• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/media/video/cx25840/
1/*
2 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3 *
4 *  Integrated Consumer Infrared Controller
5 *
6 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
7 *
8 *  This program is free software; you can redistribute it and/or
9 *  modify it under the terms of the GNU General Public License
10 *  as published by the Free Software Foundation; either version 2
11 *  of the License, or (at your option) any later version.
12 *
13 *  This program is distributed in the hope that it will be useful,
14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *  GNU General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License
19 *  along with this program; if not, write to the Free Software
20 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 *  02110-1301, USA.
22 */
23
24#include <linux/slab.h>
25#include <linux/kfifo.h>
26#include <media/cx25840.h>
27#include <media/ir-core.h>
28
29#include "cx25840-core.h"
30
31static unsigned int ir_debug;
32module_param(ir_debug, int, 0644);
33MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
34
35#define CX25840_IR_REG_BASE 	0x200
36
37#define CX25840_IR_CNTRL_REG	0x200
38#define CNTRL_WIN_3_3	0x00000000
39#define CNTRL_WIN_4_3	0x00000001
40#define CNTRL_WIN_3_4	0x00000002
41#define CNTRL_WIN_4_4	0x00000003
42#define CNTRL_WIN	0x00000003
43#define CNTRL_EDG_NONE	0x00000000
44#define CNTRL_EDG_FALL	0x00000004
45#define CNTRL_EDG_RISE	0x00000008
46#define CNTRL_EDG_BOTH	0x0000000C
47#define CNTRL_EDG	0x0000000C
48#define CNTRL_DMD	0x00000010
49#define CNTRL_MOD	0x00000020
50#define CNTRL_RFE	0x00000040
51#define CNTRL_TFE	0x00000080
52#define CNTRL_RXE	0x00000100
53#define CNTRL_TXE	0x00000200
54#define CNTRL_RIC	0x00000400
55#define CNTRL_TIC	0x00000800
56#define CNTRL_CPL	0x00001000
57#define CNTRL_LBM	0x00002000
58#define CNTRL_R		0x00004000
59
60#define CX25840_IR_TXCLK_REG	0x204
61#define TXCLK_TCD	0x0000FFFF
62
63#define CX25840_IR_RXCLK_REG	0x208
64#define RXCLK_RCD	0x0000FFFF
65
66#define CX25840_IR_CDUTY_REG	0x20C
67#define CDUTY_CDC	0x0000000F
68
69#define CX25840_IR_STATS_REG	0x210
70#define STATS_RTO	0x00000001
71#define STATS_ROR	0x00000002
72#define STATS_RBY	0x00000004
73#define STATS_TBY	0x00000008
74#define STATS_RSR	0x00000010
75#define STATS_TSR	0x00000020
76
77#define CX25840_IR_IRQEN_REG	0x214
78#define IRQEN_RTE	0x00000001
79#define IRQEN_ROE	0x00000002
80#define IRQEN_RSE	0x00000010
81#define IRQEN_TSE	0x00000020
82#define IRQEN_MSK	0x00000033
83
84#define CX25840_IR_FILTR_REG	0x218
85#define FILTR_LPF	0x0000FFFF
86
87#define CX25840_IR_FIFO_REG	0x23C
88#define FIFO_RXTX	0x0000FFFF
89#define FIFO_RXTX_LVL	0x00010000
90#define FIFO_RXTX_RTO	0x0001FFFF
91#define FIFO_RX_NDV	0x00020000
92#define FIFO_RX_DEPTH	8
93#define FIFO_TX_DEPTH	8
94
95#define CX25840_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
96#define CX25840_IR_REFCLK_FREQ	(CX25840_VIDCLK_FREQ / 2)
97
98/*
99 * We use this union internally for convenience, but callers to tx_write
100 * and rx_read will be expecting records of type struct ir_raw_event.
101 * Always ensure the size of this union is dictated by struct ir_raw_event.
