• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/mtd/devices/
1/*
2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
6 *
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <asm/errno.h>
27#include <asm/io.h>
28#include <asm/uaccess.h>
29#include <linux/delay.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/types.h>
33
34#include <linux/mtd/mtd.h>
35#include <linux/mtd/doc2000.h>
36
37#define DEBUG_ECC 0
38/* need to undef it (from asm/termbits.h) */
39#undef B0
40
41#define MM 10 /* Symbol size in bits */
42#define KK (1023-4) /* Number of data symbols per block */
43#define B0 510 /* First root of generator polynomial, alpha form */
44#define PRIM 1 /* power of alpha used to generate roots of generator poly */
45#define	NN ((1 << MM) - 1)
46
47typedef unsigned short dtype;
48
49/* 1+x^3+x^10 */
50static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
51
52/* This defines the type used to store an element of the Galois Field
53 * used by the code. Make sure this is something larger than a char if
54 * if anything larger than GF(256) is used.
55 *
56 * Note: unsigned char will work up to GF(256) but int seems to run
57 * faster on the Pentium.
58 */
59typedef int gf;
60
61/* No legal value in index form represents zero, so
62 * we need a special value for this purpose
63 */
64#define A0	(NN)
65
66/* Compute x % NN, where NN is 2**MM - 1,
67 * without a slow divide
68 */
69static inline gf
70modnn(int x)
71{
72  while (x >= NN) {
73    x -= NN;
74    x = (x >> MM) + (x & NN);
75  }
76  return x;
77}
78
79#define	CLEAR(a,n) {\
80int ci;\
81for(ci=(n)-1;ci >=0;ci--)\
82(a)[ci] = 0;\
83}
84
85#define	COPY(a,b,n) {\
86int ci;\
87for(ci=(n)-1;ci >=0;ci--)\
88(a)[ci] = (b)[ci];\
89}
90
91#define	COPYDOWN(a,b,n) {\
92int ci;\
93for(ci=(n)-1;ci >=0;ci--)\
94(a)[ci] = (b)[ci];\
95}
96
97#define Ldec 1
98
99/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
100   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
101                   polynomial form -> index form  index_of[j=alpha**i] = i
102   alpha=2 is the primitive element of GF(2**m)
103   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
104        Let @ represent the primitive element commonly called "alpha" that
105   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
106   0 <= i <= 2^m-2,
107        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
108   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
109   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
110   example the polynomial representation of @^5 would be given by the binary
111   representation of the integer "alpha_to[5]".
112                   Similarily, index_of[] can be used as follows:
113        As above, let @ represent the primitive element of GF(2^m) that is
114   the root of the primitive polynomial p(x). In order to find the power
115   of @ (alpha) that has the polynomial representation
116        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
117   we consider the integer "i" whose binary representation with a(0) being LSB
118   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
119   "index_of[i]". Now, @^index_of[i] is that element whose polynomial
120    representation is (a(0),a(1),a(2),...,a(m-1)).
121   NOTE:
122        The element alpha_to[2^m-1] = 0 always signifying that the
123   representation of "@^infinity" = 0 is (0,0,0,...,0).
124        Similarily, the element index_of[0] = A0 always signifying
125   that the power of alpha which has the polynomial representation
126   (0,0,...,0) is "infinity".
127
128*/
129
130static void
131generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
132{
133  register int i, mask;
134
135  mask = 1;
136  Alpha_to[MM] = 0;
137  for (i = 0; i < MM; i++) {
138    Alpha_to[i] = mask;
139    Index_of[Alpha_to[i]] = i;
140    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
141    if (Pp[i] != 0)
142      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */
143    mask <<= 1;	/* single left-shift */
144  }
145  Index_of[Alpha_to[MM]] = MM;
146  /*
147   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
148   * poly-repr of @^i shifted left one-bit and accounting for any @^MM
149   * term that may occur when poly-repr of @^i is shifted.
150   */
151  mask >>= 1;
152  for (i = MM + 1; i < NN; i++) {
153    if (Alpha_to[i - 1] >= mask)
154      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
155    else
156      Alpha_to[i] = Alpha_to[i - 1] << 1;
157    Index_of[Alpha_to[i]] = i;
158  }
159  Index_of[0] = A0;
160  Alpha_to[NN] = 0;
161}
162
163/*
164 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
165 * of the feedback shift register after having processed the data and
166 * the ECC.
167 *
168 * Return number of symbols corrected, or -1 if codeword is illegal
169 * or uncorrectable. If eras_pos is non-null, the detected error locations
170 * are written back. NOTE! This array must be at least NN-KK elements long.
171 * The corrected data are written in eras_val[]. They must be xor with the data
172 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
173 *
174 * First "no_eras" erasures are declared by the calling program. Then, the
175 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
176 * If the number of channel errors is not greater than "t_after_eras" the
177 * transmitted codeword will be recovered. Details of algorithm can be found
178 * in R. Blahut's "Theory ... of Error-Correcting Codes".
