• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/mtd/nand/
1/*
2 * Driver for One Laptop Per Child ���CAF����� controller, aka Marvell 88ALP01
3 *
4 * The data sheet for this device can be found at:
5 *    http://www.marvell.com/products/pcconn/88ALP01.jsp
6 *
7 * Copyright �� 2006 Red Hat, Inc.
8 * Copyright �� 2006 David Woodhouse <dwmw2@infradead.org>
9 */
10
11#define DEBUG
12
13#include <linux/device.h>
14#undef DEBUG
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/nand.h>
17#include <linux/mtd/partitions.h>
18#include <linux/rslib.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/interrupt.h>
22#include <linux/dma-mapping.h>
23#include <linux/slab.h>
24#include <asm/io.h>
25
26#define CAFE_NAND_CTRL1		0x00
27#define CAFE_NAND_CTRL2		0x04
28#define CAFE_NAND_CTRL3		0x08
29#define CAFE_NAND_STATUS	0x0c
30#define CAFE_NAND_IRQ		0x10
31#define CAFE_NAND_IRQ_MASK	0x14
32#define CAFE_NAND_DATA_LEN	0x18
33#define CAFE_NAND_ADDR1		0x1c
34#define CAFE_NAND_ADDR2		0x20
35#define CAFE_NAND_TIMING1	0x24
36#define CAFE_NAND_TIMING2	0x28
37#define CAFE_NAND_TIMING3	0x2c
38#define CAFE_NAND_NONMEM	0x30
39#define CAFE_NAND_ECC_RESULT	0x3C
40#define CAFE_NAND_DMA_CTRL	0x40
41#define CAFE_NAND_DMA_ADDR0	0x44
42#define CAFE_NAND_DMA_ADDR1	0x48
43#define CAFE_NAND_ECC_SYN01	0x50
44#define CAFE_NAND_ECC_SYN23	0x54
45#define CAFE_NAND_ECC_SYN45	0x58
46#define CAFE_NAND_ECC_SYN67	0x5c
47#define CAFE_NAND_READ_DATA	0x1000
48#define CAFE_NAND_WRITE_DATA	0x2000
49
50#define CAFE_GLOBAL_CTRL	0x3004
51#define CAFE_GLOBAL_IRQ		0x3008
52#define CAFE_GLOBAL_IRQ_MASK	0x300c
53#define CAFE_NAND_RESET		0x3034
54
55/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
56#define CTRL1_CHIPSELECT	(1<<19)
57
58struct cafe_priv {
59	struct nand_chip nand;
60	struct mtd_partition *parts;
61	struct pci_dev *pdev;
62	void __iomem *mmio;
63	struct rs_control *rs;
64	uint32_t ctl1;
65	uint32_t ctl2;
66	int datalen;
67	int nr_data;
68	int data_pos;
69	int page_addr;
70	dma_addr_t dmaaddr;
71	unsigned char *dmabuf;
72};
73
74static int usedma = 1;
75module_param(usedma, int, 0644);
76
77static int skipbbt = 0;
78module_param(skipbbt, int, 0644);
79
80static int debug = 0;
81module_param(debug, int, 0644);
82
83static int regdebug = 0;
84module_param(regdebug, int, 0644);
85
86static int checkecc = 1;
87module_param(checkecc, int, 0644);
88
89static unsigned int numtimings;
90static int timing[3];
91module_param_array(timing, int, &numtimings, 0644);
92
93#ifdef CONFIG_MTD_PARTITIONS
94static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95#endif
96
97/* Hrm. Why isn't this already conditional on something in the struct device? */
98#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99
100/* Make it easier to switch to PIO if we need to */
101#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
102#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
103
104static int cafe_device_ready(struct mtd_info *mtd)
105{
106	struct cafe_priv *cafe = mtd->priv;
107	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
108	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109
110	cafe_writel(cafe, irqs, NAND_IRQ);
111
112	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115
116	return result;
117}
118
119
120static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
121{
122	struct cafe_priv *cafe = mtd->priv;
123
124	if (usedma)
125		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126	else
127		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129	cafe->datalen += len;
130
131	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132		len, cafe->datalen);
133}
134
135static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136{
137	struct cafe_priv *cafe = mtd->priv;
138
139	if (usedma)
140		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141	else
142		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
143
144	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145		  len, cafe->datalen);
146	cafe->datalen += len;
147}
148
149static uint8_t cafe_read_byte(struct mtd_info *mtd)
150{
151	struct cafe_priv *cafe = mtd->priv;
152	uint8_t d;
153
154	cafe_read_buf(mtd, &d, 1);
155	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
156
157	return d;
158}
159
160static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
161			      int column, int page_addr)
162{
163	struct cafe_priv *cafe = mtd->priv;
164	int adrbytes = 0;
165	uint32_t ctl1;
166	uint32_t doneint = 0x80000000;
167