102 */
103union cx25840_ir_fifo_rec {
104	u32 hw_fifo_data;
105	struct ir_raw_event ir_core_data;
106};
107
108#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
109#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
110
111struct cx25840_ir_state {
112	struct i2c_client *c;
113
114	struct v4l2_subdev_ir_parameters rx_params;
115	struct mutex rx_params_lock; /* protects Rx parameter settings cache */
116	atomic_t rxclk_divider;
117	atomic_t rx_invert;
118
119	struct kfifo rx_kfifo;
120	spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
121
122	struct v4l2_subdev_ir_parameters tx_params;
123	struct mutex tx_params_lock; /* protects Tx parameter settings cache */
124	atomic_t txclk_divider;
125};
126
127static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
128{
129	struct cx25840_state *state = to_state(sd);
130	return state ? state->ir_state : NULL;
131}
132
133
134/*
135 * Rx and Tx Clock Divider register computations
136 *
137 * Note the largest clock divider value of 0xffff corresponds to:
138 * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
139 * which fits in 21 bits, so we'll use unsigned int for time arguments.
140 */
141static inline u16 count_to_clock_divider(unsigned int d)
142{
143	if (d > RXCLK_RCD + 1)
144		d = RXCLK_RCD;
145	else if (d < 2)
146		d = 1;
147	else
148		d--;
149	return (u16) d;
150}
151
152static inline u16 ns_to_clock_divider(unsigned int ns)
153{
154	return count_to_clock_divider(
155		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
156}
157
158static inline unsigned int clock_divider_to_ns(unsigned int divider)
159{
160	/* Period of the Rx or Tx clock in ns */
161	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
162				 CX25840_IR_REFCLK_FREQ / 1000000);
163}
164
165static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
166{
167	return count_to_clock_divider(
168			  DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
169}
170
171static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
172{
173	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
174}
175
176static inline u16 freq_to_clock_divider(unsigned int freq,
177					unsigned int rollovers)
178{
179	return count_to_clock_divider(
180		   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
181}
182
183static inline unsigned int clock_divider_to_freq(unsigned int divider,
184						 unsigned int rollovers)
185{
186	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
187				 (divider + 1) * rollovers);
188}
189
190/*
191 * Low Pass Filter register calculations
192 *
193 * Note the largest count value of 0xffff corresponds to:
194 * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
195 * which fits in 21 bits, so we'll use unsigned int for time arguments.
196 */
197static inline u16 count_to_lpf_count(unsigned int d)
198{
199	if (d > FILTR_LPF)
200		d = FILTR_LPF;
201	else if (d < 4)
202		d = 0;
203	return (u16) d;
204}
205
206static inline u16 ns_to_lpf_count(unsigned int ns)
207{
208	return count_to_lpf_count(
209		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
210}
211
212static inline unsigned int lpf_count_to_ns(unsigned int count)
213{
214	/* Duration of the Low Pass Filter rejection window in ns */
215	return DIV_ROUND_CLOSEST(count * 1000,
216				 CX25840_IR_REFCLK_FREQ / 1000000);
217}
218
219static inline unsigned int lpf_count_to_us(unsigned int count)
220{
221	/* Duration of the Low Pass Filter rejection window in us */
222	return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
223}
224
225/*
226 * FIFO register pulse width count compuations
227 */
228static u32 clock_divider_to_resolution(u16 divider)
229{
230	/*
231	 * Resolution is the duration of 1 tick of the readable portion of
232	 * of the pulse width counter as read from the FIFO.  The two lsb's are
233	 * not readable, hence the << 2.  This function returns ns.
234	 */
235	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
236				 CX25840_IR_REFCLK_FREQ / 1000000);
237}
238
239static u64 pulse_width_count_to_ns(u16 count, u16 divider)
240{
241	u64 n;
242	u32 rem;
243
244	/*
245	 * The 2 lsb's of the pulse width timer count are not readable, hence
246	 * the (count << 2) | 0x3
247	 */
248	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
249	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
250	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
251		n++;
252	return n;
253}
254
255static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
256{
257	u64 n;
258	u32 rem;
259
260	/*
261	 * The 2 lsb's of the pulse width timer count are not readable, hence
262	 * the (count << 2) | 0x3
263	 */
264	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
265	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
266	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
267		n++;
268	return (unsigned int) n;
269}
270
271/*
272 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
273 *
274 * The total pulse clock count is an 18 bit pulse width timer count as the most
275 * significant part and (up to) 16 bit clock divider count as a modulus.
276 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
277 * width timer count's least significant bit.