179
180 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
181 * will result. The decoder *could* check for this condition, but it would involve
182 * extra time on every decoding operation.
183 * */
184static int
185eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
186            gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
187            int no_eras)
188{
189  int deg_lambda, el, deg_omega;
190  int i, j, r,k;
191  gf u,q,tmp,num1,num2,den,discr_r;
192  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly
193					 * and syndrome poly */
194  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
195  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
196  int syn_error, count;
197
198  syn_error = 0;
199  for(i=0;i<NN-KK;i++)
200      syn_error |= bb[i];
201
202  if (!syn_error) {
203    /* if remainder is zero, data[] is a codeword and there are no
204     * errors to correct. So return data[] unmodified
205     */
206    count = 0;
207    goto finish;
208  }
209
210  for(i=1;i<=NN-KK;i++){
211    s[i] = bb[0];
212  }
213  for(j=1;j<NN-KK;j++){
214    if(bb[j] == 0)
215      continue;
216    tmp = Index_of[bb[j]];
217
218    for(i=1;i<=NN-KK;i++)
219      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
220  }
221
222  /* undo the feedback register implicit multiplication and convert
223     syndromes to index form */
224
225  for(i=1;i<=NN-KK;i++) {
226      tmp = Index_of[s[i]];
227      if (tmp != A0)
228          tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
229      s[i] = tmp;
230  }
231
232  CLEAR(&lambda[1],NN-KK);
233  lambda[0] = 1;
234
235  if (no_eras > 0) {
236    /* Init lambda to be the erasure locator polynomial */
237    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
238    for (i = 1; i < no_eras; i++) {
239      u = modnn(PRIM*eras_pos[i]);
240      for (j = i+1; j > 0; j--) {
241	tmp = Index_of[lambda[j - 1]];
242	if(tmp != A0)
243	  lambda[j] ^= Alpha_to[modnn(u + tmp)];
244      }
245    }
246#if DEBUG_ECC >= 1
247    /* Test code that verifies the erasure locator polynomial just constructed
248       Needed only for decoder debugging. */
249
250    /* find roots of the erasure location polynomial */
251    for(i=1;i<=no_eras;i++)
252      reg[i] = Index_of[lambda[i]];
253    count = 0;
254    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
255      q = 1;
256      for (j = 1; j <= no_eras; j++)
257	if (reg[j] != A0) {
258	  reg[j] = modnn(reg[j] + j);
259	  q ^= Alpha_to[reg[j]];
260	}
261      if (q != 0)
262	continue;
263      /* store root and error location number indices */
264      root[count] = i;
265      loc[count] = k;
266      count++;
267    }
268    if (count != no_eras) {
269      printf("\n lambda(x) is WRONG\n");
270      count = -1;
271      goto finish;
272    }
273#if DEBUG_ECC >= 2
274    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
275    for (i = 0; i < count; i++)
276      printf("%d ", loc[i]);
277    printf("\n");
278#endif
279#endif
280  }
281  for(i=0;i<NN-KK+1;i++)
282    b[i] = Index_of[lambda[i]];
283
284  /*
285   * Begin Berlekamp-Massey algorithm to determine error+erasure
286   * locator polynomial
287   */
288  r = no_eras;
289  el = no_eras;
290  while (++r <= NN-KK) {	/* r is the step number */
291    /* Compute discrepancy at the r-th step in poly-form */
292    discr_r = 0;
293    for (i = 0; i < r; i++){
294      if ((lambda[i] != 0) && (s[r - i] != A0)) {
295	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
296      }
297    }
298    discr_r = Index_of[discr_r];	/* Index form */
299    if (discr_r == A0) {
300      /* 2 lines below: B(x) <-- x*B(x) */
301      COPYDOWN(&b[1],b,NN-KK);
302      b[0] = A0;
303    } else {
304      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
305      t[0] = lambda[0];
306      for (i = 0 ; i < NN-KK; i++) {
307	if(b[i] != A0)
308	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
309	else
310	  t[i+1] = lambda[i+1];
311      }
312      if (2 * el <= r + no_eras - 1) {
313	el = r + no_eras - el;
314	/*
315	 * 2 lines below: B(x) <-- inv(discr_r) *
316	 * lambda(x)
317	 */
318	for (i = 0; i <= NN-KK; i++)
319	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
320      } else {
321	/* 2 lines below: B(x) <-- x*B(x) */
322	COPYDOWN(&b[1],b,NN-KK);
323	b[0] = A0;
324      }
325      COPY(lambda,t,NN-KK+1);
326    }
327  }
328
329  /* Convert lambda to index form and compute deg(lambda(x)) */
330  deg_lambda = 0;
331  for(i=0;i<NN-KK+1;i++){
332    lambda[i] = Index_of[lambda[i]];
333    if(lambda[i] != A0)
334      deg_lambda = i;
335  }
336  /*
337   * Find roots of the error+erasure locator polynomial by Chien
338   * Search
339   */
340  COPY(&reg[1],&lambda[1],NN-KK);
341  count = 0;		/* Number of roots of lambda(x) */
342  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
343    q = 1;
344    for (j = deg_lambda; j > 0; j--){
345      if (reg[j] != A0) {
346	reg[j] = modnn(reg[j] + j);
347	q ^= Alpha_to[reg[j]];
348      }
349    }
350    if (q != 0)
351      continue;
352    /* store root (index-form) and error location number */
353    root[count] = i;
354    loc[count] = k;
355    /* If we've already found max possible roots,
356     * abort the search to save time
357     */
358    if(++count == deg_lambda)
359      break;
360  }
361  if (deg_lambda != count) {
362    /*
363     * deg(lambda) unequal to number of roots => uncorrectable
364     * error detected
365     */
366    count = -1;
367    goto finish;
368  }
369  /*
370   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
371   * x**(NN-KK)). in index form. Also find deg(omega).
