbl(ubi, si, 1, leb[0]);
468			if (err)
469				goto out_free;
470			ubi_msg("volume table was restored");
471		}
472
473		/* Both LEB 1 and LEB 2 are OK and consistent */
474		vfree(leb[1]);
475		return leb[0];
476	} else {
477		/* LEB 0 is corrupted or does not exist */
478		if (leb[1]) {
479			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
480			if (leb_corrupted[1] < 0)
481				goto out_free;
482		}
483		if (leb_corrupted[1]) {
484			/* Both LEB 0 and LEB 1 are corrupted */
485			ubi_err("both volume tables are corrupted");
486			goto out_free;
487		}
488
489		ubi_warn("volume table copy #1 is corrupted");
490		err = create_vtbl(ubi, si, 0, leb[1]);
491		if (err)
492			goto out_free;
493		ubi_msg("volume table was restored");
494
495		vfree(leb[0]);
496		return leb[1];
497	}
498
499out_free:
500	vfree(leb[0]);
501	vfree(leb[1]);
502	return ERR_PTR(err);
503}
504
505/**
506 * create_empty_lvol - create empty layout volume.
507 * @ubi: UBI device description object
508 * @si: scanning information
509 *
510 * This function returns volume table contents in case of success and a
511 * negative error code in case of failure.
512 */
513static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
514						 struct ubi_scan_info *si)
515{
516	int i;
517	struct ubi_vtbl_record *vtbl;
518
519	vtbl = vmalloc(ubi->vtbl_size);
520	if (!vtbl)
521		return ERR_PTR(-ENOMEM);
522	memset(vtbl, 0, ubi->vtbl_size);
523
524	for (i = 0; i < ubi->vtbl_slots; i++)
525		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
526
527	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
528		int err;
529
530		err = create_vtbl(ubi, si, i, vtbl);
531		if (err) {
532			vfree(vtbl);
533			return ERR_PTR(err);
534		}
535	}
536
537	return vtbl;
538}
539
540/**
541 * init_volumes - initialize volume information for existing volumes.
542 * @ubi: UBI device description object
543 * @si: scanning information
544 * @vtbl: volume table
545 *
546 * This function allocates volume description objects for existing volumes.
547 * Returns zero in case of success and a negative error code in case of
548 * failure.
549 */
550static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
551			const struct ubi_vtbl_record *vtbl)
552{
553	int i, reserved_pebs = 0;
554	struct ubi_scan_volume *sv;
555	struct ubi_volume *vol;
556
557	for (i = 0; i < ubi->vtbl_slots; i++) {
558		cond_resched();
559
560		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
561			continue; /* Empty record */
562
563		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
564		if (!vol)
565			return -ENOMEM;
566
567		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
568		vol->alignment = be32_to_cpu(vtbl[i].alignment);
569		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
570		vol->upd_marker = vtbl[i].upd_marker;
571		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
572					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
573		vol->name_len = be16_to_cpu(vtbl[i].name_len);
574		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
575		memcpy(vol->name, vtbl[i].name, vol->name_len);
576		vol->name[vol->name_len] = '\0';
577		vol->vol_id = i;
578
579		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
580			/* Auto re-size flag may be set only for one volume */
581			if (ubi->autoresize_vol_id != -1) {
582				ubi_err("more than one auto-resize volume (%d "
583					"and %d)", ubi->autoresize_vol_id, i);
584				kfree(vol);
585				return -EINVAL;
586			}
587
588			ubi->autoresize_vol_id = i;
589		}
590
591		ubi_assert(!ubi->volumes[i]);
592		ubi->volumes[i] = vol;
593		ubi->vol_count += 1;
594		vol->ubi = ubi;
595		reserved_pebs += vol->reserved_pebs;
596
597		/*
598		 * In case of dynamic volume UBI knows nothing about how many
599		 * data is stored there. So assume the whole volume is used.
