• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/mtd/nand/
1/*
2 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
4 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
7 * Copyright �� 2008 Koninklijke Philips Electronics NV.
8 *                  Author: Frans Meulenbroeks
9 *
10 * Completely replaces the previous ECC implementation which was written by:
11 *   Steven J. Hill (sjhill@realitydiluted.com)
12 *   Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
15 * can be found in Documentation/mtd/nand_ecc.txt
16 *
17 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
21 *
22 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
25 * for more details.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
30 *
31 */
32
33/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
38 * Instead a private definition of mtd_info is given to satisfy the compiler
39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
47#include <linux/mtd/nand_ecc.h>
48#include <asm/byteorder.h>
49#else
50#include <stdint.h>
51struct mtd_info;
52#define EXPORT_SYMBOL(x)  /* x */
53
54#define MODULE_LICENSE(x)	/* x */
55#define MODULE_AUTHOR(x)	/* x */
56#define MODULE_DESCRIPTION(x)	/* x */
57
58#define printk printf
59#define KERN_ERR		""
60#endif
61
62/*
63 * invparity is a 256 byte table that contains the odd parity
64 * for each byte. So if the number of bits in a byte is even,
65 * the array element is 1, and when the number of bits is odd
66 * the array eleemnt is 0.
67 */
68static const char invparity[256] = {
69	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
80	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
81	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
82	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
84	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
85};
86
87/*
88 * bitsperbyte contains the number of bits per byte
89 * this is only used for testing and repairing parity
90 * (a precalculated value slightly improves performance)
91 */
92static const char bitsperbyte[256] = {
93	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
94	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
102	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
104	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
105	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
106	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
108	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
109};
110
111/*
112 * addressbits is a lookup table to filter out the bits from the xor-ed
113 * ecc data that identify the faulty location.
114 * this is only used for repairing parity
115 * see the comments in nand_correct_data for more details
116 */
117static const char addressbits[256] = {
118	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
119	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
120	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
123	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
124	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
127	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
128	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
129	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
130	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
131	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
132	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
133	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
134	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
135	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
136	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
139	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
140	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
143	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
144	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
145	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
146	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
147	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
148	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
149	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
150};
151
152/**
153 * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
154 *			 block
155 * @buf:	input buffer with raw data
156 * @eccsize:	data bytes per ecc step (256 or 512)
157 * @code:	output buffer with ECC
158 */
159void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
160		       unsigned char *code)
161{
162	int i;
163	const uint32_t *bp = (uint32_t *)buf;
164	/* 256 or 512 bytes/ecc  */
165	const uint32_t eccsize_mult = eccsize >> 8;
166	uint32_t cur;		/* current value in buffer */
167	/* rp0..rp15..rp17 are the various accumulated parities (per byte) */
168	uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
169	uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
170	uint32_t uninitialized_var(rp17);	/* to make compiler happy */
171	uint32_t par;		/* the cumulative parity for all data */
172	uint32_t tmppar;	/* the cumulative parity for this iteration;
173				   for rp12, rp14 and rp16 at the end of the
174				   loop */
175
176	par = 0;
177	rp4 = 0;
178	rp6 = 0;
179	rp8 = 0;
180	rp10 = 0;
181	rp12 = 0;
182	rp14 = 0;
183	rp16 = 0;
184
185	/*
186	 * The loop is unrolled a number of times;
187	 * This avoids if statements to decide on which rp value to update
188	 * Also we process the data by longwords.
189	 * Note: passing unaligned data might give a performance penalty.
190	 * It is assumed that the buffers are aligned.
191	 * tmppar is the cumulative sum of this iteration.