372   */
373  deg_omega = 0;
374  for (i = 0; i < NN-KK;i++){
375    tmp = 0;
376    j = (deg_lambda < i) ? deg_lambda : i;
377    for(;j >= 0; j--){
378      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
379	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
380    }
381    if(tmp != 0)
382      deg_omega = i;
383    omega[i] = Index_of[tmp];
384  }
385  omega[NN-KK] = A0;
386
387  /*
388   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
389   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
390   */
391  for (j = count-1; j >=0; j--) {
392    num1 = 0;
393    for (i = deg_omega; i >= 0; i--) {
394      if (omega[i] != A0)
395	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
396    }
397    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
398    den = 0;
399
400    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
401    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
402      if(lambda[i+1] != A0)
403	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
404    }
405    if (den == 0) {
406#if DEBUG_ECC >= 1
407      printf("\n ERROR: denominator = 0\n");
408#endif
409      /* Convert to dual- basis */
410      count = -1;
411      goto finish;
412    }
413    /* Apply error to data */
414    if (num1 != 0) {
415        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
416    } else {
417        eras_val[j] = 0;
418    }
419  }
420 finish:
421  for(i=0;i<count;i++)
422      eras_pos[i] = loc[i];
423  return count;
424}
425
426/***************************************************************************/
427/* The DOC specific code begins here */
428
429#define SECTOR_SIZE 512
430/* The sector bytes are packed into NB_DATA MM bits words */
431#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
432
433/*
434 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
435 * content of the feedback shift register applyied to the sector and
436 * the ECC. Return the number of errors corrected (and correct them in
437 * sector), or -1 if error
438 */
439int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
440{
441    int parity, i, nb_errors;
442    gf bb[NN - KK + 1];
443    gf error_val[NN-KK];
444    int error_pos[NN-KK], pos, bitpos, index, val;
445    dtype *Alpha_to, *Index_of;
446
447    /* init log and exp tables here to save memory. However, it is slower */
448    Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
449    if (!Alpha_to)
450        return -1;
451
452    Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
453    if (!Index_of) {
454        kfree(Alpha_to);
455        return -1;
456    }
457
458    generate_gf(Alpha_to, Index_of);
459
460    parity = ecc1[1];
461
462    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
463    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
464    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
465    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
466
467    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
468                            error_val, error_pos, 0);
469    if (nb_errors <= 0)
470        goto the_end;
471
472    /* correct the errors */
473    for(i=0;i<nb_errors;i++) {
474        pos = error_pos[i];
475        if (pos >= NB_DATA && pos < KK) {
476            nb_errors = -1;
477            goto the_end;
478        }
479        if (pos < NB_DATA) {
480            /* extract bit position (MSB first) */
481            pos = 10 * (NB_DATA - 1 - pos) - 6;
482            /* now correct the following 10 bits. At most two bytes
483               can be modified since pos is even */
484            index = (pos >> 3) ^ 1;
485            bitpos = pos & 7;
486            if ((index >= 0 && index < SECTOR_SIZE) ||
487                index == (SECTOR_SIZE + 1)) {
488                val = error_val[i] >> (2 + bitpos);
489                parity ^= val;
490                if (index < SECTOR_SIZE)
491                    sector[index] ^= val;
492            }
493            index = ((pos >> 3) + 1) ^ 1;
494            bitpos = (bitpos + 10) & 7;
495            if (bitpos == 0)
496                bitpos = 8;
497            if ((index >= 0 && index < SECTOR_SIZE) ||
498                index == (SECTOR_SIZE + 1)) {
499                val = error_val[i] << (8 - bitpos);
500                parity ^= val;
501                if (index < SECTOR_SIZE)
502                    sector[index] ^= val;
503            }
504        }
505    }
506
507    /* use parity to test extra errors */
508    if ((parity & 0xff) != 0)
509        nb_errors = -1;
510
511 the_end:
512    kfree(Alpha_to);
513    kfree(Index_of);
514    return nb_errors;
515}
516
517EXPORT_SYMBOL_GPL(doc_decode_ecc);
518
519MODULE_LICENSE("GPL");
520MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
521MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");
522