168	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169		command, column, page_addr);
170
171	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172		/* Second half of a command we already calculated */
173		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174		ctl1 = cafe->ctl1;
175		cafe->ctl2 &= ~(1<<30);
176		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177			  cafe->ctl1, cafe->nr_data);
178		goto do_command;
179	}
180	/* Reset ECC engine */
181	cafe_writel(cafe, 0, NAND_CTRL2);
182
183	/* Emulate NAND_CMD_READOOB on large-page chips */
184	if (mtd->writesize > 512 &&
185	    command == NAND_CMD_READOOB) {
186		column += mtd->writesize;
187		command = NAND_CMD_READ0;
188	}
189
190
191	if (column != -1) {
192		cafe_writel(cafe, column, NAND_ADDR1);
193		adrbytes = 2;
194		if (page_addr != -1)
195			goto write_adr2;
196	} else if (page_addr != -1) {
197		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198		page_addr >>= 16;
199	write_adr2:
200		cafe_writel(cafe, page_addr, NAND_ADDR2);
201		adrbytes += 2;
202		if (mtd->size > mtd->writesize << 16)
203			adrbytes++;
204	}
205
206	cafe->data_pos = cafe->datalen = 0;
207
208	/* Set command valid bit, mask in the chip select bit  */
209	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210
211	/* Set RD or WR bits as appropriate */
212	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213		ctl1 |= (1<<26); /* rd */
214		/* Always 5 bytes, for now */
215		cafe->datalen = 4;
216		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
217		adrbytes = 1;
218	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220		ctl1 |= 1<<26; /* rd */
221		/* For now, assume just read to end of page */
222		cafe->datalen = mtd->writesize + mtd->oobsize - column;
223	} else if (command == NAND_CMD_SEQIN)
224		ctl1 |= 1<<25; /* wr */
225
226	/* Set number of address bytes */
227	if (adrbytes)
228		ctl1 |= ((adrbytes-1)|8) << 27;
229
230	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231		/* Ignore the first command of a pair; the hardware
232		   deals with them both at once, later */
233		cafe->ctl1 = ctl1;
234		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235			  cafe->ctl1, cafe->datalen);
236		return;
237	}
238	/* RNDOUT and READ0 commands need a following byte */
239	if (command == NAND_CMD_RNDOUT)
240		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243
244 do_command:
245	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247
248	/* NB: The datasheet lies -- we really should be subtracting 1 here */
249	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250	cafe_writel(cafe, 0x90000000, NAND_IRQ);
251	if (usedma && (ctl1 & (3<<25))) {
252		uint32_t dmactl = 0xc0000000 + cafe->datalen;
253		/* If WR or RD bits set, set up DMA */
254		if (ctl1 & (1<<26)) {
255			/* It's a read */
256			dmactl |= (1<<29);
257			/* ... so it's done when the DMA is done, not just
258			   the command. */
259			doneint = 0x10000000;
260		}
261		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262	}
263	cafe->datalen = 0;
264
265	if (unlikely(regdebug)) {
266		int i;
267		printk("About to write command %08x to register 0\n", ctl1);
268		for (i=4; i< 0x5c; i+=4)
269			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270	}
271
272	cafe_writel(cafe, ctl1, NAND_CTRL1);
273	/* Apply this short delay always to ensure that we do wait tWB in
274	 * any case on any machine. */
275	ndelay(100);
276
277	if (1) {
278		int c;
279		uint32_t irqs;
280
281		for (c = 500000; c != 0; c--) {
282			irqs = cafe_readl(cafe, NAND_IRQ);
283			if (irqs & doneint)
284				break;
285			udelay(1);
286			if (!(c % 100000))
287				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288			cpu_relax();
289		}
290		cafe_writel(cafe, doneint, NAND_IRQ);
291		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293	}
294
295	WARN_ON(cafe->ctl2 & (1<<30));
296
297	switch (command) {
298
299	case NAND_CMD_CACHEDPROG:
300	case NAND_CMD_PAGEPROG:
301	case NAND_CMD_ERASE1:
302	case NAND_CMD_ERASE2:
303	case NAND_CMD_SEQIN:
304	case NAND_CMD_RNDIN:
305	case NAND_CMD_STATUS:
306	case NAND_CMD_DEPLETE1:
307	case NAND_CMD_RNDOUT:
308	case NAND_CMD_STATUS_ERROR:
309	case NAND_CMD_STATUS_ERROR0:
310	case NAND_CMD_STATUS_ERROR1:
311	case NAND_CMD_STATUS_ERROR2:
312	case NAND_CMD_STATUS_ERROR3:
313		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314		return;
315	}
316	nand_wait_ready(mtd);
317	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318}
319
320static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321{