192	 * needed for calculating rp12, rp14, rp16 and par
193	 * also used as a performance improvement for rp6, rp8 and rp10
194	 */
195	for (i = 0; i < eccsize_mult << 2; i++) {
196		cur = *bp++;
197		tmppar = cur;
198		rp4 ^= cur;
199		cur = *bp++;
200		tmppar ^= cur;
201		rp6 ^= tmppar;
202		cur = *bp++;
203		tmppar ^= cur;
204		rp4 ^= cur;
205		cur = *bp++;
206		tmppar ^= cur;
207		rp8 ^= tmppar;
208
209		cur = *bp++;
210		tmppar ^= cur;
211		rp4 ^= cur;
212		rp6 ^= cur;
213		cur = *bp++;
214		tmppar ^= cur;
215		rp6 ^= cur;
216		cur = *bp++;
217		tmppar ^= cur;
218		rp4 ^= cur;
219		cur = *bp++;
220		tmppar ^= cur;
221		rp10 ^= tmppar;
222
223		cur = *bp++;
224		tmppar ^= cur;
225		rp4 ^= cur;
226		rp6 ^= cur;
227		rp8 ^= cur;
228		cur = *bp++;
229		tmppar ^= cur;
230		rp6 ^= cur;
231		rp8 ^= cur;
232		cur = *bp++;
233		tmppar ^= cur;
234		rp4 ^= cur;
235		rp8 ^= cur;
236		cur = *bp++;
237		tmppar ^= cur;
238		rp8 ^= cur;
239
240		cur = *bp++;
241		tmppar ^= cur;
242		rp4 ^= cur;
243		rp6 ^= cur;
244		cur = *bp++;
245		tmppar ^= cur;
246		rp6 ^= cur;
247		cur = *bp++;
248		tmppar ^= cur;
249		rp4 ^= cur;
250		cur = *bp++;
251		tmppar ^= cur;
252
253		par ^= tmppar;
254		if ((i & 0x1) == 0)
255			rp12 ^= tmppar;
256		if ((i & 0x2) == 0)
257			rp14 ^= tmppar;
258		if (eccsize_mult == 2 && (i & 0x4) == 0)
259			rp16 ^= tmppar;
260	}
261
262	/*
263	 * handle the fact that we use longword operations
264	 * we'll bring rp4..rp14..rp16 back to single byte entities by
265	 * shifting and xoring first fold the upper and lower 16 bits,
266	 * then the upper and lower 8 bits.
267	 */
268	rp4 ^= (rp4 >> 16);
269	rp4 ^= (rp4 >> 8);
270	rp4 &= 0xff;
271	rp6 ^= (rp6 >> 16);
272	rp6 ^= (rp6 >> 8);
273	rp6 &= 0xff;
274	rp8 ^= (rp8 >> 16);
275	rp8 ^= (rp8 >> 8);
276	rp8 &= 0xff;
277	rp10 ^= (rp10 >> 16);
278	rp10 ^= (rp10 >> 8);
279	rp10 &= 0xff;
280	rp12 ^= (rp12 >> 16);
281	rp12 ^= (rp12 >> 8);
282	rp12 &= 0xff;
283	rp14 ^= (rp14 >> 16);
284	rp14 ^= (rp14 >> 8);
285	rp14 &= 0xff;
286	if (eccsize_mult == 2) {
287		rp16 ^= (rp16 >> 16);
288		rp16 ^= (rp16 >> 8);
289		rp16 &= 0xff;
290	}
291
292	/*
293	 * we also need to calculate the row parity for rp0..rp3
294	 * This is present in par, because par is now
295	 * rp3 rp3 rp2 rp2 in little endian and
296	 * rp2 rp2 rp3 rp3 in big endian
297	 * as well as
298	 * rp1 rp0 rp1 rp0 in little endian and
299	 * rp0 rp1 rp0 rp1 in big endian
300	 * First calculate rp2 and rp3
301	 */
302#ifdef __BIG_ENDIAN
303	rp2 = (par >> 16);
304	rp2 ^= (rp2 >> 8);
305	rp2 &= 0xff;
306	rp3 = par & 0xffff;
307	rp3 ^= (rp3 >> 8);
308	rp3 &= 0xff;
309#else
310	rp3 = (par >> 16);
311	rp3 ^= (rp3 >> 8);
312	rp3 &= 0xff;
313	rp2 = par & 0xffff;
314	rp2 ^= (rp2 >> 8);
315	rp2 &= 0xff;
316#endif
317
318	/* reduce par to 16 bits then calculate rp1 and rp0 */
319	par ^= (par >> 16);
320#ifdef __BIG_ENDIAN
321	rp0 = (par >> 8) & 0xff;
322	rp1 = (par & 0xff);
323#else
324	rp1 = (par >> 8) & 0xff;
325	rp0 = (par & 0xff);
326#endif
327
328	/* finally reduce par to 8 bits */
329	par ^= (par >> 8);
330	par &= 0xff;
331
332	/*
333	 * and calculate rp5..rp15..rp17
334	 * note that par = rp4 ^ rp5 and due to the commutative property
335	 * of the ^ operator we can say:
336	 * rp5 = (par ^ rp4);
337	 * The & 0xff seems superfluous, but benchmarking learned that
338	 * leaving it out gives slightly worse results. No idea why, probably
339	 * it has to do with the way the pipeline in pentium is organized.