600		 */
601		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
602			vol->used_ebs = vol->reserved_pebs;
603			vol->last_eb_bytes = vol->usable_leb_size;
604			vol->used_bytes =
605				(long long)vol->used_ebs * vol->usable_leb_size;
606			continue;
607		}
608
609		/* Static volumes only */
610		sv = ubi_scan_find_sv(si, i);
611		if (!sv) {
612			continue;
613		}
614
615		if (sv->leb_count != sv->used_ebs) {
616			/*
617			 * We found a static volume which misses several
618			 * eraseblocks. Treat it as corrupted.
619			 */
620			ubi_warn("static volume %d misses %d LEBs - corrupted",
621				 sv->vol_id, sv->used_ebs - sv->leb_count);
622			vol->corrupted = 1;
623			continue;
624		}
625
626		vol->used_ebs = sv->used_ebs;
627		vol->used_bytes =
628			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
629		vol->used_bytes += sv->last_data_size;
630		vol->last_eb_bytes = sv->last_data_size;
631	}
632
633	/* And add the layout volume */
634	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
635	if (!vol)
636		return -ENOMEM;
637
638	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
639	vol->alignment = 1;
640	vol->vol_type = UBI_DYNAMIC_VOLUME;
641	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
642	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
643	vol->usable_leb_size = ubi->leb_size;
644	vol->used_ebs = vol->reserved_pebs;
645	vol->last_eb_bytes = vol->reserved_pebs;
646	vol->used_bytes =
647		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
648	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
649	vol->ref_count = 1;
650
651	ubi_assert(!ubi->volumes[i]);
652	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
653	reserved_pebs += vol->reserved_pebs;
654	ubi->vol_count += 1;
655	vol->ubi = ubi;
656
657	if (reserved_pebs > ubi->avail_pebs)
658		ubi_err("not enough PEBs, required %d, available %d",
659			reserved_pebs, ubi->avail_pebs);
660	ubi->rsvd_pebs += reserved_pebs;
661	ubi->avail_pebs -= reserved_pebs;
662
663	return 0;
664}
665
666/**
667 * check_sv - check volume scanning information.
668 * @vol: UBI volume description object
669 * @sv: volume scanning information
670 *
671 * This function returns zero if the volume scanning information is consistent
672 * to the data read from the volume tabla, and %-EINVAL if not.
673 */
674static int check_sv(const struct ubi_volume *vol,
675		    const struct ubi_scan_volume *sv)
676{
677	int err;
678
679	if (sv->highest_lnum >= vol->reserved_pebs) {
680		err = 1;
681		goto bad;
682	}
683	if (sv->leb_count > vol->reserved_pebs) {
684		err = 2;
685		goto bad;
686	}
687	if (sv->vol_type != vol->vol_type) {
688		err = 3;
689		goto bad;
690	}
691	if (sv->used_ebs > vol->reserved_pebs) {
692		err = 4;
693		goto bad;
694	}
695	if (sv->data_pad != vol->data_pad) {
696		err = 5;
697		goto bad;
698	}
699	return 0;
700
701bad:
702	ubi_err("bad scanning information, error %d", err);
703	ubi_dbg_dump_sv(sv);
704	ubi_dbg_dump_vol_info(vol);
705	return -EINVAL;
706}
707
708/**
709 * check_scanning_info - check that scanning information.
710 * @ubi: UBI device description object
711 * @si: scanning information
712 *
713 * Even though we protect on-flash data by CRC checksums, we still don't trust
714 * the media. This function ensures that scanning information is consistent to
715 * the information read from the volume table. Returns zero if the scanning
716 * information is OK and %-EINVAL if it is not.