322	struct cafe_priv *cafe = mtd->priv;
323
324	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326	/* Mask the appropriate bit into the stored value of ctl1
327	   which will be used by cafe_nand_cmdfunc() */
328	if (chipnr)
329		cafe->ctl1 |= CTRL1_CHIPSELECT;
330	else
331		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332}
333
334static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335{
336	struct mtd_info *mtd = id;
337	struct cafe_priv *cafe = mtd->priv;
338	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
339	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
340	if (!irqs)
341		return IRQ_NONE;
342
343	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
344	return IRQ_HANDLED;
345}
346
347static void cafe_nand_bug(struct mtd_info *mtd)
348{
349	BUG();
350}
351
352static int cafe_nand_write_oob(struct mtd_info *mtd,
353			       struct nand_chip *chip, int page)
354{
355	int status = 0;
356
357	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
358	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
359	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
360	status = chip->waitfunc(mtd, chip);
361
362	return status & NAND_STATUS_FAIL ? -EIO : 0;
363}
364
365/* Don't use -- use nand_read_oob_std for now */
366static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
367			      int page, int sndcmd)
368{
369	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
370	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
371	return 1;
372}
373/**
374 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
375 * @mtd:	mtd info structure
376 * @chip:	nand chip info structure
377 * @buf:	buffer to store read data
378 *
379 * The hw generator calculates the error syndrome automatically. Therefor
380 * we need a special oob layout and handling.
381 */
382static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
383			       uint8_t *buf, int page)
384{
385	struct cafe_priv *cafe = mtd->priv;
386
387	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
388		     cafe_readl(cafe, NAND_ECC_RESULT),
389		     cafe_readl(cafe, NAND_ECC_SYN01));
390
391	chip->read_buf(mtd, buf, mtd->writesize);
392	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
393
394	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
395		unsigned short syn[8], pat[4];
396		int pos[4];
397		u8 *oob = chip->oob_poi;
398		int i, n;
399
400		for (i=0; i<8; i+=2) {
401			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
402			syn[i] = cafe->rs->index_of[tmp & 0xfff];
403			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
404		}
405
406		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
407		                pat);
408
409		for (i = 0; i < n; i++) {
410			int p = pos[i];
411
412			/* The 12-bit symbols are mapped to bytes here */
413
414			if (p > 1374) {
415				/* out of range */
416				n = -1374;
417			} else if (p == 0) {
418				/* high four bits do not correspond to data */
419				if (pat[i] > 0xff)
420					n = -2048;
421				else
422					buf[0] ^= pat[i];
423			} else if (p == 1365) {
424				buf[2047] ^= pat[i] >> 4;
425				oob[0] ^= pat[i] << 4;
426			} else if (p > 1365) {
427				if ((p & 1) == 1) {
428					oob[3*p/2 - 2048] ^= pat[i] >> 4;
429					oob[3*p/2 - 2047] ^= pat[i] << 4;
430				} else {
431					oob[3*p/2 - 2049] ^= pat[i] >> 8;
432					oob[3*p/2 - 2048] ^= pat[i];
433				}
434			} else if ((p & 1) == 1) {
435				buf[3*p/2] ^= pat[i] >> 4;
436				buf[3*p/2 + 1] ^= pat[i] << 4;
437			} else {
438				buf[3*p/2 - 1] ^= pat[i] >> 8;
439				buf[3*p/2] ^= pat[i];
440			}
441		}
442
443		if (n < 0) {
444			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
445				cafe_readl(cafe, NAND_ADDR2) * 2048);
446			for (i = 0; i < 0x5c; i += 4)
447				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
448			mtd->ecc_stats.failed++;
449		} else {
450			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
451			mtd->ecc_stats.corrected += n;
452		}
453	}
454
455	return 0;
456}
457
458static struct nand_ecclayout cafe_oobinfo_2048 = {
459	.eccbytes = 14,
460	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
461	.oobfree = {{14, 50}}
462};
463
464/* Ick. The BBT code really ought to be able to work this bit out
465   for itself from the above, at least for the 2KiB case */
466static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
467static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
468
469static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