278 */
279static u64 ns_to_pulse_clocks(u32 ns)
280{
281	u64 clocks;
282	u32 rem;
283	clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
284	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
285	if (rem >= 1000 / 2)
286		clocks++;
287	return clocks;
288}
289
290static u16 pulse_clocks_to_clock_divider(u64 count)
291{
292	u32 rem;
293
294	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
295
296	/* net result needs to be rounded down and decremented by 1 */
297	if (count > RXCLK_RCD + 1)
298		count = RXCLK_RCD;
299	else if (count < 2)
300		count = 1;
301	else
302		count--;
303	return (u16) count;
304}
305
306/*
307 * IR Control Register helpers
308 */
309enum tx_fifo_watermark {
310	TX_FIFO_HALF_EMPTY = 0,
311	TX_FIFO_EMPTY      = CNTRL_TIC,
312};
313
314enum rx_fifo_watermark {
315	RX_FIFO_HALF_FULL = 0,
316	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
317};
318
319static inline void control_tx_irq_watermark(struct i2c_client *c,
320					    enum tx_fifo_watermark level)
321{
322	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
323}
324
325static inline void control_rx_irq_watermark(struct i2c_client *c,
326					    enum rx_fifo_watermark level)
327{
328	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
329}
330
331static inline void control_tx_enable(struct i2c_client *c, bool enable)
332{
333	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
334			enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
335}
336
337static inline void control_rx_enable(struct i2c_client *c, bool enable)
338{
339	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
340			enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
341}
342
343static inline void control_tx_modulation_enable(struct i2c_client *c,
344						bool enable)
345{
346	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
347			enable ? CNTRL_MOD : 0);
348}
349
350static inline void control_rx_demodulation_enable(struct i2c_client *c,
351						  bool enable)
352{
353	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
354			enable ? CNTRL_DMD : 0);
355}
356
357static inline void control_rx_s_edge_detection(struct i2c_client *c,
358					       u32 edge_types)
359{
360	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
361			edge_types & CNTRL_EDG_BOTH);
362}
363
364static void control_rx_s_carrier_window(struct i2c_client *c,
365					unsigned int carrier,
366					unsigned int *carrier_range_low,
367					unsigned int *carrier_range_high)
368{
369	u32 v;
370	unsigned int c16 = carrier * 16;
371
372	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
373		v = CNTRL_WIN_3_4;
374		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
375	} else {
376		v = CNTRL_WIN_3_3;
377		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
378	}
379
380	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
381		v |= CNTRL_WIN_4_3;
382		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
383	} else {
384		v |= CNTRL_WIN_3_3;
385		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
386	}
387	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
388}
389
390static inline void control_tx_polarity_invert(struct i2c_client *c,
391					      bool invert)
392{
393	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
394			invert ? CNTRL_CPL : 0);
395}
396
397/*
398 * IR Rx & Tx Clock Register helpers
399 */
400static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
401				       unsigned int freq,
402				       u16 *divider)
403{
404	*divider = carrier_freq_to_clock_divider(freq);
405	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
406	return clock_divider_to_carrier_freq(*divider);
407}
408
409static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
410				       unsigned int freq,
411				       u16 *divider)
412{
413	*divider = carrier_freq_to_clock_divider(freq);
414	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
415	return clock_divider_to_carrier_freq(*divider);
416}
417
418static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
419				      u16 *divider)
420{
421	u64 pulse_clocks;
422
423	if (ns > IR_MAX_DURATION)
424		ns = IR_MAX_DURATION;
425	pulse_clocks = ns_to_pulse_clocks(ns);
426	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
427	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
428	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
429}
430
431static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
432				      u16 *divider)
433{
434	u64 pulse_clocks;
435
436	if (ns > IR_MAX_DURATION)