340	 */
341	rp5 = (par ^ rp4) & 0xff;
342	rp7 = (par ^ rp6) & 0xff;
343	rp9 = (par ^ rp8) & 0xff;
344	rp11 = (par ^ rp10) & 0xff;
345	rp13 = (par ^ rp12) & 0xff;
346	rp15 = (par ^ rp14) & 0xff;
347	if (eccsize_mult == 2)
348		rp17 = (par ^ rp16) & 0xff;
349
350	/*
351	 * Finally calculate the ecc bits.
352	 * Again here it might seem that there are performance optimisations
353	 * possible, but benchmarks showed that on the system this is developed
354	 * the code below is the fastest
355	 */
356#ifdef CONFIG_MTD_NAND_ECC_SMC
357	code[0] =
358	    (invparity[rp7] << 7) |
359	    (invparity[rp6] << 6) |
360	    (invparity[rp5] << 5) |
361	    (invparity[rp4] << 4) |
362	    (invparity[rp3] << 3) |
363	    (invparity[rp2] << 2) |
364	    (invparity[rp1] << 1) |
365	    (invparity[rp0]);
366	code[1] =
367	    (invparity[rp15] << 7) |
368	    (invparity[rp14] << 6) |
369	    (invparity[rp13] << 5) |
370	    (invparity[rp12] << 4) |
371	    (invparity[rp11] << 3) |
372	    (invparity[rp10] << 2) |
373	    (invparity[rp9] << 1)  |
374	    (invparity[rp8]);
375#else
376	code[1] =
377	    (invparity[rp7] << 7) |
378	    (invparity[rp6] << 6) |
379	    (invparity[rp5] << 5) |
380	    (invparity[rp4] << 4) |
381	    (invparity[rp3] << 3) |
382	    (invparity[rp2] << 2) |
383	    (invparity[rp1] << 1) |
384	    (invparity[rp0]);
385	code[0] =
386	    (invparity[rp15] << 7) |
387	    (invparity[rp14] << 6) |
388	    (invparity[rp13] << 5) |
389	    (invparity[rp12] << 4) |
390	    (invparity[rp11] << 3) |
391	    (invparity[rp10] << 2) |
392	    (invparity[rp9] << 1)  |
393	    (invparity[rp8]);
394#endif
395	if (eccsize_mult == 1)
396		code[2] =
397		    (invparity[par & 0xf0] << 7) |
398		    (invparity[par & 0x0f] << 6) |
399		    (invparity[par & 0xcc] << 5) |
400		    (invparity[par & 0x33] << 4) |
401		    (invparity[par & 0xaa] << 3) |
402		    (invparity[par & 0x55] << 2) |
403		    3;
404	else
405		code[2] =
406		    (invparity[par & 0xf0] << 7) |
407		    (invparity[par & 0x0f] << 6) |
408		    (invparity[par & 0xcc] << 5) |
409		    (invparity[par & 0x33] << 4) |
410		    (invparity[par & 0xaa] << 3) |
411		    (invparity[par & 0x55] << 2) |
412		    (invparity[rp17] << 1) |
413		    (invparity[rp16] << 0);
414}
415EXPORT_SYMBOL(__nand_calculate_ecc);
416
417/**
418 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
419 *			 block
420 * @mtd:	MTD block structure
421 * @buf:	input buffer with raw data
422 * @code:	output buffer with ECC
423 */
424int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
425		       unsigned char *code)
426{
427	__nand_calculate_ecc(buf,
428			((struct nand_chip *)mtd->priv)->ecc.size, code);
429
430	return 0;
431}
432EXPORT_SYMBOL(nand_calculate_ecc);
433
434/**
435 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
436 * @buf:	raw data read from the chip
437 * @read_ecc:	ECC from the chip
438 * @calc_ecc:	the ECC calculated from raw data
439 * @eccsize:	data bytes per ecc step (256 or 512)
440 *
441 * Detect and correct a 1 bit error for eccsize byte block
442 */
443int __nand_correct_data(unsigned char *buf,
444			unsigned char *read_ecc, unsigned char *calc_ecc,