470static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
471
472
473static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
474	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
475		| NAND_BBT_2BIT | NAND_BBT_VERSION,
476	.offs =	14,
477	.len = 4,
478	.veroffs = 18,
479	.maxblocks = 4,
480	.pattern = cafe_bbt_pattern_2048
481};
482
483static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
484	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
485		| NAND_BBT_2BIT | NAND_BBT_VERSION,
486	.offs =	14,
487	.len = 4,
488	.veroffs = 18,
489	.maxblocks = 4,
490	.pattern = cafe_mirror_pattern_2048
491};
492
493static struct nand_ecclayout cafe_oobinfo_512 = {
494	.eccbytes = 14,
495	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
496	.oobfree = {{14, 2}}
497};
498
499static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
500	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
501		| NAND_BBT_2BIT | NAND_BBT_VERSION,
502	.offs =	14,
503	.len = 1,
504	.veroffs = 15,
505	.maxblocks = 4,
506	.pattern = cafe_bbt_pattern_512
507};
508
509static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
510	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
511		| NAND_BBT_2BIT | NAND_BBT_VERSION,
512	.offs =	14,
513	.len = 1,
514	.veroffs = 15,
515	.maxblocks = 4,
516	.pattern = cafe_mirror_pattern_512
517};
518
519
520static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
521					  struct nand_chip *chip, const uint8_t *buf)
522{
523	struct cafe_priv *cafe = mtd->priv;
524
525	chip->write_buf(mtd, buf, mtd->writesize);
526	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
527
528	/* Set up ECC autogeneration */
529	cafe->ctl2 |= (1<<30);
530}
531
532static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
533				const uint8_t *buf, int page, int cached, int raw)
534{
535	int status;
536
537	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
538
539	if (unlikely(raw))
540		chip->ecc.write_page_raw(mtd, chip, buf);
541	else
542		chip->ecc.write_page(mtd, chip, buf);
543
544	/*
545	 * Cached progamming disabled for now, Not sure if its worth the
546	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
547	 */
548	cached = 0;
549
550	if (!cached || !(chip->options & NAND_CACHEPRG)) {
551
552		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
553		status = chip->waitfunc(mtd, chip);
554		/*
555		 * See if operation failed and additional status checks are
556		 * available
557		 */
558		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
559			status = chip->errstat(mtd, chip, FL_WRITING, status,
560					       page);
561
562		if (status & NAND_STATUS_FAIL)
563			return -EIO;
564	} else {
565		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
566		status = chip->waitfunc(mtd, chip);
567	}
568
569#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
570	/* Send command to read back the data */
571	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
572
573	if (chip->verify_buf(mtd, buf, mtd->writesize))
574		return -EIO;
575#endif
576	return 0;
577}
578
579static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
580{
581	return 0;
582}
583
584/* F_2[X]/(X**6+X+1)  */
585static unsigned short __devinit gf64_mul(u8 a, u8 b)
586{
587	u8 c;
588	unsigned int i;
589
590	c = 0;
591	for (i = 0; i < 6; i++) {
592		if (a & 1)
593			c ^= b;
594		a >>= 1;
595		b <<= 1;
596		if ((b & 0x40) != 0)
597			b ^= 0x43;
598	}
599
600	return c;
601}
602
603/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
604static u16 __devinit gf4096_mul(u16 a, u16 b)
605{
606	u8 ah, al, bh, bl, ch, cl;
607
608	ah = a >> 6;
609	al = a & 0x3f;
610	bh = b >> 6;
611	bl = b & 0x3f;
612
613	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
614	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
615
616	return (ch << 6) ^ cl;
617}
618
619static int __devinit cafe_mul(int x)
620{
621	if (x == 0)
622		return 1;
623	return gf4096_mul(x, 0xe01);
624}
625
626static int __devinit cafe_nand_probe(struct pci_dev *pdev,
627				     const struct pci_device_id *ent)
628{
629	struct mtd_info *mtd;
630	struct cafe_priv *cafe;
631	uint32_t ctrl;
632	int err = 0;
633#ifdef CONFIG_MTD_PARTITIONS
634	struct mtd_partition *parts;
635	int nr_parts;
636#endif
637
638	/* Very old versions shared the same PCI ident for all three
639	   functions on the chip. Verify the class too... */
640	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
641		return -ENODEV;
642
643	err = pci_enable_device(pdev);
644	if (err)
645		return err;