437		ns = IR_MAX_DURATION;
438	pulse_clocks = ns_to_pulse_clocks(ns);
439	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
440	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
441	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
442}
443
444/*
445 * IR Tx Carrier Duty Cycle register helpers
446 */
447static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
448					  unsigned int duty_cycle)
449{
450	u32 n;
451	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
452	if (n != 0)
453		n--;
454	if (n > 15)
455		n = 15;
456	cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
457	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
458}
459
460/*
461 * IR Filter Register helpers
462 */
463static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
464{
465	u32 count = ns_to_lpf_count(min_width_ns);
466	cx25840_write4(c, CX25840_IR_FILTR_REG, count);
467	return lpf_count_to_ns(count);
468}
469
470/*
471 * IR IRQ Enable Register helpers
472 */
473static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
474{
475	struct cx25840_state *state = to_state(sd);
476
477	if (is_cx23885(state) || is_cx23887(state))
478		mask ^= IRQEN_MSK;
479	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
480	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
481			~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
482}
483
484static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
485{
486	struct cx25840_state *state = to_state(sd);
487
488	if (is_cx23885(state) || is_cx23887(state))
489		mask ^= IRQEN_MSK;
490	mask &= IRQEN_TSE;
491	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
492}
493
494/*
495 * V4L2 Subdevice IR Ops
496 */
497int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
498{
499	struct cx25840_state *state = to_state(sd);
500	struct cx25840_ir_state *ir_state = to_ir_state(sd);
501	struct i2c_client *c = NULL;
502	unsigned long flags;
503
504	union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
505	unsigned int i, j, k;
506	u32 events, v;
507	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
508	u32 cntrl, irqen, stats;
509
510	*handled = false;
511	if (ir_state == NULL)
512		return -ENODEV;
513
514	c = ir_state->c;
515
516	/* Only support the IR controller for the CX2388[57] AV Core for now */
517	if (!(is_cx23885(state) || is_cx23887(state)))
518		return -ENODEV;
519
520	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
521	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
522	if (is_cx23885(state) || is_cx23887(state))
523		irqen ^= IRQEN_MSK;
524	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
525
526	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
527	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
528	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
529	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
530
531	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
532	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
533	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
534	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
535
536	v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
537		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
538		 rto ? "rto" : "   ", ror ? "ror" : "   ",
539		 stats & STATS_TBY ? "tby" : "   ",
540		 stats & STATS_RBY ? "rby" : "   ");
541
542	v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
543		 tse ? "tse" : "   ", rse ? "rse" : "   ",
544		 rte ? "rte" : "   ", roe ? "roe" : "   ");
545
546	/*
547	 * Transmitter interrupt service
548	 */
549	if (tse && tsr) {
550		/*
551		 * TODO:
552		 * Check the watermark threshold setting
553		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
554		 * Push the data to the hardware FIFO.
555		 * If there was nothing more to send in the tx_kfifo, disable
556		 *	the TSR IRQ and notify the v4l2_device.
557		 * If there was something in the tx_kfifo, check the tx_kfifo
558		 *      level and notify the v4l2_device, if it is low.
559		 */
560		/* For now, inhibit TSR interrupt until Tx is implemented */
561		irqenable_tx(sd, 0);
562		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
563		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
564		*handled = true;
565	}
566
567	/*
568	 * Receiver interrupt service
569	 */
570	kror = 0;
571	if ((rse && rsr) || (rte && rto)) {
572		/*
573		 * Receive data on RSR to clear the STATS_RSR.
574		 * Receive data on RTO, since we may not have yet hit the RSR
575		 * watermark when we receive the RTO.