445			unsigned int eccsize)
446{
447	unsigned char b0, b1, b2, bit_addr;
448	unsigned int byte_addr;
449	/* 256 or 512 bytes/ecc  */
450	const uint32_t eccsize_mult = eccsize >> 8;
451
452	/*
453	 * b0 to b2 indicate which bit is faulty (if any)
454	 * we might need the xor result  more than once,
455	 * so keep them in a local var
456	*/
457#ifdef CONFIG_MTD_NAND_ECC_SMC
458	b0 = read_ecc[0] ^ calc_ecc[0];
459	b1 = read_ecc[1] ^ calc_ecc[1];
460#else
461	b0 = read_ecc[1] ^ calc_ecc[1];
462	b1 = read_ecc[0] ^ calc_ecc[0];
463#endif
464	b2 = read_ecc[2] ^ calc_ecc[2];
465
466	/* check if there are any bitfaults */
467
468	/* repeated if statements are slightly more efficient than switch ... */
469	/* ordered in order of likelihood */
470
471	if ((b0 | b1 | b2) == 0)
472		return 0;	/* no error */
473
474	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
475	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
476	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
477	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
478	/* single bit error */
479		/*
480		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
481		 * byte, cp 5/3/1 indicate the faulty bit.
482		 * A lookup table (called addressbits) is used to filter
483		 * the bits from the byte they are in.
484		 * A marginal optimisation is possible by having three
485		 * different lookup tables.
486		 * One as we have now (for b0), one for b2
487		 * (that would avoid the >> 1), and one for b1 (with all values
488		 * << 4). However it was felt that introducing two more tables
489		 * hardly justify the gain.
490		 *
491		 * The b2 shift is there to get rid of the lowest two bits.
492		 * We could also do addressbits[b2] >> 1 but for the
493		 * performance it does not make any difference
494		 */
495		if (eccsize_mult == 1)
496			byte_addr = (addressbits[b1] << 4) + addressbits[b0];
497		else
498			byte_addr = (addressbits[b2 & 0x3] << 8) +
499				    (addressbits[b1] << 4) + addressbits[b0];
500		bit_addr = addressbits[b2 >> 2];
501		/* flip the bit */
502		buf[byte_addr] ^= (1 << bit_addr);
503		return 1;
504
505	}
506	/* count nr of bits; use table lookup, faster than calculating it */
507	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
508		return 1;	/* error in ecc data; no action needed */
509
510	printk(KERN_ERR "uncorrectable error : ");
511	return -1;
512}
513EXPORT_SYMBOL(__nand_correct_data);
514
515/**
516 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
517 * @mtd:	MTD block structure
518 * @buf:	raw data read from the chip
519 * @read_ecc:	ECC from the chip
520 * @calc_ecc:	the ECC calculated from raw data
521 *
522 * Detect and correct a 1 bit error for 256/512 byte block
523 */
524int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
525		      unsigned char *read_ecc, unsigned char *calc_ecc)
526{
527	return __nand_correct_data(buf, read_ecc, calc_ecc,
528				   ((struct nand_chip *)mtd->priv)->ecc.size);
529}
530EXPORT_SYMBOL(nand_correct_data);
531
532MODULE_LICENSE("GPL");
533MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
534MODULE_DESCRIPTION("Generic NAND ECC support");
535