717 */
718static int check_scanning_info(const struct ubi_device *ubi,
719			       struct ubi_scan_info *si)
720{
721	int err, i;
722	struct ubi_scan_volume *sv;
723	struct ubi_volume *vol;
724
725	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
726		ubi_err("scanning found %d volumes, maximum is %d + %d",
727			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
728		return -EINVAL;
729	}
730
731	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
732	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
733		ubi_err("too large volume ID %d found by scanning",
734			si->highest_vol_id);
735		return -EINVAL;
736	}
737
738	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
739		cond_resched();
740
741		sv = ubi_scan_find_sv(si, i);
742		vol = ubi->volumes[i];
743		if (!vol) {
744			if (sv)
745				ubi_scan_rm_volume(si, sv);
746			continue;
747		}
748
749		if (vol->reserved_pebs == 0) {
750			ubi_assert(i < ubi->vtbl_slots);
751
752			if (!sv)
753				continue;
754
755			/*
756			 * During scanning we found a volume which does not
757			 * exist according to the information in the volume
758			 * table. This must have happened due to an unclean
759			 * reboot while the volume was being removed. Discard
760			 * these eraseblocks.
761			 */
762			ubi_msg("finish volume %d removal", sv->vol_id);
763			ubi_scan_rm_volume(si, sv);
764		} else if (sv) {
765			err = check_sv(vol, sv);
766			if (err)
767				return err;
768		}
769	}
770
771	return 0;
772}
773
774/**
775 * ubi_read_volume_table - read the volume table.
776 * @ubi: UBI device description object
777 * @si: scanning information
778 *
779 * This function reads volume table, checks it, recover from errors if needed,
780 * or creates it if needed. Returns zero in case of success and a negative
781 * error code in case of failure.
782 */
783int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
784{
785	int i, err;
786	struct ubi_scan_volume *sv;
787
788	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
789
790	/*
791	 * The number of supported volumes is limited by the eraseblock size
792	 * and by the UBI_MAX_VOLUMES constant.
793	 */
794	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
795	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
796		ubi->vtbl_slots = UBI_MAX_VOLUMES;
797
798	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
799	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
800
801	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
802	if (!sv) {
803		/*
804		 * No logical eraseblocks belonging to the layout volume were
805		 * found. This could mean that the flash is just empty. In
806		 * this case we create empty layout volume.
807		 *
808		 * But if flash is not empty this must be a corruption or the
809		 * MTD device just contains garbage.
810		 */
811		if (si->is_empty) {
812			ubi->vtbl = create_empty_lvol(ubi, si);
813			if (IS_ERR(ubi->vtbl))
814				return PTR_ERR(ubi->vtbl);
815		} else {
816			ubi_err("the layout volume was not found");
817			return -EINVAL;
818		}
819	} else {
820		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
821			/* This must not happen with proper UBI images */
822			dbg_err("too many LEBs (%d) in layout volume",
823				sv->leb_count);
824			return -EINVAL;
825		}
826
827		ubi->vtbl = process_lvol(ubi, si, sv);
828		if (IS_ERR(ubi->vtbl))
829			return PTR_ERR(ubi->vtbl);
830	}
831
832	ubi->avail_pebs = ubi->good_peb_count;
833
834	/*
835	 * The layout volume is OK, initialize the corresponding in-RAM data
836	 * structures.
837	 */
838	err = init_volumes(ubi, si, ubi->vtbl);
839	if (err)
840		goto out_free;
841
842	/*
843	 * Make sure that the scanning information is consistent to the
844	 * information stored in the volume table.
845	 */
846	err = check_scanning_info(ubi, si);
847	if (err)
848		goto out_free;
849
850	return 0;
851
852out_free:
853	vfree(ubi->vtbl);
854	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
855		kfree(ubi->volumes[i]);
856		ubi->volumes[i] = NULL;
857	}
858	return err;
859}
860
861#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
862
863/**
864 * paranoid_vtbl_check - check volume table.
865 * @ubi: UBI device description object
866 */
867static void paranoid_vtbl_check(const struct ubi_device *ubi)
868{
869	if (vtbl_check(ubi, ubi->vtbl)) {
870		ubi_err("paranoid check failed");
871		BUG();
872	}
873}
874
875#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
876