576		 */
577		for (i = 0, v = FIFO_RX_NDV;
578		     (v & FIFO_RX_NDV) && !kror; i = 0) {
579			for (j = 0;
580			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
581				v = cx25840_read4(c, CX25840_IR_FIFO_REG);
582				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
583				i++;
584			}
585			if (i == 0)
586				break;
587			j = i * sizeof(union cx25840_ir_fifo_rec);
588			k = kfifo_in_locked(&ir_state->rx_kfifo,
589					    (unsigned char *) rx_data, j,
590					    &ir_state->rx_kfifo_lock);
591			if (k != j)
592				kror++; /* rx_kfifo over run */
593		}
594		*handled = true;
595	}
596
597	events = 0;
598	v = 0;
599	if (kror) {
600		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
601		v4l2_err(sd, "IR receiver software FIFO overrun\n");
602	}
603	if (roe && ror) {
604		/*
605		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
606		 * the Rx FIFO Over Run status (STATS_ROR)
607		 */
608		v |= CNTRL_RFE;
609		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
610		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
611	}
612	if (rte && rto) {
613		/*
614		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
615		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
616		 */
617		v |= CNTRL_RXE;
618		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
619	}
620	if (v) {
621		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
622		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
623		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
624		*handled = true;
625	}
626	spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
627	if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
628		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
629	spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
630
631	if (events)
632		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
633	return 0;
634}
635
636/* Receiver */
637static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
638			      ssize_t *num)
639{
640	struct cx25840_ir_state *ir_state = to_ir_state(sd);
641	bool invert;
642	u16 divider;
643	unsigned int i, n;
644	union cx25840_ir_fifo_rec *p;
645	unsigned u, v;
646
647	if (ir_state == NULL)
648		return -ENODEV;
649
650	invert = (bool) atomic_read(&ir_state->rx_invert);
651	divider = (u16) atomic_read(&ir_state->rxclk_divider);
652
653	n = count / sizeof(union cx25840_ir_fifo_rec)
654		* sizeof(union cx25840_ir_fifo_rec);
655	if (n == 0) {
656		*num = 0;
657		return 0;
658	}
659
660	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
661			     &ir_state->rx_kfifo_lock);
662
663	n /= sizeof(union cx25840_ir_fifo_rec);
664	*num = n * sizeof(union cx25840_ir_fifo_rec);
665
666	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
667
668		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
669			/* Assume RTO was because of no IR light input */
670			u = 0;
671			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
672		} else {
673			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
674			if (invert)
675				u = u ? 0 : 1;
676		}
677
678		v = (unsigned) pulse_width_count_to_ns(
679				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
680		if (v > IR_MAX_DURATION)
681			v = IR_MAX_DURATION;
682
683		p->ir_core_data.pulse = u;
684		p->ir_core_data.duration = v;
685
686		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s\n",
687			 v, u ? "mark" : "space");
688	}
689	return 0;
690}
691
692static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
693				      struct v4l2_subdev_ir_parameters *p)
694{
695	struct cx25840_ir_state *ir_state = to_ir_state(sd);
696
697	if (ir_state == NULL)
698		return -ENODEV;
699
700	mutex_lock(&ir_state->rx_params_lock);
701	memcpy(p, &ir_state->rx_params,
702				      sizeof(struct v4l2_subdev_ir_parameters));
703	mutex_unlock(&ir_state->rx_params_lock);
704	return 0;
705}
706
707static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
708{
709	struct cx25840_ir_state *ir_state = to_ir_state(sd);
710	struct i2c_client *c;
711
712	if (ir_state == NULL)
713		return -ENODEV;
714
715	c = ir_state->c;
716	mutex_lock(&ir_state->rx_params_lock);
717
718	/* Disable or slow down all IR Rx circuits and counters */
719	irqenable_rx(sd, 0);
720	control_rx_enable(c, false);
721	control_rx_demodulation_enable(c, false);
722	control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
723	filter_rx_s_min_width(c, 0);
724	cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
725
726	ir_state->rx_params.shutdown = true;
727
728	mutex_unlock(&ir_state->rx_params_lock);
729	return 0;
730}
731
732static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
733				      struct v4l2_subdev_ir_parameters *p)
734{
735	struct cx25840_ir_state *ir_state = to_ir_state(sd);
736	struct i2c_client *c;
737	struct v4l2_subdev_ir_parameters *o;
738	u16 rxclk_divider;
739
740	if (ir_state == NULL)
741		return -ENODEV;
742
743	if (p->shutdown)
744		return cx25840_ir_rx_shutdown(sd);
745