646
647	pci_set_master(pdev);
648
649	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
650	if (!mtd) {
651		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
652		return  -ENOMEM;
653	}
654	cafe = (void *)(&mtd[1]);
655
656	mtd->dev.parent = &pdev->dev;
657	mtd->priv = cafe;
658	mtd->owner = THIS_MODULE;
659
660	cafe->pdev = pdev;
661	cafe->mmio = pci_iomap(pdev, 0, 0);
662	if (!cafe->mmio) {
663		dev_warn(&pdev->dev, "failed to iomap\n");
664		err = -ENOMEM;
665		goto out_free_mtd;
666	}
667	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
668					  &cafe->dmaaddr, GFP_KERNEL);
669	if (!cafe->dmabuf) {
670		err = -ENOMEM;
671		goto out_ior;
672	}
673	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
674
675	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
676	if (!cafe->rs) {
677		err = -ENOMEM;
678		goto out_ior;
679	}
680
681	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
682	cafe->nand.dev_ready = cafe_device_ready;
683	cafe->nand.read_byte = cafe_read_byte;
684	cafe->nand.read_buf = cafe_read_buf;
685	cafe->nand.write_buf = cafe_write_buf;
686	cafe->nand.select_chip = cafe_select_chip;
687
688	cafe->nand.chip_delay = 0;
689
690	/* Enable the following for a flash based bad block table */
691	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
692
693	if (skipbbt) {
694		cafe->nand.options |= NAND_SKIP_BBTSCAN;
695		cafe->nand.block_bad = cafe_nand_block_bad;
696	}
697
698	if (numtimings && numtimings != 3) {
699		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
700	}
701
702	if (numtimings == 3) {
703		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
704			     timing[0], timing[1], timing[2]);
705	} else {
706		timing[0] = cafe_readl(cafe, NAND_TIMING1);
707		timing[1] = cafe_readl(cafe, NAND_TIMING2);
708		timing[2] = cafe_readl(cafe, NAND_TIMING3);
709
710		if (timing[0] | timing[1] | timing[2]) {
711			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
712				     timing[0], timing[1], timing[2]);
713		} else {
714			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
715			timing[0] = timing[1] = timing[2] = 0xffffffff;
716		}
717	}
718
719	/* Start off by resetting the NAND controller completely */
720	cafe_writel(cafe, 1, NAND_RESET);
721	cafe_writel(cafe, 0, NAND_RESET);
722
723	cafe_writel(cafe, timing[0], NAND_TIMING1);
724	cafe_writel(cafe, timing[1], NAND_TIMING2);
725	cafe_writel(cafe, timing[2], NAND_TIMING3);
726
727	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
728	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
729			  "CAFE NAND", mtd);
730	if (err) {
731		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
732		goto out_free_dma;
733	}
734
735	/* Disable master reset, enable NAND clock */
736	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
737	ctrl &= 0xffffeff0;
738	ctrl |= 0x00007000;
739	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
740	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
741	cafe_writel(cafe, 0, NAND_DMA_CTRL);
742
743	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
744	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
745
746	/* Set up DMA address */
747	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
748	if (sizeof(cafe->dmaaddr) > 4)
749		/* Shift in two parts to shut the compiler up */
750		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
751	else
752		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
753
754	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
755		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
756
757	/* Enable NAND IRQ in global IRQ mask register */
758	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
759	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
760		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
761
762	/* Scan to find existence of the device */
763	if (nand_scan_ident(mtd, 2, NULL)) {
764		err = -ENXIO;
765		goto out_irq;
766	}
767
768	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
769	if (mtd->writesize == 2048)
770		cafe->ctl2 |= 1<<29; /* 2KiB page size */
771
772	/* Set up ECC according to the type of chip we found */
773	if (mtd->writesize == 2048) {
774		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
775		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
776		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
777	} else if (mtd->writesize == 512) {
778		cafe->nand.ecc.layout = &cafe_oobinfo_512;
779		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