746	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
747		return -ENOSYS;
748
749	c = ir_state->c;
750	o = &ir_state->rx_params;
751
752	mutex_lock(&ir_state->rx_params_lock);
753
754	o->shutdown = p->shutdown;
755
756	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
757	o->mode = p->mode;
758
759	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
760	o->bytes_per_data_element = p->bytes_per_data_element;
761
762	/* Before we tweak the hardware, we have to disable the receiver */
763	irqenable_rx(sd, 0);
764	control_rx_enable(c, false);
765
766	control_rx_demodulation_enable(c, p->modulation);
767	o->modulation = p->modulation;
768
769	if (p->modulation) {
770		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
771						     &rxclk_divider);
772
773		o->carrier_freq = p->carrier_freq;
774
775		p->duty_cycle = 50;
776		o->duty_cycle = p->duty_cycle;
777
778		control_rx_s_carrier_window(c, p->carrier_freq,
779					    &p->carrier_range_lower,
780					    &p->carrier_range_upper);
781		o->carrier_range_lower = p->carrier_range_lower;
782		o->carrier_range_upper = p->carrier_range_upper;
783
784		p->max_pulse_width =
785			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
786	} else {
787		p->max_pulse_width =
788			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
789						       &rxclk_divider);
790	}
791	o->max_pulse_width = p->max_pulse_width;
792	atomic_set(&ir_state->rxclk_divider, rxclk_divider);
793
794	p->noise_filter_min_width =
795			    filter_rx_s_min_width(c, p->noise_filter_min_width);
796	o->noise_filter_min_width = p->noise_filter_min_width;
797
798	p->resolution = clock_divider_to_resolution(rxclk_divider);
799	o->resolution = p->resolution;
800
801	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
802
803	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
804
805	o->invert_level = p->invert_level;
806	atomic_set(&ir_state->rx_invert, p->invert_level);
807
808	o->interrupt_enable = p->interrupt_enable;
809	o->enable = p->enable;
810	if (p->enable) {
811		unsigned long flags;
812
813		spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
814		kfifo_reset(&ir_state->rx_kfifo);
815		spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
816		if (p->interrupt_enable)
817			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
818		control_rx_enable(c, p->enable);
819	}
820
821	mutex_unlock(&ir_state->rx_params_lock);
822	return 0;
823}
824
825/* Transmitter */
826static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
827			       ssize_t *num)
828{
829	struct cx25840_ir_state *ir_state = to_ir_state(sd);
830	struct i2c_client *c;
831
832	if (ir_state == NULL)
833		return -ENODEV;
834
835	c = ir_state->c;
836	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
837	irqenable_tx(sd, IRQEN_TSE);
838	*num = count;
839	return 0;
840}
841
842static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
843				      struct v4l2_subdev_ir_parameters *p)
844{
845	struct cx25840_ir_state *ir_state = to_ir_state(sd);
846
847	if (ir_state == NULL)
848		return -ENODEV;
849
850	mutex_lock(&ir_state->tx_params_lock);
851	memcpy(p, &ir_state->tx_params,
852				      sizeof(struct v4l2_subdev_ir_parameters));
853	mutex_unlock(&ir_state->tx_params_lock);
854	return 0;
855}
856
857static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
858{
859	struct cx25840_ir_state *ir_state = to_ir_state(sd);
860	struct i2c_client *c;
861
862	if (ir_state == NULL)
863		return -ENODEV;
864
865	c = ir_state->c;
866	mutex_lock(&ir_state->tx_params_lock);
867
868	/* Disable or slow down all IR Tx circuits and counters */
869	irqenable_tx(sd, 0);
870	control_tx_enable(c, false);
871	control_tx_modulation_enable(c, false);
872	cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
873
874	ir_state->tx_params.shutdown = true;
875
876	mutex_unlock(&ir_state->tx_params_lock);
877	return 0;
878}
879
880static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
881				      struct v4l2_subdev_ir_parameters *p)
882{
883	struct cx25840_ir_state *ir_state = to_ir_state(sd);
884	struct i2c_client *c;
885	struct v4l2_subdev_ir_parameters *o;
886	u16 txclk_divider;
887
888	if (ir_state == NULL)
889		return -ENODEV;
890
891	if (p->shutdown)
892		return cx25840_ir_tx_shutdown(sd);
893
894	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
895		return -ENOSYS;
896
897	c = ir_state->c;
898	o = &ir_state->tx_params;
899	mutex_lock(&ir_state->tx_params_lock);
900
901	o->shutdown = p->shutdown;
902
903	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
904	o->mode = p->mode;
905
906	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
907	o->bytes_per_data_element = p->bytes_per_data_element;
908
909	/* Before we tweak the hardware, we have to disable the transmitter */
910	irqenable_tx(sd, 0);
911	control_tx_enable(c, false);
912
913	control_tx_modulation_enable(c, p->modulation);
914	o->modulation = p->modulation;
915
916	if (p->modulation) {
917		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
918						     &txclk_divider);
919		o->carrier_freq = p->carrier_freq;
920
921		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
922		o->duty_cycle = p->duty_cycle;
923
924		p->max_pulse_width =
925			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
926	} else {
927		p->max_pulse_width =
928			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
929						       &txclk_divider);
930	}
931	o->max_pulse_width = p->max_pulse_width;
932	atomic_set(&ir_state->txclk_divider, txclk_divider);
933
934	p->resolution = clock_divider_to_resolution(txclk_divider);
935	o->resolution = p->resolution;
936
937	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
938
939	control_tx_polarity_invert(c, p->invert_carrier_sense);
940	o->invert_carrier_sense = p->invert_carrier_sense;
941
942	o->invert_level = p->invert_level;
943
944	o->interrupt_enable = p->interrupt_enable;
945	o->enable = p->enable;
946	if (p->enable) {
947		/* reset tx_fifo here */
948		if (p->interrupt_enable)
949			irqenable_tx(sd, IRQEN_TSE);
950		control_tx_enable(c, p->enable);
951	}
952
953	mutex_unlock(&ir_state->tx_params_lock);
954	return 0;
955}
956
957
958/*
959 * V4L2 Subdevice Core Ops support
960 */
961int cx25840_ir_log_status(struct v4l2_subdev *sd)
962{
963	struct cx25840_state *state = to_state(sd);
964	struct i2c_client *c = state->c;
965	char *s;
966	int i, j;
967	u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
968
969	/* The CX23888 chip doesn't have an IR controller on the A/V core */
970	if (is_cx23888(state))
971		return 0;
972
973	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
974	txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
975	rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
976	cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
977	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
978	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
979	if (is_cx23885(state) || is_cx23887(state))
980		irqen ^= IRQEN_MSK;
981	filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
982
983	v4l2_info(sd, "IR Receiver:\n");
984	v4l2_info(sd, "\tEnabled:                           %s\n",
985		  cntrl & CNTRL_RXE ? "yes" : "no");
986	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
987		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
988	v4l2_info(sd, "\tFIFO:                              %s\n",
989		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
990	switch (cntrl & CNTRL_EDG) {
991	case CNTRL_EDG_NONE:
992		s = "disabled";
993		break;
994	case CNTRL_EDG_FALL:
995		s = "falling edge";
996		break;
997	case CNTRL_EDG_RISE:
998		s = "rising edge";
999		break;
1000	case CNTRL_EDG_BOTH:
1001		s = "rising & falling edges";
1002		break;
1003	default:
1004		s = "??? edge";
1005		break;
1006	}
1007	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1008	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1009		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1010	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1011		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1012	v4l2_info(sd, "\tLoopback mode:                     %s\n",
1013		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1014	if (cntrl & CNTRL_DMD) {
1015		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1016			  clock_divider_to_carrier_freq(rxclk));
1017		switch (cntrl & CNTRL_WIN) {
1018		case CNTRL_WIN_3_3:
1019			i = 3;
1020			j = 3;
1021			break;
1022		case CNTRL_WIN_4_3:
1023			i = 4;
1024			j = 3;
1025			break;
1026		case CNTRL_WIN_3_4:
1027			i = 3;
1028			j = 4;
1029			break;
1030		case CNTRL_WIN_4_4:
1031			i = 4;
1032			j = 4;
1033			break;
1034		default:
1035			i = 0;
1036			j = 0;
1037			break;
1038		}
1039		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1040			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1041			  clock_divider_to_freq(rxclk, 16 + j),
1042			  clock_divider_to_freq(rxclk, 16 - i));
1043	}
1044	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1045		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1046		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1047	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1048		  filtr ? "enabled" : "disabled");
1049	if (filtr)
1050		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1051			  "%u ns\n",
1052			  lpf_count_to_us(filtr),
1053			  lpf_count_to_ns(filtr));
1054	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1055		  stats & STATS_RTO ? "yes" : "no");
1056	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1057		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1058	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1059		  stats & STATS_ROR ? "yes" : "no");
1060	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1061		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1062	v4l2_info(sd, "\tBusy:                              %s\n",
1063		  stats & STATS_RBY ? "yes" : "no");