780		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
781	} else {
782		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
783		       mtd->writesize);
784		goto out_irq;
785	}
786	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
787	cafe->nand.ecc.size = mtd->writesize;
788	cafe->nand.ecc.bytes = 14;
789	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
790	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
791	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
792	cafe->nand.write_page = cafe_nand_write_page;
793	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
794	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
795	cafe->nand.ecc.read_page = cafe_nand_read_page;
796	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
797
798	err = nand_scan_tail(mtd);
799	if (err)
800		goto out_irq;
801
802	pci_set_drvdata(pdev, mtd);
803
804	/* We register the whole device first, separate from the partitions */
805	add_mtd_device(mtd);
806
807#ifdef CONFIG_MTD_PARTITIONS
808#ifdef CONFIG_MTD_CMDLINE_PARTS
809	mtd->name = "cafe_nand";
810#endif
811	nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
812	if (nr_parts > 0) {
813		cafe->parts = parts;
814		dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
815		add_mtd_partitions(mtd, parts, nr_parts);
816	}
817#endif
818	goto out;
819
820 out_irq:
821	/* Disable NAND IRQ in global IRQ mask register */
822	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
823	free_irq(pdev->irq, mtd);
824 out_free_dma:
825	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
826 out_ior:
827	pci_iounmap(pdev, cafe->mmio);
828 out_free_mtd:
829	kfree(mtd);
830 out:
831	return err;
832}
833
834static void __devexit cafe_nand_remove(struct pci_dev *pdev)
835{
836	struct mtd_info *mtd = pci_get_drvdata(pdev);
837	struct cafe_priv *cafe = mtd->priv;
838
839	del_mtd_device(mtd);
840	/* Disable NAND IRQ in global IRQ mask register */
841	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
842	free_irq(pdev->irq, mtd);
843	nand_release(mtd);
844	free_rs(cafe->rs);
845	pci_iounmap(pdev, cafe->mmio);
846	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
847	kfree(mtd);
848}
849
850static const struct pci_device_id cafe_nand_tbl[] = {
851	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
852	  PCI_ANY_ID, PCI_ANY_ID },
853	{ }
854};
855
856MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
857
858static int cafe_nand_resume(struct pci_dev *pdev)
859{
860	uint32_t ctrl;
861	struct mtd_info *mtd = pci_get_drvdata(pdev);
862	struct cafe_priv *cafe = mtd->priv;
863
864       /* Start off by resetting the NAND controller completely */
865	cafe_writel(cafe, 1, NAND_RESET);
866	cafe_writel(cafe, 0, NAND_RESET);
867	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
868
869	/* Restore timing configuration */
870	cafe_writel(cafe, timing[0], NAND_TIMING1);
871	cafe_writel(cafe, timing[1], NAND_TIMING2);
872	cafe_writel(cafe, timing[2], NAND_TIMING3);
873
874        /* Disable master reset, enable NAND clock */
875	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
876	ctrl &= 0xffffeff0;
877	ctrl |= 0x00007000;
878	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
879	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
880	cafe_writel(cafe, 0, NAND_DMA_CTRL);
881	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
882	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
883
884	/* Set up DMA address */
885	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
886	if (sizeof(cafe->dmaaddr) > 4)
887	/* Shift in two parts to shut the compiler up */
888		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
889	else
890		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
891
892	/* Enable NAND IRQ in global IRQ mask register */
893	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
894	return 0;
895}
896
897static struct pci_driver cafe_nand_pci_driver = {
898	.name = "CAF�� NAND",
899	.id_table = cafe_nand_tbl,
900	.probe = cafe_nand_probe,
901	.remove = __devexit_p(cafe_nand_remove),
902	.resume = cafe_nand_resume,
903};
904
905static int __init cafe_nand_init(void)
906{
907	return pci_register_driver(&cafe_nand_pci_driver);
908}
909
910static void __exit cafe_nand_exit(void)
911{
912	pci_unregister_driver(&cafe_nand_pci_driver);
913}
914module_init(cafe_nand_init);
915module_exit(cafe_nand_exit);
916
917MODULE_LICENSE("GPL");
918MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
919MODULE_DESCRIPTION("NAND flash driver for OLPC CAF�� chip");
920