1064	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1065		  stats & STATS_RSR ? "yes" : "no");
1066	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1067		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1068
1069	v4l2_info(sd, "IR Transmitter:\n");
1070	v4l2_info(sd, "\tEnabled:                           %s\n",
1071		  cntrl & CNTRL_TXE ? "yes" : "no");
1072	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1073		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1074	v4l2_info(sd, "\tFIFO:                              %s\n",
1075		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1076	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1077		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1078	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1079		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1080				    : "space:noburst mark:burst");
1081	if (cntrl & CNTRL_MOD) {
1082		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1083			  clock_divider_to_carrier_freq(txclk));
1084		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1085			  cduty + 1);
1086	}
1087	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1088		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1089		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1090	v4l2_info(sd, "\tBusy:                              %s\n",
1091		  stats & STATS_TBY ? "yes" : "no");
1092	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1093		  stats & STATS_TSR ? "yes" : "no");
1094	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1095		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1096
1097	return 0;
1098}
1099
1100
1101const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1102	.rx_read = cx25840_ir_rx_read,
1103	.rx_g_parameters = cx25840_ir_rx_g_parameters,
1104	.rx_s_parameters = cx25840_ir_rx_s_parameters,
1105
1106	.tx_write = cx25840_ir_tx_write,
1107	.tx_g_parameters = cx25840_ir_tx_g_parameters,
1108	.tx_s_parameters = cx25840_ir_tx_s_parameters,
1109};
1110
1111
1112static const struct v4l2_subdev_ir_parameters default_rx_params = {
1113	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1114	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1115
1116	.enable = false,
1117	.interrupt_enable = false,
1118	.shutdown = true,
1119
1120	.modulation = true,
1121	.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1122
1123	/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1124	/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1125	.noise_filter_min_width = 333333, /* ns */
1126	.carrier_range_lower = 35000,
1127	.carrier_range_upper = 37000,
1128	.invert_level = false,
1129};
1130
1131static const struct v4l2_subdev_ir_parameters default_tx_params = {
1132	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1133	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1134
1135	.enable = false,
1136	.interrupt_enable = false,
1137	.shutdown = true,
1138
1139	.modulation = true,
1140	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1141	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1142	.invert_level = false,
1143	.invert_carrier_sense = false,
1144};
1145
1146int cx25840_ir_probe(struct v4l2_subdev *sd)
1147{
1148	struct cx25840_state *state = to_state(sd);
1149	struct cx25840_ir_state *ir_state;
1150	struct v4l2_subdev_ir_parameters default_params;
1151
1152	/* Only init the IR controller for the CX2388[57] AV Core for now */
1153	if (!(is_cx23885(state) || is_cx23887(state)))
1154		return 0;
1155
1156	ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1157	if (ir_state == NULL)
1158		return -ENOMEM;
1159
1160	spin_lock_init(&ir_state->rx_kfifo_lock);
1161	if (kfifo_alloc(&ir_state->rx_kfifo,
1162			CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1163		kfree(ir_state);
1164		return -ENOMEM;
1165	}
1166
1167	ir_state->c = state->c;
1168	state->ir_state = ir_state;
1169
1170	/* Ensure no interrupts arrive yet */
1171	if (is_cx23885(state) || is_cx23887(state))
1172		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1173	else
1174		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1175
1176	mutex_init(&ir_state->rx_params_lock);
1177	memcpy(&default_params, &default_rx_params,
1178		       sizeof(struct v4l2_subdev_ir_parameters));
1179	v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1180
1181	mutex_init(&ir_state->tx_params_lock);
1182	memcpy(&default_params, &default_tx_params,
1183		       sizeof(struct v4l2_subdev_ir_parameters));
1184	v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1185
1186	return 0;
1187}
1188
1189int cx25840_ir_remove(struct v4l2_subdev *sd)
1190{
1191	struct cx25840_state *state = to_state(sd);
1192	struct cx25840_ir_state *ir_state = to_ir_state(sd);
1193
1194	if (ir_state == NULL)
1195		return -ENODEV;
1196
1197	cx25840_ir_rx_shutdown(sd);
1198	cx25840_ir_tx_shutdown(sd);
1199
1200	kfifo_free(&ir_state->rx_kfifo);
1201	kfree(ir_state);
1202	state->ir_state = NULL;
1203	return 0;
1204}
1205